High-energy electrons, pulsars, and dark matter

Martin Pohl

Dark matter

Distance

Structure formation → Dark matter must be cold!

May 2009

Direct detection

- LHC → mass and cross section, but not density
 Recoil experiments → elastic cross section unknown
- Indirect detection
 - Annihilation into gamma rays or antiparticles

 will give density distribution

 Boosting or Sommerfeld enhancement required

May 2009

Indirect detection: cosmic rays

May 2009

Cosmic-ray electrons

May 2009

Positrons with Pamela

May be a new source of electron-positron pairs

May 2009

Kaluza-Klein dark matter

Interest: Could be dark matter!

- Needs boost factor of ~200
- Needs e+/e- pairs as main decay channel

Kaluza-Klein dark-matter

- Produces monoenergetic pairs
- Supports theories with extra dimensions

Electron spectrum modified by propagation

How can we make sense of this?

May 2009

The transport equation

Consider differential electron density

$$N = \frac{dN}{dVdE} = \frac{4\pi}{\beta c}I$$

$$\frac{\partial N}{\partial t} - \frac{\partial}{\partial E} \left(b E^2 N \right) - D E^a \nabla^2 N = Q$$

Energy loss diffusion injection

May 2009

Dark matter: depends on clump density

Boosting required → clumps

Realistic case: mass spectrum

$$\frac{dn}{dM} = n_0 M^{-b}$$

But electron source rate:

 $Q \propto \rho_0^2 r_0^3 \propto M^d$, $d \approx 1$

$$\frac{dQ}{d \log M} \propto M^{1+d-b}$$

d+1-**b** > **0 → Dominated by few massive clumps**

May 2009

Dark matter: depends on clump density

May 2009

Source spectrum (dotted)

$$Q(E) \propto E^{-1.5} \exp\left(-\frac{E}{E_0}\right)$$

Age in units of energy-loss time at 600 GeV:

$$\xi = 1 \iff t = 140,000 \text{ yrs}$$

Distance in units of diffusion distance at 600 GeV

$$\left(\frac{\rho}{0.23}\right) = \left(\frac{r}{700 \,\mathrm{pc}}\right)^2$$

The riddle: which is which?

May 2009

What will GLAST/Fermi add?

Designed to measure gamma rays, but can also measure electrons

May 2009

LAT data and other sources

LAT data: much weaker excess (Abdo et al. 2009)

Narrow peak would have been seen!

No bump?

DESY Zeuthen

May 2009

LAT data and other sources

Uncertainty in power-law index much smaller

than local fluctuations (Grasso et al. 2009)

LAT data plus pulsars

Assume pulsars provide extra positrons to fit PAMELA @ 50 GeV

Injection spectrum $Q \propto E^{-1.5} \exp[-E/(600 \,\text{GeV})]$

Bumpyness for SNR origin

Compare with power law between 65 GeV and 680GeV

Bumpyness for SNR origin

Fluctuations in LAT data enhanced by errors

 \rightarrow no evidence for additional sources

May 2009

Conclusions

Cosmic-ray spectra may carry DM signature

- Dark matter interpretation requires boosting
- Particle spectra can't discriminate between DM and pulsar

Fermi and HESS data do not confirm ATIC bump

- Relatively featureless electron spectrum up to 1 TeV
- Positron excess still unresolved issue
- If real, pulsars or leptophilic dark matter possible

Bumpyness (LAT) as expected for normal CR sources

May 2009