Talk DESY Zeuthen, January 2009

Institut für Physik und Astronomie, Universität Potsdam

Structure evolution at large scales

Distribution of galaxies in the Universe

Distribution of baryonic matter in the Universe

Circumgalactic gas – gas accretion from the intergalactic medium

Circumgalactic gas – outflows and galactic winds

Circumgalactic gas – galaxy interactions

Motivation

Studies of the gaseous intergalactic environment of galaxies provide crucial information about

- the internal evolution of galaxies
- the hierarchical formation of galaxies
- structure evolution in the Universe
- distribution of (baryonic) matter
- physical processes in the intergalactic medium
- cosmological parameters

Galactic high-velocity clouds (HVCs)

The Milky Way is surrounded by large amounts of neutral gas.

HVC analogs in other galaxies

Absorption spectroscopy of IVCs and HVCs

	Major	Absorption	a Lines
Species	λ_0 [Å]	Species	λ_0 [Å]
Н	1215.7	AlIII	1862.8
NV	1238.8	${ m FeII}$	2344.2
NV	1242.8	Fe II	2374.5
SiII	1260.4	${ m FeII}$	2382.8
Si II	1304.4	${ m FeII}$	2586.6
OI	1304.9	${ m FeII}$	2600.2
CII	1334.5	Mg II	2796.3
SiIV	1393.8	MgII	2803.5
Si IV	1402.8	MgI	2853.0
Si II	1526.7	CaII	3934.8
CIV	1548.2	CaII	3969.6
CIV	1550.8	Nal	5891.6
AlII	1670.8	NaI	5897.6
AlIII	1854.7		_

Metal abundances in IVCs and HVCs from absorption studies

Physical conditions in IVCs and HVCs from absorption studies

LMC SK - 68 80 (FUSE)

Molecular hydrogen absorption in extraplanar IV gas

Extreme small-scale structure: $n > 500 \text{ cm}^{-3}$, L < 100 AU (!)

Head-tail structures of HVCs and hot coronal gas

HVCs interact with the hot Corona

Hot coronal gas in other spiral galaxies

Distribution of OVI in the Milky Way halo

(Savage et al. 2004; Sembach et al. 2004; Wakker et al. 2004)

Low-column density gas in the Milky Way halo

Search for unsaturated OI I1302 high-velocity absorption in HST/STIS data

Detection of low-column density gas in the Milky Way halo with HST

Detection of low-column density gas in the Milky Way halo with HST

Ionization modeling of the halo gas structures

Ionization parameter derived from N(OI) and N(SiII):

$$\log U \approx 1.67 \left[\log N(\text{Si II}) - \log N(\text{O I}) + A_{\text{Si}}\right] + B_U$$

Density derived from distance-dependend radiation field X(*d*), adopting MW model from Fox et al. (2006):

$$\log n_{\rm H} \approx \log X_{\gamma}(d) - \log U - 6.4$$

Ionization fraction assuming optically thin absorption:

$$\log f_{\rm H} \approx 0.88 \log U + 4.9$$

Absorber thickness from N(H) and n_H:

$$L = \frac{N(\mathrm{HI}) + N(\mathrm{HII})}{n_{\mathrm{H}}}$$

Are these absorbers important in any way ?

- They have a considerable absorption cross section (f ~ 0.2)
- Like weak MgII systems, some of the systems have super-solar iron abundances
- If they are at large distances (d=100 kpc), their total mass is:

$$M_{\rm LLS} \approx 10^7 \, M_{\odot} \, f \, \mu \, \left(\frac{d}{10 \, \rm kpc}\right)^2 \, \left(\frac{N}{10^{18} \, \rm cm^2}\right) \sim 3 \times 10^8 M_{\odot}$$

$$\implies$$
 mass-circulation rate: $\dot{M} \approx 0.3 M_{\odot} \text{ yr}^{-1}$

- absorbers are small (pc-scale), have low-masses (a few solar masses), but must extremely numerous (if spherical, N>10⁶ for d>10 kpc)
- need new UV data from COS (HST) to further study their nature

Overview: properties of gas surrounding the Milky Way

- Milky Way halo gas is an extreme multi-phase medium (from H₂ to OVI) (e.g. Richter et al. 1999, 2003; Savage et al. 2003; Sembach et al. 1999, 2003; Wakker et al. 2001, 2003; Fox et al. 2004, 2005 ...)
- Metal abundances in IVCs and HVCs span a large range (~0.1-1.0 solar) (e.g., Wakker et al. 1999, 2001; Richter et al. 1999, 2001; Sembach et al. 2002; Tripp et al. 2003; Collins et al. 2003)
- Distances of 21cm IVCs and HVCs are between 0.5 and 20 kpc

(e.g., Wakker et al. 2007, 2008; Thom et al. 2007)

- Various processes lead to the circulation of gas in the Milky Way halo
- Milky Way is accreting gas from the IGM and from satellite galaxies
- Gas physics on vastly different scales (AU Mpc) has to be considered

Quasar absorption line systems – tracers of galaxy halos far away ?

Circumgalactic gas in a more cosmological context

- Absorption measurements in the Milky Way halo
- QSO absorption-line systems and their relation to galaxy halos
- How do we bring these things together ?

HI column density distribution – from the IGM to galaxies

Strong MgII absorbers and their relation to galaxies

- strong MgII systems have EW > 0.3 A
- they are found typically within 35 h⁻¹ kpc of bright galaxies
- they probably trace disks and 21cm HVC analogs

Scenario is consistent with observed gas distribution around the Milky Way.

DLAs and the formation of galaxies

Observations of DLAs with the ESO Very Large Telescope

Example: DLA systems at z=2 towards the quasar HE 0001-2340

Chemical composition and enrichment history

Signatures from the first stars in the Universe !

Nitrogen abundance pattern

... most nitrogen-deficient galaxy detected so far.

HE 0001-2340: galaxy formation at high redshift

Merger event ?

Abundance anomalies – evidence for SNe explosions from massive stars

Richter et al. (2005)

??

Numerical simulations of circumgalactic gas at low and high z

Conclusions

- The evolution of galaxies in the cosmic web can be studied in great detail by investigating their circumgalactic gaseous environment
- Galaxies (also the Milky Way !) accrete large amounts of gaseous matter from the intergalactic medium to fuel star formation
- QSO absorption spectra can be used to study the chemical enrichment of early galactic structures and to learn about the first stars in the Universe.