Detection of Antiparticles with the Pamela Space Instrument for Antimatter and Dark Matter Research

Piergiorgio Picozza INFN and University of Rome Tor Vergata

DESY

Zeuthen February 25th, 2009

Payload for Antimatter Matter Exploration and Light Nuclei Astrophysics

PAMELA Collaboration

Cosmic Diffuse Gamma

P. Sreekumar et al, astroph/9709257

Dark Matter

Evidence for the existence of an unseen, "*dark*", component in the energy density of the Universe comes from several independent observations at different length scales:

Bertone, Hooper & Silk, hep-ph/0404175. Bergstrom, hep-ph/0002126. Jungman et al, hep-ph/9506380

Matter in the Universe

The SUSY Particle Spectrum

Standard Model

Particles			Sparticles		
Name	Symbol	Spin	Name	Symbol	Spin
leptons	l, v	1/2	sleptons	$\tilde{l}_{R},\tilde{l}_{L},\tilde{v}_{L}$	0
quarks	q_{L}, q_{R}	1/2	squarks	$\widetilde{q}_{\mathrm{L}}, \widetilde{q}_{\mathrm{R}}(\widetilde{b}_{1,2}, \widetilde{t}_{1,2})$	0
photon Z boson light Higgs heavy Higgs pseudoscalar Higgs	Y Z h H A	1 1 0 0 0	neutralinos	$\tilde{\chi}_1^0$ $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$, $\tilde{\chi}_4^0$	1/2
W boson charged Higgs	W± H±	1	charginos	$\tilde{\mathbf{\chi}}_{1}^{\pm}, \tilde{\mathbf{\chi}}_{2}^{\pm}$	1/2
gluon	g	1	gluino	ğ	1/2
graviton	G	2	gravitino	Ğ	3/2

 $\chi = N_1 \widetilde{\gamma} + N_2 \widetilde{Z}^0 + N_3 \widetilde{H}_1^0 + N_4 \widetilde{H}_2^0; \sum_{i=1}^4 |N_i|^2 = 1$

Astroparticle Physics [5A1312]

Another possible scenario: KK Dark Matter

Lightest Kaluza-Klein Particle (LKP): B⁽¹⁾

Bosonic Dark Matter: fermionic final states no longer helicity suppressed. e+e⁻ final states directly produced.

As in the neutralino case there are 1-loop processes that produces monoenergetic $\gamma \gamma$ in the final state.

Antimatter

"We must regard it rather an accident that the Earth and presumably the whole Solar System contains a preponderance of negative elec and positive protons. It is quite possible that for some of the stars it is the other way about"

P. Dirac, Nobel lecture (1933)

What do we need?

Measurements at higher energies

Better knowledge of background

High statistics

Continuous monitoring of solar modulation

Long Duration Flights

GF ~21.5 cm²sr

Mass: 470 kg

Size: 130x70x70 cm³

Design Performance							
Energy range							
Antiprotons	80 MeV - 150 GeV						
Positrons	50 MeV – 300 GeV						
Electrons	up to 500 GeV						
Protons	up to 700 GeV						
Electrons+positrons	up to 2 TeV (from calorimeter)						
Light Nuclei (He/Be/C)	up to 200 GeV/n						
AntiNuclei search	sensitivity of 3x10 ⁻⁸ in He/He						
 → Simultaneous measurement of many cosmic-ray species → New energy range 							

→ Unprecedented statistics

Resurs-DK1 satellite

<u>Main task</u>: multi-spectral remote sensing of earth's surface
 Built by TsSKB Progress

in Samara, Russia

 Lifetime >3 years (assisted)

 Data transmitted to ground via high-speed radio downlink

 <u>PAMELA mounted</u> inside a pressurized container

Mass: 6.7 tonnes Height: 7.4 m Solar array area: 36 m²

PAMELA

Launch 15/06/06

16 Gigabytes trasmitted daily to Ground NTsOMZ Moscow

Orbit Characteristics

- Low-earth elliptical orbit
- 350 610 km
- Quasi-polar (70° inclination)
- SAA crossed

PAMELA Orbit

The Physics of PAMELA

Search for dark matter annihilation

Search for antihelium (primordial antimatter)

Search for new Matter in the Universe (Strangelets?)

Study of cosmic-ray propagation

Study of solar physics and solar modulation

Study of terrestrial magnetosphere

Study of high energy electron spectrum (local sources?)

PAMELA Status

~1000 days of flight
data taking ~73% live-time

~13 TBytes of raw data downlinked

 >10⁹ triggers recorded and under analysis

PAMELA antiproton discrimination

Proton / positron discrimination

Proton

Positron selection with calorimeter

Fraction of energy released along the calorimeter track (left, hit, right)

Positron selection with calorimeter

Rigidity: 20-30 GV

Positron selection with calorimeter

Rigidity: 20-30 GV

Positron selection

Rigidity: 20-30 GV

Fraction of charge released along the calorimeter track (left, hit, right)

Neutrons detected by ND

•Energy-momentum match •Starting point of shower

BOTTOM: positive events identified as p and e⁺ by transverse profile method

Rigidity: 10-15/GV

Rigidity: 15-20 GV

Antiproton to proton ratio PRL 102, 051101 (2009)

Seconday Production Models

Antiproton to proton ratio PRL 102, 051101 (2009)

Antiproton Flux

Antiproton Flux

Antiproton Flux

Positrons to all electrons ratio

Positron to Electron Ratio astro-ph 0810.4995

End 2007: ~10 000 e⁺ > 1.5 GeV

~2000 > 5 GeV

During first week after PAMELA results posted on arXiv

- 0808.3725 DM
- 0808.3867 DM
- 0809.2409 DM
- 0810.2784 Pulsar
- 0810.4846 DM / pulsar
- 0810.5292 DM
- 0810.5344 DM
- 0810.5167 DM
- 0810.5304 DM
- 0810.5397 DM
- 0810.5557 DM
- 0810.4147 DM
- 0811.0250 DM
- 0811.0477 DM

Positrons detection Where do positrons come from?

Mostly locally within 1 Kpc, due to the energy losses by Synchrotron Radiation and Inverse Compton

DM annihilations

DM particles are stable. They can annihilate in pairs.

DM annihilations

Resulting spectrum for positrons and antiprotons

The flux shape is completely determined by:

1) WIMP mass 2) Annihilations channels

Energy in GeV

Which DM spectra can fit the data?

DM with $m_{\chi} \simeq 150 \, {\rm GeV} \, {\rm and} \, W^+ W^-$ dominan

Which DM spectra can fit the data? DM with $m_\chi \simeq 10 \, {\rm TeV}\,$ and W^+W^- domin

DM with $m_{\chi} \simeq 1 \, {\rm TeV}$ and $\mu^+ \mu^-$ dominant annihilation channel

positrons

antiprotons

Model independent results Which DM spectra can fit the data?

Fit of PAMELA positrons (only)

Lepton channels $(e,\mu,...)$ favored but also W

Model independent results Which DM spectra can fit the data?

Fit of PAMELA positrons+antiprotons

Annihilations into quarks, gauge and Higgs bosons hardly constrained and $m_\chi\gtrsim 10\,{\rm TeV}$

ATIC Results

What if we consider ATIC and PPB-BETS data? DM with $m_{\chi} \simeq 1 \,\text{TeV}$ and $\mu^+\mu^-$ dominant annihilation channel

DM identification for the first time!?!? Yes: Arkani-Hamed et al. arXiv: 0810.0713 +tons of other electron+positrons

Pamela + ATIC Data

DM mass in GeV

Model independent results Which DM spectra can fit the data?

Boost required by PAMELA

Example: Dark Matter

Majorana DM with **new** internal bremsstrahlung correction. NB: requires annihilation cross-section to be 'boosted' by >1000.

Hooper and Zurek arXiv:0902.0593v1

Kaluza-Klein dark matter

Example: DM

I. Cholis et al. arXiv:0811.3641v1

- Propose a new light boson (m $_{\Phi} \leq \text{GeV}$), such that $\chi\chi \rightarrow \Phi\Phi$; $\Phi \rightarrow e^+e^-$, $\mu^+\mu^-$, ...
- Light boson, so decays to antiprotons are kinematically suppressed

Example: e⁺ & p DM

P. Grajek et al., arXiv: 0812.4555v1

Enhancement How to reconcile $\sigma = 3 \cdot 10^{-26} \text{ cm}^3/\text{sec}$ with $\sigma \simeq 10^{-23} \text{ cm}^3/\text{sec}$?

DM is produced non-thermally: the annihilation cross section today is unrelated to the production process

at freeze-outtoday- astrophysical boostno clumpsclumps- resonance effectoff-resonanceon-resonance- Sommerfeld effect $v/c \simeq 0.1$ $v/c \simeq 10^{-3}$ + (Wimponium)- (Vimponium)- (Vimponium)

Dark Matter Some Conclusions (from M. Cirelli) • PAMELA Data: DM must – annihilate into leptons (e.g. $\mu^+\mu^-$) or into W+W with mass ≥ 10 TeV Adding balloon data (ATIC, PPB-BETS): DM must - annihilate into $\mu^+\mu^$ and have $M_{DM} \sim 1 \text{TeV}$ • Problem: Large Boost Factor

Astrophysical Explanation Pulsars

- Mechanism: the spinning **B** of the pulsar strips e⁻ that accelerated at the polar cap or at the outer gap emit γ that make production of e[±] that are trapped in the cloud, further accelerated and later released at $\tau \sim 10^5$ years. $E_{tot} \simeq 10^{46} \text{ erg}$
- Young (T < 10⁵ years) and nearby (< 1kpc)
 If not: too much diffusion, low energy, too low flux.
- Geminga: 157 parsecs from Earth and 370,000 years old
- B0656+14: 290 parsecs from Earth and 110,000 years old.
- Diffuse mature pulsars

Astrophysical explanations?

Are there "standard" astrophysical explanations of the PAMELA data?

Young, nearby pulsars

Geminga pulsar

Not a new idea: Boulares, ApJ 342 (1989), Atoyan et al (1995)

Example: pulsars

H. Yüksak et al., arXiv:0810.2784v2 Contributions of e- & e+ from Geminga assuming different distance, age and energetic of the pulsar

Standard Positron Fraction Theoretical Uncertainties

T. Delahaye et al., arXiv: 0809.5268v3

Nuclei identification

• Important input to secondary production + propagation models

- Secondary to primary ratios:
 - B / C
 - Be / C
 - Li / C
- Helium and hydrogen isotopes:
 - ³He / ⁴He
 - d / He

Truncated mean of multiple dE/dx measurements in different silicon planes

Explanation with supernovae remnants

Shaviz and al. astro-ph.HE 0902.0376

Future observations of electrons

Positron Fraction

Solar Modulation of galactic cosmic rays

Cycle 20

Cycle 19

Cycle 21

Cycle 22

Cycle 23

Charge dependent solar modulation

Proton fluxes at TOA

Annual Variation of P spectrum

Comparison of \overline{p}/p ratio with model

Time variation of p/p ratio at solar maximum

Observed data by BESS Charge dependent model prediction(Bieber et al.)

Charge dependent solar modulation model well follows

the suddenly increase of p/p ratio observed by BESS

at the solar polarity reversal between 1999 and 2000

Cosmic-Ray Propagation

Diffusion Halo Model

Proton flux July 2006

Kinetic Energy (GeV)

Secondary nuclei

Solar Physics with PAMELA

Solar Modulation effects

•High energy component of Solar Proton Events (from 80 MeV to 10 GeV)

•High energy component of electrons and positrons in Solar Proton Events (from 50 MeV)

 Nuclear composition of Gradual and Impulsive events

•³He and ⁴He isotopic composition

December 2006 Solar particle events

Dec 13th largest CME since 2003, anomalous at sol min

Radiation Belts

South Atlantic Anomaly

Secondary production from CR interaction with atmosphere

South-Atlantic Anomaly (SAA)

Proton flux at various cutoffs

Proton spectrum in SAA, polar and equatorial regions

Other Objectives

High Energy electrons

The study of primary electrons is especially important because they give information on the nearest sources of cosmic rays

 Electrons with energy above 100 MeV rapidly loss their energy due to synchrotron radiation and inverse Compton processes

The discovery of primary electrons with energy above 10¹² eV will evidence the existence of cosmic ray sources in the nearby interstellar space (r≤300 pc)

Search for New Matter in the Universe:

An example is the search for "strangelets".

There are six types of Quarks found in accelerators. All matter on Earth is made out of only two types of quarks. "Strangelets" are new types of matter composed of three types of quarks which should exist in the cosmos.

