

P. Sphicas CERN and Univ of Athens DESY, April 14-15, 2009

Outline

- Introduction (why all this...)
- The LHC and its (high-P_T) pp experiments
 - The machine, designing an experiment for it: CMS
 - Evolution, construction, installation
- Quick look at (asymptotic) physics reach
- The LHC (and CMS) startup
- "Physics commissioning" and early (2010-2011) physics
- Summary...

The state (of the Standard Model) of Particle Physics

"What we know about the missing Higgs boson"

Standard Model (successes)

 $\mathbf{A}_{\mathrm{FB}}^{\mathrm{0.15}}(\sqrt{\mathrm{s}})$

0.1

LEP

A true success story: "only" missing piece: the Higgs boson...

Limits on M_H (I): EWK vaccum stability

- Central to the Higgs mechanism: that point with vev≠0 is stable (genuine minimum)
 - Radiative corrections can change this

- For large top masses, potential can V(φ) curve back down; two terms fighting:
- $\lambda \phi^4 vs \sim (m_t/v)^4$
- And since M_H²~λv², get a lower bound on M_H (~ 130 GeV)

 $|V(\phi)| V(\phi) = -\frac{\mu^2}{2}\phi^2 + \frac{\lambda}{4}\phi^4$

- From previous discussion: need a high value of λ (i.e. self-coupling) to protect the vacuum
 - However, the running of the coupling results in an increase with Q^2 : $\lambda(Q^2)$

$$\lambda(Q^2) = \frac{\lambda(Q_0)}{1 - \lambda(Q_0^2) / 16\pi^2 \log(Q^2 / Q_0^2)}$$

- So, as $Q^2 \rightarrow \infty$, $\lambda \rightarrow \infty$
- Alternative: if λ is normalized to a finite value at the pole then it must vanish at low Q². Theory is non-interacting → "trivial"
- Way out: assume that analysis breaks down at some scale Λ (clearly, when gravity gets added, things will change)

$$\Lambda \le M_H \exp\left(\frac{4\pi^2 v^2}{3M_H^2}\right)$$

Information on M_H: summary

P. Sphicas Probing nature at a TeV: CMS at LHC

Strong boson-boson scattering

Example: W_LZ_L scattering

- W, Z polarization vector ε^{μ} satisfies: $\varepsilon^{\mu}p_{\mu}=0$;
 - for p_{μ} =(E,0,0,p), ε^{μ} =1/M_V(p,0,0,E) ~ P^{\mu}/M_V+O(M_V/E)
- Scattering amplitude ~ $(p_1/M_W) (p_2/M_Z) (p_3/M_W) (p_4/M_Z)$, i.e. $\sigma \sim s^2/M_W^2 M_Z^2 W W W W W W$

- Taking $M_H \rightarrow \infty$ the H diagram goes to zero (~ 1/ M_H^2)
- Technicalities: diagrams are gauge invariant, can take out one factor of s
 - but the second always remains (non-abelian group)
- Conclusion: to preserve unitarity, one must switch on the H at some mass
 - Currently: M_H≤800 GeV

- LEP, SLC and the Tevatron: established that we really understand the physics at energies up to 100 GeV
 - And any new particles have masses above 200-300 GeV and in some cases TeV
- The Higgs itself can have a mass up to ~700-800 GeV;
 - if it's not there, something must be added by ~1.2 TeV, or WW scattering exceeds unitarity
- Even if the Higgs exists, all is not 100% well with the Standard Model alone: next question is why is the (Higgs) mass so low?
 - The same mechanism that gives all masses would drive the Higgs to the Planck scale. If SUSY is the answer, it must show up at O(TeV)
 - Recent: extra dimensions. Again, something must happen in the O(1-10) TeV scale if the above issues are to be addressed
- Conclusion: we need to study the TeV region

SM Higgs, New Physics and Detectors

Two basic requirements:

- an accelerator (energy...)
- (since we don't know how New Physics will manifest itself):
 - "general-purpose" experiments covering as much of the solid angle as possible ("4π")
 - → detectors must be able to detect as many particles and signatures as possible:
 e, μ, τ, ν, γ, jets, bquarks,

Going after the Higgs: the Large Hadron Collider (LHC)

The accelerator Designing an experiment for the LHC Some challenges

A machine for EWSB

- Superconducting Supercollider (SSC)
 - By now: would have had 3rd-gen results 10⁻¹
- Next option: use existing LEP tunnel at CERN
 - Large Hadron Collider

Not true any more (M_T=175 GeV)

Proton - Proton2804 bunch/beamProtons/bunch1011Beam energy7 TeV (7x1012 eV)Luminosity1034 cm-2 s-1

Crossing rate

40 MHz

Collision rate \approx 10⁷-10⁹

New physics rate ≈ .00001 Hz

Event selection: 1 in 10,000,000,000,000

pp cross section and min. bias

- # of interactions/crossing:
 - Interactions/s:
 - Lum = 10^{34} cm⁻²s⁻¹= 10^{7} mb⁻¹Hz
 - σ(pp) = 70 mb
 - Interaction Rate, R = 7x10⁸ Hz
 - Events/beam crossing:
 - ∆t = 25 ns = 2.5x10⁻⁸ s
 - Interactions/crossing=17.5
 - Not all p bunches are full
 - 2835 out of 3564 only
 - Interactions/"active" crossing = 17.5 x 3564/2835 = 23

Operating conditions (summary): 1) A "good" event containing a Higgs decay + 2) ≈ 20 extra "bad" (minimum bias) interactions

pp collisions at 14 TeV at 10³⁴ cm⁻²s⁻¹

20 min bias events overlap H→ZZ **Ζ** →μμ $H \rightarrow 4$ muons: the cleanest ("golden") signature

P. Sphic_____ Probing nature at a TeV: CMS at LHC DESY Physics Seminar April 14-15, 2009

LHC challenges: detector design

- LHC detectors must have fast response
 - Otherwise will integrate over many bunch crossings → large "pile-up"
 - Typical response time : 20-50 ns
 - \rightarrow integrate over 1-2 bunch crossings \rightarrow pile-up of 25-50 min-bias
 - → very challenging readout electronics
- LHC detectors must be highly granular
 - Minimize probability that pile-up particles be in the same detector element as interesting object (e.g. γ from H → γγ decays)
 - → large number of electronic channels
 - → high cost
- **LHC detectors must be radiation resistant:**
 - high flux of particles from pp collisions → high radiation environment e.g. in forward calorimeters:
 - up to 10¹⁷ n/cm² in 10 years of LHC operation
 - up to 10⁷ Gy (1 Gy = unit of absorbed energy = 1 Joule/Kg)

pulse shape

Pile-up & Electronics; BCID

"In-time" pile-up: particles from the same crossing but from a different pp interaction

- Long detector response/ pulse shapes:
 - "Out-of-time" pile-up: left-over signals from interactions in previous crossings
 - Need "bunch-crossing identification"

Synchronization

- Time-of-flight (25 ns = 7.5 m < detector size)</p>
 - Plus intra-channel synchronization
 - Plus inter-detector synchronization
- http://cmsdoc.cern.ch/cms/TRIDAS/html/WELL2.html

At high luminosity hadron colliders: need to measure muon momenta online – with sufficient accuracy for triggering

Solenoid	BR ²	Tm ²	Tm	∆r(Fe) (m)
1.GEM	0.8*9 ²	65	7	-
2.CMS	4*3 ²	36	12	~1.5
3.ALEPH'	3*2.5 ²	19	7.5	<1
4.ATLAS	2*1.2 ²	3	2.4	-

- 1: low-field inner tracking
- 2: bending power at high eta
- 3: Coil at hadron shower max, saturated iron for muons too thin
- 4: need toroid magnets, coil-ECAL interface

Designing an LHC experiment

THE issue: measure momenta of charged particles (e.g. muons); so which measurement "architecture"?

ATLAS

Standalone p measurement; safe for high multiplicities; Air-core torroid Property: σ flat with η

CMS

Measurement of p in tracker and B return flux; Iron-core solenoid Property: muon tracks point back to vertex

Choice of magnet (I)

Basic goal: measure 1 TeV muons with 10% resolution

- ATLAS: ~0.6T over 4.5 m → s=0.5mm → need σ_s =50µm
- Ampere's thm: $2\pi RB = \mu_0 nI \rightarrow nI = 2x10^7 At$
- With 8 coils, 2x2x30 turns: I=20kA (superC)
- Challenges: mechanics, 1.5GJ if quench, spatial & alignment precision over large surface area

◆ CMS: B=4T (E=2.7 GJ!)

- B=µ₀nI; @2168 turns/m→ I=20kA (SuperC) ^{32 strands of 1.276}
- Challenges: 4-layer winding to carry enough I, design of reinforced superC cable

Choice of magnet (III)

Solenoid:

Bending in transverse plane Use 20μm beam spot BUT: 4T brings problems (e.g. cannot use PM tubes)

Iron-core → multiple scattering

Tracking in magnetized iron:

BUT measurement much better when combined with the tracker

Designs of Various Detectors

L=40m, ϕ =22m, Solenoid R=1.7m, B=2T Fe Toroid 6.75m < R < 8.25 m, B=1.8T

L=38m, ϕ =24m, Solenoid R=9m, B=0.8T

L=40m, ϕ =20m, Solenoid R=1.1.5m, B=2T Air Toroid 5m < R < 10 m, B=0.6T

CMS

L=20m, ϕ =13m, Solenoid R=3, B=4T

P. Sphicas Probing nature at a TeV: CMS at LHC

- Need excellent energy resolution of EM calorimeters for e/γ; Example: H → γγ for low mass Higgs
 - Higgs width is very narrow, so
 S/N directly ∝ to signal resolution
 - Moreover, initial background: x100 larger
 - π⁰ rejection: strips (ATLAS),
 crystal size (isolation) (CMS); preshower
 in the endcap

Tracker vs ECAL resolution match: at ~50 GeV (spot on for Higgs)

Electromagnetic calorimeter

• Liquid argon by ATLAS. Not enough space in CMS for cryogenics. Need something more compact. Crystal ECAL

Properties of some crystals

	X	R	Light Yield	Peak	Decay
Crystal	(cm)	(cm)	Gammas/MeV	(nm)	(ns)
BaF	2.06	3.4	2000	210	0.6
-			6500	310	620
CeF ₃	1.68	2.6	2000	300	5
Ŭ				340	20

- CeF₃ best choice. Good light yield; short X₀; short τ; good radiation resistance
- Post Lol: PbWO4

	PbWO₄	0.89	2.2	250	440	5-15	
--	-------	------	-----	-----	-----	------	--

Example: Tracking Requirements

Efficiency: need low, ~few % occupancy; Resolution

Twelve hits; 4T field spatial resolution: (pitch/ √12) Radius: 110 cm →momentum resolution:

$$\frac{\Delta p}{p} \approx 0.12 \left(\frac{p\,itch}{100\,\mu m}\right)^1 \left(\frac{1.1m}{L}\right)^2 \left(\frac{4T}{B}\right)^1 \left(\frac{p}{1Tev}\right)$$

→Need pitch ~100µm.

small radii: need cell size < 1cm² + fast (~25ns) shaping time condition is relaxed at large radii

- Strip size
 - Strip length: 10cm (inner layers) to 20cm (outer layers).
 - Pitch: 80μm (inner layers) to 200μm (outer layers)

Including forward detectors 2π TOTEM RPS Δη ±220m -420m ±147m TOTEM T2 CMS -2 £ 2 8 6 η Muon s ZDC CASTOR ZDC CASTOR HCAL (FP420) ECAL TOTEM T2 Pixels+Tracker ZDC TOTEM RPs CASTOR Τ1 ±147m **T1** ±220m CMS (+TOTEM): CASTOR Largest phase-space coverage ever in a collider. ZDC

(FP420)^{420m}

- LHC Workshop, Aachen 1990
 - Concept of a compact detector based on a 4T superconducting solenoid
- Expression of Interest, Evian 1992
 - Conceptual Design
- Letter of Intent, October 1992
 - CERN/LHCC 92-3
- Technical Proposal, Dec 1994
 - CERN/LHCC 94-38
- Interim Memorandum of Understanding (IMoU) 1995
- Memorandum of Understanding (MoU) 1998
- Detector Technical Design Reports: 1997-98; LvI-1 Trigger: 2000; DAQ/HLT: 2002.
- Computing & Physics TDR: end 2005; mid 2006.

"Asymptotic" physics reach

Standard Model Higgs search SUSY Higgs search General Supersymmetry (sparticles) search

Selectivity: the physics

- Cross sections for various physics processes vary over many orders of magnitude
 - Inelastic: 10⁹ Hz
 - W→ ℓ ν: 10² Hz
 - t t production: 10 Hz
 - Higgs (100 GeV/c²): 0.1 Hz
 - ✤ Higgs (600 GeV/c²): 10⁻² Hz
- Selection needed: 1:10^{10–11}
 - Before branching fractions...

The (SM) Higgs in the detector

P. Sphicas Probing nature at a TeV: CMS at LHC

Higgs reach

- The LHC can probe the entire set of "allowed" Higgs mass values;
 - in most cases a few months at 10³³cm⁻²s⁻¹ are adequate for a 5σ observation

Problems with the Higgs and the Standard Model

Quadratic divergence in its mass

$$m^{2}(p^{2}) = m_{o}^{2} + \frac{\int_{p}^{J=1} d^{J=1/2}}{(p^{2})^{J=1}} = m^{2}(\Lambda^{2}) + Cg^{2} \int_{p^{2}}^{\Lambda^{2}} dk^{2}$$

- Or: why is the Higgs mass so low? What is the mechanism?
- Where is all this vacuum energy?
 - We would expect a tremendous energy density (>10¹⁰⁰ times larger than observed! Cosmological constant "too small")
- What about the missing mass (dark matter)? What is it?

Supersymmetry (SUSY), effect on Higgs and dark matter (?)

SUSY (super-symmetry) solution: for every particle in the SM, there is a super-partner with spin-½ difference

P. Sphicas Probing nature at a TeV: CMS at LHC

Observability of MSSM Higgses

SUSY signatures in CMS

- Many hard Jets
- Large missing energy
 - 2 LSPs
 - Many neutrinos
- Many leptons
- In a word Spectacular!

DESY Physics Seminar April 14-15, 2009

S. Abdullin

Inclusive SUSY searches

LHC startup, future

Machine ~ready in Sep 2008

DESY Physics Seminar April 14-15, 2009

Installing Detectors Inside the Magnet

Probing nature at a TeV: CMS at LHC

April 14-15, 2009

Fisheye view of CMS

DESY Physics Seminar April 14-15, 2009

Latest Installed Components

Minus End before Closure

Minus End & Closure

Final Closure

First LHC beam

- In Sep 2008, after almost 20 years of design and construction CMS started taking data with LHC beams.
 - (Much appreciation for the work of the accelerator folks)
- Sun/Mon, 7-8 Sept.
 - Single shots of Beam 1 (clockwise via ALICE) onto collimator 150m upstream of CMS, ~ 1 hour
 - Allows synchronization of BPTX trigger (good prep for Wed.)
- Tues, 9-Sept
 - 20 shots of Beam 1 onto collimator 150m upstream of CMS
- Wed., 10 Sept.
 - Nice splash events observed when beam onto collimators (as before), 100-1000 TeV observed in ECAL-HCAL
 - Halo muons observed once beam started passing through CMS

First LHC beams in CMS

~2.10⁹ protons on collimator ~150 m upstream of CMS ECAL- pink; HB,HE - light blue; HO,HF - dark blue; Muon DT - green; Tracker Off

DESY Physics Seminar April 14-15, 2009

Next...

- Incident on Sep 19 2008: an electrical fault between two magnets resulted in the release of ~1 ton of liquid He
 - Repairs under way. Additional protection systems put in place
 - Due to restart in September 2009
 - First collisions by October 09
 - New plan: run through Winter 09-10, to get to ~200 pb-1 (albeit at 10 TeV)

LHC Brok bing Aature Jat & Te yo, Cho Boat LHC

April 14-15, 2009

CRAFT

- Four weeks of continuous running
 - 19 days with magnet at the operational setting of B=3.8 T
 - Gained operational experience and put in evidence sources of inefficiency
- Collected 370 M cosmic events; 290 Mevt with B = 3.8 T. Of those with B on:
 - 87% have muon track reconstructed in the² chambers
 - 3% have muon track with strip tracker hits (~7.5 M tracks)
 - 3x10⁻⁴ have a track with pixel hits (~75K tracks)
- Data operation performed satisfactorily
 - 600 TB of data volume transferred
 - Prompt reconstruction at Tier 0 completed with typical latency of 6h
 - Tier 0 to Tier 1 at average of 240 MB/s

Tracker Alignment with Cosmics Data

- First reprocessing of the CRAFT data shortly after the end of the run in November – was already based on a comprehensive set of tracker alignment constants derived from this sample
- The reprocessed data have been used to further improve the alignment
 - synchronous update of Lorentz angle calibration & alignment constants
 - more tracks with pixel hits due to adjusted error object
 - continuous improvements in methodology
 - combining the powers of HIP + MillePede-II alignment algorithms
- → Steady improvement of track quality (visible in χ^2 /ndf) from CRUZET → 1st CRAFT → 2nd CRAFT alignment

DESY Physics Seminar April 14-15, 2009

 $\chi^2 =$

54

Update of Tracker Alignment (II)

- Variance of mean values from the individual residual distributions is studied as a measure of alignment quality
 - → further improvements of accuracy resulting from alignment performed on reprocessed data are particularly visible in TIB, TOB (tracker inner/outer) and PXB (pixel barrel)

Drift Tube Muon System

Residual Distributions

- Reasonable agreement between data and MC after cosmic muon arrival time fit
- Sigma ~ 200–260 μm
- Shown here: sector
 4 of wheel -2
- B field degrades MB1 distribution in wheels +/-2

residuals

10000

4000

hrest0MB3wm2

147149

-0.0002369

9747 ± 41.9

 874.8 ± 14.7

 0.0173 ± 0.0001

0.06991± 0.00054

0.15 hit residuals (

6.207e-06 ± 6.060e-05

0.03984

Entries

Mean

RMS

C1

Mean

Sigmat

Sigma2

C2

"Physics commissioning" and early (2010-2011) physics

First few pb⁻¹'s: tracker & calorimeters

Tracker Alignment

	Expected Day 0	Goals for Physics
Tracker alignment	20-200 μm in Rφ	Ο(10 μm)

Z peak visible even with initial (rough) alignment

Calorimeter calibration

	Expected Day 0	Ultimate goals
ECAL uniformity	~4%	< 1%
Lepton energy	0.5-2%	0.1%
HCAL uniformity	2-3%	< 1%
Jet energy	<10%	1%

ECAL, HCAL: intercalibration using azimuthal symmetry (min bias).

ECAL: π^0 calibration, then electrons

HCAL: di-jet balancing; check with photon+jets; Jet Energy Scale set by W→jj in top events

Event structure

April 14-15, 2009

Object-ID/efficiency: data-driven methods

- Tag and Probe (T&P): identify a physics object in an unbiased way in order to study efficiencies.
 - One object (tag) has strict ID criteria imposed on it. Second object (probe) has looser ID criteria. Additional property that links it to the Tag object to ensure a pure sample.
 - Z→ee events: one tight electron (tag); the other can be a probe, provided the invariant mass of the pair is ≈M_z

QCD: jet production

 $\sigma_{E-scale}/\sigma$

2.5

1.5

Energy scale variation ± 3%

Calibrated ref. jets

 $0.75 \le |v| < 1.50$

 $1.50 \le |v| < 2.50$

- With 100 pb⁻¹: reach ~2 TeV (E_T)
- With 1fb⁻¹: reach ~3 TeV
 - ~10⁴ events with $E_T > 1 \text{ TeV}$
- Systematic uncertainties:
 - detector: jet energy scale

- Huge hadronic jet rates
 - ◆ Few weeks at 10³¹ cm⁻²s⁻¹ (~1wk at 10³²): see E_T (jet) ~ >0.5 TeV
- Search also starts immediately
 - Strongly-produced → high rate. Physics in high-mass tail.

Parton luminosities at 10-14 TeV

$\sigma(t\bar{t})$					2.3
$\overline{\sigma(t\overline{t})}$	at	10	TeV	—	۷.J

$\sigma(W)$	at	14	TeV	 1 /
$\frac{\sigma(W)}{\sigma(W)}$	at	10	TeV	 1.4

HWW search

NLO MCFM x-sec (14:10TeV):

gg → H	1:0.54
WW and WZ	1:0.65
tt	1:0.45
W+jets and DY	1 : 0.68

Charged hadron spectra

EWK channels

- Expect thousands of W's and Z's very early on
 - Analysis updates at 10 TeV for muons so far

DESY Physics Seminar April 14-15, 2009

Z Analysis @ 10 TeV

- Z backgrounds are small when both muons are globally reconstructed (µ) using tracker and muon systems
- Simultaneous fit with independent samples with standalone muons, tracker-only muons, and non-isolated muons, to obtain efficiencies
- Z cross section measurement as a function of integrated luminosity

Top physics (at 14 TeV)

Mu+Etmiss+jets

CMS Preliminary @ 10pb⁻¹

seugo data

tt (signal)

tt (other) W+Jets

At 10 TeV: factor 2 in lumi

Dileptons

Event reconstruction: b-tagging

P. Sphicas Probing nature at a TeV: CMS at LHC

Dibosons

Important measurement for searches (Higgs to WW, but also SUSY, etc)

Also for TGCs etc

At 14 TeV, signal with 150 pb⁻¹ (for WZ) With 200pb-1 at 10 TeV: should have a signal

Approved full analyses (1 fb⁻¹ @ 14 TeV)

<u>1 fb⁻¹ @ 14 TeV</u>

- WW: has enough sensitivity for a <u>discovery</u> (160-170 GeV)
- **ZZ:** has enough sensitivity for <u>exclusion</u> (190-230 GeV)
- $\tau\tau$: only high <u>upper limits</u> are possible

Higgs: 14→10 TeV

- signal and bkgd yields re-scaled
- 14→10 TeV:
 - loss of a factor of 1.5 in sensitivity, or <u>a factor of 2 in</u> <u>luminosity</u>
 - with roughly ~200 pb⁻¹, reach sensitivity for a SM Higgs with m_H~160-170 GeV (comparable to the current Tevatron sensitivity)

Z' to mumu

14 TeV curves: from full analysis of signals and bkgs

- Rescale 14 TeV curves by corresponding cross section ratios for Signal and Drell-Yan bkg → 10 TeV curves
- Z_{ψ} and Z_{SSM} : the two extremes in "reach":

DESY Physics Seminar April 14-15, 2009

SUSY – early hints

- 100pb⁻¹→ ~600 GeV sparticles, but:
 - Need control over backgrounds
 - Example from E_T^{miss}+3jet events

bkg*3 ~ signal @ 10pb⁻¹

Normalizing $Z \rightarrow vv E_T^{miss}$ to $Z \rightarrow \mu\mu$ using data

DESY Physics Seminar April 14-15, 2009

- With 10pb⁻¹ we will measure event properties, first jet (and dijet) distributions
 - Note that searches start early!
- With 100pb⁻¹ we will measure the Standard Model and establish CMS as a physics-producing engine
 - We will also look for hints of new physics
- With 1fb⁻¹ we enter the Higgs discovery era. With a few fb⁻¹: firm discovery
 - "SUSY" explorable over very large area with 1fb⁻¹; possible new resonances

Summary

Summary

- Despite its tremendous successes, the Standard Model is still missing its "symmetry breaker"
- The LHC and its experiments (CMS...) have been designed to search for the Higgs but also to explore all the possible physics at energies of ~ TeV
 - Technological marvels that took ~20 years from concept to scientific intrument
 - The LHC should be decisive in revealing the Electro Weak Symmetry Breaking mechanism in the SM (Higgs/no Higgs)
- LHC: on track for first collisions in 2009
 - Challenge 1: commission machine and detectors of unprecedented complexity, technology and performance
 - Challenge 2: "rediscover" the Standard Model
 - Challenge 3: probe the physics beyond