

From pp to heavy-ion collisions at LHC: ALICE experimental programme

Motivation to collide heavy ions

• LHC experimental programme

ALICE experiment

• pp collisions

Heavy-ion collisions

• First measurement

Vacuum

• Energy of pair created from vacuum:

$$\begin{split} & \mathsf{E}_{\mathsf{kin}} = \mathsf{p} \sim 1/\mathsf{r} & (\mathsf{p} \times \mathsf{r} \ge 1) \\ & \mathsf{E}_{\mathsf{pot}} = -\,\mathsf{q}^2/(4\pi\mathsf{r}) & (\mathsf{q} = \mathsf{e} \text{ or } \mathsf{q} = \mathsf{g}_{\mathsf{s}}) \end{split}$$

$$E = E_{kin} + E_{pot} = (1/r) \times (1 - q^2/4\pi) = (1/r) \times (1 - \alpha_{em,s})$$

- in QED this is true for any distance (down to Planck scale 10⁻²⁰ fm)
- in QCD it's restricted to small distances, up to few fm at most

QED vs. QCD

- in QED
 - for large distances $\alpha_{em} = 1/137$
 - at EW scale (r = 2×10^{-3} fm) $\alpha_{em} = 1/128$
 - at Planck scale (r = 10⁻²⁰ fm) $\alpha_{em} = 1/76$
- numerical factor in energy (1 α_{em}) varies
 - between 0.987 0.993 (i.e. 0.6%) changing the pair separation from Planck scale to infinity
- in QCD
 - α_s decreases for small distances (asymptotic freedom)
 - at Λ_{QCD} ≈ 0.2GeV (r ≈ 1 fm) α_s ≈ 1
 - at EW scale $\alpha_s = 0.118$
 - at Planck scale $\alpha_s = 0.04$
- numerical factor in energy $(1 \alpha_s)$
 - decreases with distance, at Planck scale 0.96
 - however, at r ≈ 1 fm it became negative !
- at even larger separation $E = \sigma \times r$ ($\sigma \approx 1 \text{ GeV/fm}$)
 - and became again positive

Kinetic energy always dominates over potential energy (weak field) *virtual pairs* Energy stored in field overcomes kinetic energy at some distance *real pairs – vacuum condensate*

QCD symmetries

- QCD Lagrangian has two approximate symmetries
 - Z_3 -(centre) symmetry (for pure guage, i.e. in the limit $m_q \rightarrow \infty$)
 - chiral-symmetry (restored with vanishing masses, i.e. $m_q \rightarrow 0$)
- At high density and temperature eventually
 - Z₃-symmetry destroyed (confinement—deconfinement transition)
 - chiral-symmetry restored (chiral phase transition)
 - responsible: vacuum condensate

• Questions:

- is there one phase transition for both or two ?
- what is the order of the phase transition(s)
 - is it first order (it has a latent heat) ?
 - is it second order (is just a `kink') ?
 - is just cross-over transition ?

Confinement

massive quark in purely gluonic vacuum at zero temperature

- not seen by detector due destructive inference
- expectation value for trace of quark propagator 3–valued path integral with different phases
 - exp (i × $2\pi j/3$), j=1,2,3 (generators of Z₃)
- increasing the temperature ${\sf T}$ until some value this will stay
 - till gluon field will have enough time to follow (re-arrange coherently) our shaking test charge
- increasing temperature further (above some critical value) gluon field will have not time enough
 - interference of 3 paths will be destroyed
 - test colour charge will became detectable, will be deconfined
- to calculate this we have to continue analytically the quark propagator over complex time (t = +i/T) – Polyakov loop – which will became non-zero for T > T_c
 - Polyakov loop is the order parameter

Chiral symmetry

• For $m_q \rightarrow 0$ quark helicity will be conserved

- because gluons have helicity ±1 QCD Lagrangian in this limit has SU(3)_L×SU(3)_R symmetry
 - QCD world decayed into two worlds which do not communicate – left-handed and right-handed
- when we put into QCD vacuum massless left-handed quark it can annihilate with left-handed anti-quark from vacuum condensate – liberating thus right-handed quark
 - for an outside observer our test quark changed spontaneously its helicity and therefore it has to acquire some dynamic mass !
 - QCD quark—anti-quark condensate generates dynamic quark masses and chiral symmetry is destroyed
- when we rise temperature kinetic energy term of the pair energy will above some value overcome potential energy
 - quark—anti-quark condensate will disappear from vacuum
 - chiral symmetry is restored above some critical temperature
 - value of <0|qq|0> is the order parameter

QCD symmetries

- Both symmetries are broken dynamically
 - Z₃ symmetry is broken by kinetic energy (at high T)
 - order parameter (Polyakov loop) is zero below T_c and non-zero above
 - it is a order disorder phase transition, Z_3 is restored below T_c
 - chiral symmetry is broken by potential energy (at low T)
 - order parameter (quark—anti-quark condensate) is non-zero below T_c and zero above
 - it is a disorder order phase transition, chiral symmetry is restored above $\rm T_{\rm c}$

Both are broken also explicitly – by mass term

- because of smallness of m_q it's reasonable to expect that the scenario concerning chiral symmetry will be a good approximation
- what about Z_3 symmetry, why it's not completely destroyed by small m_q ?

Confinement restoration

- When we try to drop m_q from infinity down its bare (small) value what happen will depend on temperature
 - at low temperature m_q will effectively stop decreasing when we go below quark dynamic mass $M_q \approx 350$ MeV because chiral symmetry is broken
 - Z₃ symmetry remains an approximate symmetry at low temperature even after this severe explicit breaking attempt
 - chiral symmetry breaking effectively increases quark masses and therefore drives the Z₃ symmetry restoration
 - this is an argument that the two phase transition might occur at the same point

QCD Phases – Toy Model

- consider
 - confined phase (hadron gas, HG) made of pions
 - deconfined phase (quark—gluon plasma, QGP) made of gluons and two flavor of quarks
 - ideal-gas equation of state

$$\epsilon = (g/30) \pi^2 T^4$$
, $p = \epsilon/3 = (g/90) \pi^2 T^4$

where $g = n_b + (7/8) n_f$

• for HG $n_b = 3$, $n_f = 0$

 $p_{HG} = (1/30) \pi^2 T^4$

 for QGP: n_b = 16, n_f = 24 but now we have also an external pressure from QCD vacuum B

 $p_{QGP} = (37/90) \pi^2 T^4 - B$

- at phase boundary pressures have to be equal
- $T_c = (90B/34\pi^2)^{1/4} = 144 \text{ MeV}$ for $B^{1/4} = 200 \text{ MeV}$ (MIT bag model)

QCD Phases – Perturbation Theory

at non-zero baryon density – first order p-QCD

 $\epsilon = [16(1 - 15\alpha_s/4\pi) + (7/8)12n_q(1 - 50\alpha_s/21\pi)] (1/30) \pi^2 T^4 + \Sigma_q 16(1 - 15\alpha_s/2\pi) (3/\pi^2)\mu_q^2(\pi^2 T^4 + \mu_q^2(/2))$

(for $\mu_a = 0$, $\alpha_s = 0$, and $n_a = 2$ we get our toy model)

using $\alpha_s = 0.4$ the same way we estimate $T_c = 164 \text{ MeV}$

today analytical calculations exist for higher orders

Lattice QCD

Quark—anti-quark vacuum condensate as function of temperature

QCD equation of state

Phase Diagram of QCD

Space-time evolution

Space-time evolution in ultrarelativistic ion collisions

Cross sections at LHC

New low-x regime

Energy density

-Qualitative improvements:

• Vanishing net baryon density ($\mu_B \rightarrow 0$):

closer to early Universe, closer to Lattice QCD

Moreover

 High energy density
 → approaching the limit of an "ideal" of QCD quanta

Stronger thermal radiationHard probes:

✓Heavy flavours

✓ Jets and jet quenching

Dominant processes in particle production SPS: soft RHIC: soft and semi-hard LHC: semi-hard and hard gas

- pp commissioning start April 2009
- **Agreed initial Heavy-lon programme at LHC**
 - Initial few years (1HI 'year' = 10⁶ effective s, ~like at SPS)
 - 2 3 years Pb-Pb
 - 1 year p Pb 'like' (p, d or α) $\mathcal{L} \sim 10^{29} \text{ cm}^{-2} \text{s}^{-1}$
- $\mathcal{L} \sim 10^{27} \text{ cm}^{-2} \text{s}^{-1}$

 - 1 year light ions (eg Ar-Ar) ∠ ~ few 10²⁷ to 10²⁹ cm⁻²s⁻¹ plus, for ALICE (limited by pileup in TPC):
 - reg. pp run at $\sqrt{s} = 14 \text{ TeV}$ $2 \sim 10^{29} \text{ and} < 3x10^{30} \text{ cm}^{-2}\text{s}^{-1}$
- - Later: different options depending on Physics results
- Heavy Ion running part of LHC initial program, early pilot run expected by end of 2010

ALICE Collaboration

1000 Members

 (63% from CERN MS)

 30 Countries
 100 Institutes
 150 MCHF capital cost

 (+ inherited magnet)

A brief history of ALICE

1990-1996: Design
1992-2002: R&D
2000-2010: Construction
2002-2007: Installation
2008 -> : Commissioning

Start-up configuration in 2009

complete – fully installed & commissioned

➡ ITS, TPC, TOF, HMPID, MUONS, PMD, V0, T0, FMD, ZDC, ACORDE, DAQ, HLT

partially completed

⇒ TRD (40%) to be completed by 2010
⇒ PHOS (60%) to be completed by 2010
⇒ EMCAL (20%) to be completed by 2010/11

• at start-up full hadron and muon capabilities

partial electron and photon capabilities

30

Cosmic physics with ALICE

High multiplicity in ACORDE and TPC

File:/Volumes/MRC/ RunsAliEn/ Run62107/080000621070 00.460/AliESDs.root, N. of Event:8560, ACORDE Multiplicity:35, No. of ESD's tracks:148

Cosmics with SPD trigger

- Pixel FastOR trigger since May 25: first side C, then also side A
- Trigger configuration:
 - ⇒ rate: 0.05 Hz (June) → 0.18 Hz (Aug)
 - ⇒ purity (reconstructed
 - with 3-4 cls/triggered): about 30%
 - ⇒ about 85% of SPD
 - taking data in August

AND

Statistics collected: about 10⁵ good events
 events with 4-cls in SPD: 45k
 events with 3-cls in SPD: 55k

M.Lunardon, S.Moretto

TPC calibration status

- TECHNISCHE UNIVERSITÄT DARMSTADT
- The TPC is sufficiently calibrated for this measurement and will be further improved
 - pT resolution: focus on pT < 3 GeV, $\sigma \approx 1..2\%$
 - dE/dx resolution: 4.5 6%
 - ALEPH parametrisation of the Bethe-Bloch curve describes the data

If you thought this was difficult ...

NA49 experiment:

A Pb-Pb event
and this was even more difficult ...

A central Au-Au event @~130 GeV/nucleon

CF Pb-Pb

1.5

0.5

ALICE Tracking Performance

Robust, redundant tracking from < 100 MeV/c to > 100 GeV/ c Very little dependence on dN/dy up to dN/dy ≈ 8000

• δp/p < 5% at 100 GeV with careful control of systematics</p>

- 'stable' hadrons (π , K, p): 100 MeV/c \pi and p with ~ 80 % purity to ~ 60 GeV/c)
 - dE/dx in silicon (ITS) and gas (TPC) + time-of-flight (TOF) + Cherenkov (RICH)
- decay topologies (K⁰, K⁺, K⁻, Λ, D)
 - K and L decays beyond 10 GeV/c
- leptons (e,μ), photons, π⁰
 - electrons TRD: p > 1 GeV/c, muons: p > 5 GeV/c, π^0 in PHOS: 1 GeV/c

Low momentum cut-off

First Physics with ALICE From pp to Pb–Pb

first pp run (starting this summer)

- ⇒ important pp reference data for heavy ions
- ⇒ minimum bias running
- ⇒ unique pp physics with ALICE

• early heavy-ion run (10⁶ s @ 1/20 nominal luminosity in 2009)

- ⇒ establish global event characteristics
- ⇒ bulk properties (thermodynamics, hydrodynamics...)
- ⇒ start of hard probe measurements

pp Physics with ALICE

ALICE detector performs very well in pp very low-momentum cutoff (<100 MeV/c) new x_T-regime (down to 4×10⁻⁶) □ p_t-reach up to 100 GeV/c excellent particle identification efficient minimum-bias trigger additional triggers first physics in ALICE will be pp provides important reference data for heavy-ion programme unique pp physics in ALICE e.g. multiplicity distribution baryon transport measurement of charm cross section major input to pp QCD physics

□ start-up

- □ some collisions at 900 GeV
 - \rightarrow connect to existing systematics

pp nominal run

- $\Box \int Ldt = 3 \cdot 10^{30} \text{ cm}^{-2} \text{ s}^{-1} \text{ x } 10^7 \text{ s}$ 30 pb⁻¹ for pp run at 14 TeV N_{pp collisions} = $2 \cdot 10^{12}$ collisions
- minimum-bias triggers:
 20 events pile-up (TPC)
 N_{pp minb} = 10⁹ collisions
- high-multiplicity trigger: reserved bandwidth ~ 10Hz
- muon triggers:
 - ~ 100% efficiency, < 1kHz
- electron trigger:
 - ~ 25% efficiency of TRD L1

Charged Particle Acceptance

- operating with fast multiplicity trigger L0 from Silicon Pixels
- efficiency studied for
- single diffractive
- double diffractive
- non-diffractive events

- extend existing energy dependence
- unique SPD trigger (L0) for minimum-bias precision measurement
- completely new look at fluctuations in pp (neg. binomials, KNO...)

trigger efficiency				
ND-INEL	98%			
SD	55%			
DD	58%			

with 20k minimum bias pp events up to multiplicity ~ 8 times the average (30 events beyond)

multiplicity trigger

to enrich the high-multiplicity energy density in high-multiplicity pp events (Bjorken formula)

- dN/dy few (2-4) 10² smaller
- increase ~ 30 (smaller size)

⇒ at 10 times the mean multiplicity energy density as with heavy ions

Density in pp

Energy density in high-momentum pp collisions can be as high as in HI

K.Werner, EPOS model

Density in pp vs. HI

The widths of the sub-flux in AuAu tubes are of the order of 2fm ... <mark>like the flux tubes for</mark> "central" pp scatterings!

Run: 60824 Event: 136 Timestamp: 2008-09-25 21:27:59

High-multiplicity trigger

Silicon pixel detector

- fast-OR trigger at Level-0 OR signal from each pixel chip
- two layers of pixel detectors 400 chips layer 1; 800 layer 2
- trigger on chip-multiplicity per layer

SPD: 10 sectors (1200 chips)

Few trigger thresholds

- tuned with different downscaling factors
- maximum threshold determined by event rate
 - background double interactions

High-multiplicity trigger – example

Example of threshold tuning:

MB and 3 high-mult. triggers

250 kHz collision rate recording rate 100 Hz MB 60% 3 HM triggers: 40%

trigger rate

H7

60.0

13.3

13.3

13.3

scaling

4167

259

16

1

13.3

165

predicted absolute value for protons ~ 2-7%

Transverse momentum

Heavy-flavour physics

LHC as Ion Collider

• Running conditions for 'typical' Alice year:

Collision system	√s _{NN} (TeV)	L ₀ (cm ⁻² s ⁻¹)	<l>/L₀ (%)</l>	Run time (s/year)	σ _{inel} (b)
рр	14.0	10 ^{31*}		10 ⁷	0.07
PbPb	5.5	10 ²⁷	70-50	10 ^{6 * *}	7.7

- + other collision systems: pA, lighter ions (Sn, Kr, Ar, O)
- & energies (pp @ 5.5 TeV)

* L_{max} (ALICE) = 10³¹ ** ∫ L dt (ALICE) ~ 0.7 nb⁻¹/year

Heavy-ion physics with ALICE

□ fully commissioned detector & trigger alignment, calibration available from pp □ first 10⁵ events: global event properties multiplicity, rapidity density elliptic flow □ first 10⁶ events: source characteristics particle spectra, resonances differential flow analysis □ interferometry □ first 10⁷ events: high-p_t, heavy flavours jet quenching, heavy-flavour energy loss charmonium production yield bulk properties of created medium energy density, temperature, pressure heat capacity/entropy, viscosity, sound velocity, opacity susceptibilities, order of phase transition

early ion scheme

- □ 1/20 of nominal luminosity
- □ $\int Ldt = 5 \cdot 10^{25} \text{ cm}^{-2} \text{ s}^{-1} \text{ x} 10^{6} \text{ s}$ 0.05 nb⁻¹ for PbPb at 5.5 TeV N_{pp collisions} = 2 \cdot 10⁸ collisions 400 Hz minimum-bias rate 20 Hz central (5%)
- muon triggers:
 - ~ 100% efficiency, < 1kHz
- □ centrality triggers: bandwidth limited $N_{PbPbminb}$ = 10⁷ events (10Hz) $N_{PbPbcentral}$ = 10⁷ events (10Hz)

Charged-particle Multiplicity Density

integrated multiplicity distributions from Au-Au/Pb-Pb collisions and scaled pp collisions

ALICE designed (before RHIC) for dN_{ch}/dy = 3500 design checked up to dN_{ch}/dy = 7000

v₂ measurement studies

Standard event-plane method

500 HIJING event centrality b = 8fm multiplicity $\langle M \rangle$ = 1900 integrated v₂ = 3.3%

Lee-Yang Zero method 1100 HIJING event centrality b = 9fm multiplicity $\langle M \rangle$ = 1200 integrated v₂ = 6% red – modified LYZ method (J-Y Ollitrault)

04//02/2009 St

Identified particle spectra in Pb-Pb

Excitation functions of bulk observables for identified hadrons New regime at LHC: strong influence of hard processes

Chemical composition

Equilibrium vs non equilibrium stat. models ? Jet propagation vs thermalization ? Strangeness production : correlation volume ($N_{part} \rightarrow GC, N_{bin} \rightarrow hard processes$) ?

Interplay between hard and soft processes at intermediate p_T

→ R_{cp}: central over peripheral yields/<Nbin> → Baryon/meson ratio → Elliptic flow

Parton recombination + fragmentation ?

or soft (hydro -> flow) + quenching ? or ... ?

Production mechanisms versus hadron species in pp

Topological identification of strange particles

Statistical limit : $p_T \sim 8 - 10$ GeV for K⁺, K⁻, K⁰_s, Λ , 3 - 6 GeV for Ξ , Ω

Secondary vertex and cascade finding

 p_T dependent cuts -> optimize efficiency over the whole p_T range

Particle correlations

Two pion momentum correlation analysis

Study of event mixing, two track resolutions, track splitting/merging, pair purity, Coulomb interactions, momentum resolution corrections, PID corrections

Central Pb-Pb events (0-2 fm) with dN/dy = 6000 (MeVSim + QS & FSI weights)

•Heavy quarks with momenta < 20–30 GeV/c \rightarrow v << c

Gluon radiation is suppressed at angles < m_Q/E_Q
 "dead-cone" effect

Due to destructive interference

Contributes to the harder fragmentation of heavy quarks

•Yu.L.Dokshitzer and D.E.Kharzeev: dead cone implies lower energy loss

D mesons quenching reduced
 Ratio D/hadrons (or D/π⁰) enhanced and sensitive to medium properties

Yu.L.Dokshitzer and D.E.Kharzeev, Phys. Lett. B519 (2001) 199 [arXiv:hep-ph/0106202].

D^{0→}Kπ channel

- High precision vertexing, σ~100 μm (ITS)
- High precision tracking (ITS +TPC+TRD)
- K and/or π identification (TOF)
- Overall significance for 10⁶ events ~10

Events/ 2 MeV

700

600

500

400

300

200 100

ما

1.78

10 times lower statistics ~factor 3 in the significance, we can measure D⁰ in the pilot run ALICE K. Safarik

Heavy-quarks and quarkonia

N(qq) per central PbPb collision

	SPS	RHIC	LHC
charm	0.2	10	200
bottom	No. Toolo	0.05	6

ALICE's Heavy Quark Shopping List

probe	channel	acceptance
$J/\psi,\psi',\Upsilon,\Upsilon',\Upsilon''$	e^+e^-	$ \eta < 0.9$
$J/\psi,\psi',\Upsilon,\Upsilon',\Upsilon''$	$\mu^+\mu^-$	$2.5 < \eta < 4$
$c\bar{c} \& b\bar{b}$	e^+e^-	$ \eta < 0.9$
$c\bar{c} \& b\bar{b}$	$\mu^+\mu^-$	$2.5 < \eta < 4$
D mesons	π,K	$ \eta < 0.9$
B mesons	${ m B} ightarrow J/\psi ightarrow { m e}^+ { m e}^-$	$ \eta < 0.9$
D & B mesons	single e^{\pm}	$ \eta < 0.9$
$c\bar{c} \& b\bar{b}$	$\mathrm{e}^{\pm}\mu^{\mp}$	1 < y < 3

One year at nominal luminosity: 10⁹ pp events; 10⁷ central PbPb events $R_{D/h}(p_t) = R_{AA}^D(p_t)/R_{AA}^h(p_t)$ $R_{B/D}(p_t) = R_{AA}^{e \text{ from B}}(p_t)/R_{AA}^{e \text{ from D}}(p_t)$

Di-muon mass spectrum

- One month (10⁶ sec) Pb-Pb collisions at nominal luminosity
- Adequate statistics to study Y- family and quench-scenarios

J/Ψ ~ 3*10⁵ Y ~ 8000

Quarkonia production

- J/Ψ ~ 3*10⁵
- Suppression vs recombination

study suppression scenarios Y ~ 8000

Jets are produced copiously

Jet Production at LHC

- Initial measurements up to 100 GeV (untriggered charged jets only)
- Detailed study of fragmentation possible
- Sensitive to energy loss mechanism
- Accuracy on transport coefficient < q > ~20%

p _t jet > (GeV/c)	jets/event Pb +Pb	accepted jets/ month
5	3.5 10 ²	4.9 10 ¹⁰
50	7.7 10 ⁻²	1.5 10 ⁷
100	3.5 10 ⁻³	8.1 10 ⁵
150	4.8 10 ⁻⁴	1.2 10 ⁵
200	1.1 10 ⁻⁴	2.8 10 ⁴

Thermal and hard photons

Identifying prompt y in ALICE

PbPb

- \Rightarrow R = 0.2, p_{T}^{thresh} = 2 GeV/c
- ⇒ Efficiency: 50%
- ⇒ Background rejection: 1/14
- One month of running • 2000 γ (*E*_v > 20 GeV) Increases to 40 GeV with EMCal

Particles in the LHC

• first signs of life...

- 14-15 June
- extraction in TI2 and dump

• injection tests

- 1) 8-11 August
 - first injection in LHC (beam 1)
- 2) 22-24 August
 - first injection of beam 2
- 3) 5-7 September

• circulating beams

• 10 September

Federico Antinori, SQM2008 08.08.08: First Injection in LHC!

One World One Dream

2008年10月

安飞德

10 September: circulating beams!

beam 1: 1st complete orbit ~ 10:30

beam 2: 1st complete orbit ~ 15:00

• first signals from ALICE

LHC operation 10 - 11 September

First orbit

RF capture

0.0

11 September: RF capture (beam bkg data)

- 11 September, ~ 22:35 first capture
 - beam 2 kept in orbit for over 10 minutes!
- series of injections with tens of mins RF capture during night
 - in ALICE: 673 events in total
- \rightarrow first data beam 2 background

Jan Fiete Grosse-Oetringhaus

So: what happened on 19 Sept?

- 19 September, ~ 11:30: large helium leak in sector 34
 - helium escaped in the tunnel
 - insulation vacuum broken
 - beam vacuum broken (up to sector valves)
- confirmed: due to electrical fault
 - resistive splice in interconnect
- magnets in sector 34 were being commissioned to 5 TeV (10kA)
 - at 450 GeV (1kA) worked well
 - incident occurred at ~9kA
 - all other (7) sectors had been commissioned to 5 TeV (and above) without problems

10ri - LHC - 26 November 2009

The first event

inori - LHC - 26 November 2009

Vertex distribution – online

• Calculated by High Level Trigger from tracklets in Silicon Pixel Detector

Vertex distribution – offline

• Calculated in Offline from tracklets in Silicon Pixel Detector:

inori - LHC - 26 November 2009

Vertex from last weekend

Davide Caffarri – Andrea Dainese 4

First Physics Meeting

CERN, 07/12/09

Result

- **Data presented in two normalizations**
 - ⇒ inelastic collisions
 - non-single-diffractive collisions

3.10 +- 0.13 +- 0.22

- 3.52 +- 0.15 +- 0.25
- Comparison proton-proton vs. antiproton-proton (UA5)
 - ⇒ possible difference due to C=-1 (odderon) exchange
- Pseudorapidity densities in proton-proton and antiproton-proton are compatible

Summary & Outlook

• first pp run

- ⇒ important pp reference data for heavy ions
- ➡ unique physics to ALICE
 - minimum-bias running
 - fragmentation studies
 - baryon-number transport
 - heavy-flavour cross sections

• first few heavy-ion collisions

- ⇒ establish global event characteristics
- ⇒ important bulk properties

• first long heavy-ion run

- ⇒ quarkonia measurements
- ⇒ Jet-suppression studies
- ➡ flavour dependences

Outlook

- high luminosity heavy ion running (1nb⁻¹)
 - ➡ dedicated high p_t electron triggers
 - ⇒ jets > 100 GeV (EMCAL)
 - →

 Y states
 - $\Rightarrow \gamma$ jet correlations

⇒ ...

pA & light ion running

