Recent results from the B factories

Wolfgang Gradl for the BABAR collaboration

Institut für Kernphysik

DESY seminar Zeuthen, 3rd June 2009

Flavour physics

- Understand flavour structure of Standard Model
- Measure properties of weak interaction, i.e. flavour-changing interactions of quarks
 - CP violation
 - Over-constrain CKM matrix
- Test Standard Model predictions
- Search for New Physics
- Want to access quark-level quantities, but only can measure hadron decays:

Need handle on QCD dynamics to understand flavour physics

This talk

Flavour physics Experiments: BABAR and Belle CP violation

Angles of Unitarity Triangle (UT) $\sin 2\beta$ α

Sides of Unitarity Triangle |V_{cb}| from semileptonic *B* decays

Purely leptonic decay $B \rightarrow \tau \nu$ *B* mixing

Summary and conclusions

Physics programme of B factories

includes:

- *B* physics: CKM, CPV, BF, ...
- Charm physics: discovery of charm mixing,
- τ physics
- $e^+e^-
 ightarrow hadrons$: form factors, input to SM prediction of $(g-2)_\mu$
- Spectroscopy: discovery of X, Y, Z
- Discovery of η_b

...

The B-factories BABAR at SLAC and Belle at KEK

• e^+e^- -colliders running at $\sqrt{s} = m(\Upsilon(4S)) = 10.58 \, \text{GeV}$

- Asymmetric beam energies
- High luminosity $(\mathcal{O}(10^{34}) \,\mathrm{cm}^{-2} \mathrm{s}^{-1})$ → data samples of $\mathcal{O}(10^{10}) \,B$ decays

- Data taking stopped a year ago
- $\mathcal{L}_{int} = 531 \, \text{fb}^{-1}$ 465 million $B\overline{B}$ pairs on- $\Upsilon(4S)$

- Record luminosity: $1.96 \times 10^{34} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- Current data sample > 900 fb⁻¹
- Approved to collect 1 000 fb⁻¹

Quark-mixing matrix V_{CKM}

- Mass eigenstates \neq eigenstates of weak interaction
- Mixing of mass- to flavour-eigenstates described by Cabbibo-Kobayashi-Maskawa matrix
- For 3 quark families: 3 mixing angles, 1 irreducible phase

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

- Practical: Wolfenstein-parametrisation: λ , A, ρ , η , all of $\mathcal{O}(1)$
- $V_{us} \equiv \lambda \approx \sin \theta_C \simeq 0.2257$ (Cabbibo angle)

$$\Rightarrow$$
 hierarchy $\begin{pmatrix} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \end{pmatrix}$

Unitarity Triangle and CP violation

$$V_{\mathsf{CKM}} \simeq \left(egin{array}{ccc} 1 - rac{\lambda^2}{2} & \lambda & A\lambda^3(
ho - i\eta) \ -\lambda & 1 - rac{\lambda^2}{2} & A\lambda^2 \ A\lambda^3(1 -
ho - i\eta) & -A\lambda^2 & 1 \end{array}
ight)$$

$$V_{td} V_{tb}^* + V_{cd} V_{cb}^* + V_{ud} V_{ub}^* = 0$$

→ triangle in complex
$$(\overline{\rho}, \overline{\eta})$$
 plane
 $\overline{\rho} \equiv (1 - \lambda^2/2)\rho$

→ apex at

$$\overline{\rho} + i\overline{\eta} \equiv (V_{ud} V_{ub}^*) / (V_{cd} V_{cb}^*)$$

Time-dependent CP asymmetries

• Neutral *B* mesons oscillate between B^0 and \overline{B}^0 .

Mass eigenstates |B_{H,L}> = p |B⁰> ± q |B
⁰>; q/p ≃ e^{-2iβ}
Decay into common final state f:

- If f is CP eigenstate: interference between two decay paths
- V_{CKM} complex

 ^B⁰ and B⁰ decays have different weak phase
- ► Leads to lifetime dependent differences $\Gamma(\underline{B}^{0}|_{t=0} \rightarrow f|_{t}) \neq \Gamma(\overline{B}^{0}|_{t=0} \rightarrow f|_{t})$

Time-dependent CP asymmetries

Time evolution of $B_{tag} = B^0(\overline{B}^0)$ is

$$f_{\pm}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left\{ 1 \pm \left[-\eta_f S_f \sin(\Delta m_d \Delta t) - C_f \cos(\Delta m_d \Delta t) \right] \right\}$$

$$\begin{split} \Delta m_d &= m_H - m_L = 0.507 \pm 0.005 \hbar/\text{ps} \\ \tau_B: \ B^0 \ \text{lifetime} \ (1.530 \pm 0.009 \ \text{ps}) \\ \eta_f: \ CP \ \text{eigenvalue of final state} \ f \end{split}$$

• Construct asymmetry as a function of Δt :

$$\mathcal{A}_{cp}(\Delta t) = \frac{\Gamma(\Delta t) - \overline{\Gamma}(\Delta t)}{\Gamma(\Delta t) + \overline{\Gamma}(\Delta t)}$$

= $-\eta_f \frac{S_f}{S_f} \sin \Delta m_d \Delta t - \frac{C_f}{C_f} \cos \Delta m_d \Delta t$

Time-dependent CP asymmetries

$$\begin{aligned} \mathcal{A}_{cp}(\Delta t) &= \frac{\Gamma(\Delta t) - \overline{\Gamma}(\Delta t)}{\Gamma(\Delta t) + \overline{\Gamma}(\Delta t)} \\ &= -\eta_f \frac{\mathbf{S}_f}{\mathbf{S}_f} \sin \Delta m_d \Delta t - \frac{\mathbf{C}_f}{\mathbf{C}_f} \cos \Delta m_d \Delta t \end{aligned}$$

•
$$S_f$$
, C_f encode information about *CP* violation:
 $\lambda_f = \frac{q}{p} \frac{\overline{A_f}}{A_f}$
 $S_f = \frac{2\Im\lambda_f}{1+|\lambda_f|^2}$, $C_f = \frac{1-|\lambda_f|^2}{1+|\lambda_f|^2}$

- $|\lambda_f| \neq 1 \Rightarrow C_f \neq 0$: "direct CPV" (*CP* violation in decay) needs two contributing amplitudes with different weak and strong phases
- $S_f \neq 0$: "indirect CPV" (*CP* violation in interference between decays with and without mixing)

Measuring Δt

Detecting a signal

- Largest backgrounds from $e^+e^- \rightarrow q\overline{q} \ (q = u, d, s, c)$
- Use event shape for background suppression:

W. Gradl - Recent results from B factories

Theoreticians' toolbox

Need theoretical tools to

- make predictions for branching fractions, CP asymmetries ...
- compute hadronic corrections
- Effective Hamiltonian: integrate out W and t
- $\bullet \ m_b \gg \Lambda_{\rm QCD}$
 - factorisation: form factors, distribution amplitudes, ...
 - heavy quark expansion (powers of $\Lambda_{\rm QCD}/m_b$)
 - perturbation theory: expansion in $\alpha_s(m_b)$
- $\Lambda_{\rm QCD} \gg m_u, m_d, m_s$: SU(2) or SU(3) global symmetries
- Lattice gauge theory (LQCD) difficult to deal with light energetic particles

CP violating asymmetry in $B^0 \rightarrow (c\overline{c})K^0$

- Measure S and C in $b \rightarrow c\overline{c}s$ decays
- 'Golden mode'
- Experimentally clean (J/ $\psi \rightarrow \ell \ell$, $K_s^0 \rightarrow \pi^+ \pi^-$)
- Theoretically clean:
 - dominated by single (tree) amplitude
 - gluonic (loop) penguin small & with same weak phase

• Calculations suggest $C < 10^{-3}$

 $B
ightarrow (c \overline{c}) K^0$

Reconstruct charmonium $c\bar{c}$ as J/ψ , $\psi(2S)$, χ_{c1} , η_c

•
$$K_s^0 \to \pi^+ \pi^-, \pi^0 \pi^0$$

- K⁰_L as neutral cluster, with some quality criteria
- Large, pure samples: e.g. $J/\psi K_s^0$ with 6750 events

•
$$K^{*0} \rightarrow K_s^0 \pi^0$$
:
ignore angular information \clubsuit dilution,
'effective' η_f^{eff}

 $\sin 2\beta$

 $\beta \equiv \arg[-V_{cd}V_{cb}^*/V_{td}V_{tb}^*]$

W. Gradl - Recent results from B factories

Precise measurement of β

Exploit this precision to search for New Physics

Searching for new physics in CP violation

■ Measure CPV in b → s loop ('penguin') dominated decays: S_f

- 'Golden mode' $B^0 \rightarrow \phi K_s^0$
- Standard model & penguin only

 $S_f = -\eta_f \sin 2\beta$

New Physics (NP) can show up in loops and modify S_f

- Sensitive to masses $\sim \mathcal{O}(10 \text{ TeV})$
- But: sub-leading SM amplitudes not negligible, and have different weak phases

- In order to see NP in
 - $0
 eq \Delta S_{ ext{NP}} \equiv S_f S_{c\bar{c}s} \Delta S_{ ext{SM}}$

need to control 'SM pollution'

$\sin 2\beta$ from $b \rightarrow q\overline{q}s$ penguins

- Experiments seem to favour
 ΔS < 0
- Was more exciting 2 years ago

- ΔS_{SM} tend to be small and positive
- Neither experimental nor theoretical precision high enough to confirm or rule out New Physics

$\alpha \equiv \arg[-V_{td}V_{tb}^*/V_{ud}V_{ub}^*]$

Measuring α

Process involving both *B*-mixing (β) and $b \rightarrow u$ transition (γ):

$$\alpha = \pi - \beta - \gamma.$$

 Complication: penguin amplitudes not negligible, different weak phase and (unknown) strong phase

 $\delta = \delta_P - \delta_T$, P/T different for each final state

 \blacksquare Can only measure α_{eff} , and

$$C_{hh} \propto \sin \delta;$$
 $S_{hh} = \sqrt{1 - C_{hh}^2} \sin 2\alpha_{eff}$

W. Gradl - Recent results from B factories

Isospin analysis to constrain $\alpha_{\rm eff} - \alpha$

- Time dependent $\pi^+\pi^-$ or $\rho^+\rho^-$ *CP* asymmetry \blacksquare measure $\alpha_{\rm eff}$
- Use SU(2) isospin to relate amplitudes of all $\pi\pi$ ($\rho\rho$) modes and constrain $\alpha_{\text{eff}} - \alpha$ Gronau & London, Phys. Rev. Lett. **65**, 3381

$$\frac{\mathcal{A}^{+-}}{\sqrt{2}} + \mathcal{A}^{00} = \mathcal{A}^{+0} = e^{2i\gamma}\overline{\mathcal{A}}^{-0}$$

Angular analysis: $B \rightarrow VV$

 $J^{P}: 0^{-} \rightarrow 1^{-} 1^{-}$

• With enough statistics, full angular analysis possible:

$$\frac{\mathrm{d}^{3}\Gamma}{\mathrm{d}\cos\theta_{1}\mathrm{d}\cos\theta_{2}\mathrm{d}\phi} \propto \left|\sum_{m=-1,0,1}H_{m}Y_{1,m}(\theta_{1},\phi)Y_{1,-m}(\theta_{2},\phi)\right|^{2}$$

$$f_L \equiv \frac{|H_0|^2}{|H_0|^2 + |H_{+1}|^2 + |H_{-1}|^2}$$

In transversity basis:

$$\begin{array}{rcl} {\cal A}_{0} & = & {\cal H}_{0} \\ {\cal A}_{\parallel} & = & \frac{1}{\sqrt{2}} ({\cal H}_{+1} + {\cal H}_{-1}) \\ {\cal A}_{\perp} & = & \frac{1}{\sqrt{2}} ({\cal H}_{+1} - {\cal H}_{-1}) \end{array}$$

W. Gradl - Recent results from B factories

α from $B \rightarrow \rho \rho$

BABAR Phys. Rev. D **78** 071104 (2008) $\mathcal{B}(B^0 \to \rho^0 \rho^0) = (0.92 \pm 0.32 \pm 0.14) \times 10^{-6}$ $f_L = 0.75^{+0.11}_{-0.14} \pm 0.14$ $S_I^{00} = 0.3 \pm 0.7 \pm 0.2$, $C_I^{00} = 0.2 \pm 0.8 \pm 0.3$ $\begin{array}{l} \mbox{Belle Phys. Rev. D 78 111102 (2008)} \\ \mathcal{B}(B^0 \to \rho^0 \rho^0) = (0.4 \pm 0.4 \substack{+0.2 \\ -0.3}) \times 10^{-6} \\ < 1.0 \times 10^{-6} \ @90\% \ C.L. \end{array}$

 ${}^{B\!A\!B\!A\!R}$ arXiv:0901.3522, sub. to PRL ${\cal B}(B^+ \to \rho^+ \rho^0) = (23.7 \pm 1.4 \pm 1.4) \times 10^{-6}$

 $B^0 \rightarrow \rho^0 \rho^0$ small \Rightarrow isospin triangle flattened, decreases ambiguity due to $\alpha_{\text{eff}} - \alpha$

Summary on α

Combine measurements from *CP* violation in $B^0 \rightarrow \pi\pi, \rho\rho, (\rho\pi)^0$

Measuring γ

• Study direct *CP* violation in $b \rightarrow c \bar{u} s, u \bar{c} s$

 $B^- \to K^{(*)-} D^{(*)0}$

Three approaches in use:

GLW

- $\bullet D^{(*)0} \to f_{CP}$
- (Small) interference between amplitudes
- Hadronic uncertainties from D^{(*)0} decay cancel

Gronau, London (1991); Gronau, Wyler (1990)

ADS

- D^0 decays to $K^-\pi^+$ (favoured) and $K^+\pi^-$ (suppressed)
- Larger interference
- Hadronic uncertainties from D decays

Atwood, Danietz, Soni (1997)

GGSZ

- D^0 decays to $K^0_s \pi^+ \pi^-$
- Interference in Dalitz plot
- Currently most sensitive

Giri, Grossman, Sofer, Zupan (2003)

BABAR GGSZ measurement

Model DP with $D^{*+} \rightarrow D^0 \pi_s^+$

Use DP model on *B* decays to fit for CP parameters

BABAR, 383 M $B\overline{B}$

Phys. Rev. D 78, 034023 (2008)

Results on γ

- Many new results from BABAR and Belle in summer 2008
- Latest BABAR $B^+ \rightarrow DK^+$ ADS and GLW analyses not included
- Use also $\sin(2\beta + \gamma)$ from $B^0 \rightarrow D^+ \pi^-(\rho^-)$

Unitarity triangle side from semileptonic B decays

$$\frac{|V_{ub}|}{|V_{cb}|} = \frac{\lambda}{1 - \lambda^2/2} \sqrt{\overline{\rho}^2 + \overline{\eta}^2}$$

Semileptonic $b \rightarrow c$ decays

- |V_{cb}| (and |V_{ub}|) determined from semileptonic *B* decays
- Tree-level process: free from new physics!
- Everything nice and clean at quark-level:

 $\Gamma \propto |V_{cb}|^2$

Need to include QCD corrections

- Inclusive measurements $(\overline{B} \rightarrow X_c \ell \overline{\nu})$ Operator Product Expansion
- Exclusive measurements:
 Form factors from Lattice QCD
- Complementarity between incl. and excl.

Inclusive semileptonic decay width $\mathcal{B}(B \rightarrow X_c e \nu) = (10.08 \pm 0.30 \pm 0.22)\%$

Belle, Phys. Rev. D 75, 032001 (2007)

$$\Gamma(\overline{B} \to X_c \ell \overline{\nu}) = \frac{G_F^2 |V_{cb}|^2 m_b^5}{192 \pi^3} \left[f(\rho) + k(\rho) \frac{\mu_{\pi}^2}{2m_b^2} + g(\rho) \frac{\mu_G^2}{2m_b^2} + d(\rho) \frac{\rho_D^3}{m_b^3} + l(\rho) \frac{\rho_{LS}^3}{m_b^3} + \mathcal{O}(m_b^{-4}) \right] \qquad \rho = \frac{m_c^2}{m_b^2}$$

Wilson coefficients f, k, g, d, l calculable in perturbation theory Non-perturbative parameters $\mu_{\pi}, \mu_{G}, \rho_{D}, \rho_{LS}$ matrix elements of local operators in HQET

Same matrix elements (but different Wilson coefficients) appear in OPE for moments of

- lepton energy spectrum E_ℓ in $B \to X_c \ell \overline{\nu}$
- hadronic mass spectrum M_X in $B \to X_c \ell \overline{\nu}$
- photon energy spectrum E_{γ} in $B \rightarrow X_s \gamma$

Inclusive $|V_{cb}|$ — moment analysis

World average (HFAG; kinetic scheme)

$$\begin{aligned} |V_{cb}| &= (41.67 \pm 0.43_{\rm fit} \pm 0.08_{\tau_B} \pm 0.58_{\rm th}) \times 10^{-3} \\ m_b &= (4.601 \pm 0.034) \, {\rm GeV} \\ \mu_{\pi}^2 &= (0.440 \pm 0.040) \, {\rm GeV}^2 \end{aligned}$$

W. Gradl - Recent results from B factories

Exclusive $|V_{cb}|$ measurements

$$\frac{\mathsf{d}\Gamma(B\to D^*\ell\nu)}{\mathsf{d}w} = \frac{G_F^2|V_{cb}|^2}{48\pi^3}\mathcal{K}(w)\mathcal{F}(w)^2$$

- w : four-velocity transfer from b to $\ell \nu$
- **\mathbf{K}**: known phase-space factor, vanishes as $w \to 1$
- \mathcal{F} : form factor; in limit of infinite quark mass: $\mathcal{F}(w = 1) = 1$ LQCD: $\mathcal{F}(1)^{B \to D^* \ell \nu} = 0.924 \pm 0.022$ FNAL, arXiv:0710.1111
- Typically, experiments measure $d\Gamma/dw$ and extrapolate to $w \to 1$ to determine $|\mathcal{F}(1)V_{cb}|$

 $\mathcal{F}(1)|V_{cb}| = (34.4 \pm 0.3 \pm 1.1) \times 10^{-3}$ BABAR, Phys. Rev. D 77 032002 (2008)

Consistent, but $\approx 2\sigma$ lower than $|V_{cb}|$ from inclusive ($|V_{cb}|_{incl} = (41.67 \pm 0.43_{fit} \pm 0.08_{\tau_B} \pm 0.58_{th}) \times 10^{-3})$)

W. Gradl - Recent results from B factories

Measurements of $|V_{ub}|$

- Proceed along the lines of $|V_{ub}|$: inclusive and exclusive, similar formalism
- Inclusive measurement complicated by charm background:
 - ightarrow pprox 50imes larger than signal
 - → Use kinematics to distinguish X_u from X_c
 - Additional had. uncertainties from kinematic cuts
- Exclusive:
 - low statistics
 - ${\cal B}(B^0 o \pi^- \ell^+
 u) = (1.36 \pm 0.09) imes 10^{-4}$
 - Form factors more difficult to compute

$|V_{ub}|$ summary

 ~ 5 theoretical approaches to extract $|V_{ub}|$ from partial decay rates . . .

Exclusive, from $B \rightarrow \pi \ell \nu$

Open issues

• Inclusive $|V_{cb}|$ precision at 2% level

• Many new results on exclusive $|V_{cb}|$ $(B \rightarrow D^{(*)}\ell\nu)$ Precision limited by form factor knowledge $|V_{cb}|$ 2σ lower than from inclusive ??

 Inclusive |V_{ub}| precision at 8% limited by calculation of theoretical phase space acceptances (more than one model on the market)

Exclusive |V_{ub}| measurements limited by form factor knowledge Need more data and progress on theoretical calculations Exclusive vs. inclusive |V_{ub}|?

$|V_{ub}|$ from purely leptonic decay $B \rightarrow \tau \nu$

■ $B \rightarrow \tau \nu$ first leptonic *B* decay seen (light leptons strongly suppressed by helicity conservation: $\tau : \mu : e \sim 1 : 0.004 : 10^{-7}$)

2

Standard model:

$$\begin{split} \mathcal{B}(B \to \ell \nu)_{\rm SM} &= \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B \\ &= (1.39 \pm 0.44) \times 10^{-4} \end{split}$$

using $|V_{ub}| = (44.9 \pm 3.3) \times 10^{-4}$ (incl. $B \to u\ell\nu$) and $f_B = 0.189 \pm 0.027$ GeV (LQCD)

Charged Higgs H[±] may contribute to BF:

$$\mathcal{B}(B o au
u) = \mathcal{B}(B o au
u)_{
m SM} imes (1-rac{m_B^2}{m_H^2} au^2 eta)^2$$

[W-S Hou, Phys. Rev. D **48**, 2342 (1993)]

W. Gradl - Recent results from B factories

$|V_{ub}|$ from purely leptonic decay $B \rightarrow \tau \nu$

■ $B \rightarrow \tau \nu$ first leptonic *B* decay seen (light leptons strongly suppressed by helicity conservation: $\tau : \mu : e \sim 1 : 0.004 : 10^{-7}$)

2

Standard model:

$$\begin{aligned} \mathcal{B}(B \to \ell \nu)_{\rm SM} &= \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_B^2} \right)^2 f_B^2 |V_{ub}|^2 \tau_B \\ &= (1.39 \pm 0.44) \times 10^{-4} \end{aligned}$$

using $|V_{ub}| = (44.9 \pm 3.3) \times 10^{-4}$ (incl. $B \to u\ell\nu$) and $f_B = 0.189 \pm 0.027 \text{ GeV}$ (LQCD)

Charged Higgs H[±] may contribute to BF:

$$\mathcal{B}(B o au
u) = \mathcal{B}(B o au
u)_{
m SM} imes (1 - rac{m_B^2}{m_H^2} au^2 eta)^2$$

[W-S Hou, Phys. Rev. D 48, 2342 (1993)]

W. Gradl - Recent results from B factories

Leptonic decay $B^+ \rightarrow \tau^+ \nu_{\tau}$

- $B^+ \rightarrow \tau^+ \nu_{\tau}$ very challenging due to invisible particles: ≥ 2 neutrinos
- Reconstruct observable τ daughters in a few decay modes $(e, \mu, \pi, ...)$

Require nothing else in the detector

 $\mathcal{B}(B \to \tau \nu) =$

$$(1.65^{+0.38+0.35}_{-0.37-0.37}) imes 10^{-4}$$

Belle 657M $B\overline{B}$, semileptonic tags arXiv:0809.3834 [hep-ex]

$$(1.8^{+0.9}_{-0.8}\pm0.4\pm0.2) imes10^{-4}$$

BABAR 459M BB, hadronic tags Phys. Rev. D **77** 011107 (2008)

combine with BABAR semileptonic (0.9 \pm 0.6 \pm 0.1) \times 10⁻⁴ Phys. Rev. D 76, 0520 (2007)

> HFAG average, April 2009 $(1.43 \pm 0.37) \times 10^{-4}$

$B \rightarrow \tau \nu$: UT constraints

• Use $\mathcal{B}(B \to \tau \nu)$ to constrain $\bar{\rho}^2 + \bar{\eta}^2$ independent of semileptonic V_{ub} assuming f_B is known (10% uncertainty)

Slight tension (< 2σ) with UT fit

• No $|V_{ub}|$ or lattice input in global UT fit: $\mathcal{B}(B \to \tau \nu) = (0.73 \pm 0.12) \times 10^{-4}$ (UT fit)

W. Gradl — Recent results from B factories

$B \rightarrow \tau \nu$: constraints for New Physics

http://gfitter.desy.de

Unitarity triangle side from B mixing $(\Delta m_d, \Delta m_s)$

Constrain side with Δm_d

- Δm_d related to $B^0 \overline{B}^0$ oscillations
- In Standard Model:

١Ę

$$\Delta m_d = \frac{G_F^2}{6\pi^2} m_W^2 \eta_b S(x_t) m_{B_d} f_{B_d}^2 B_{B_d} |V_{cb}|^2 \lambda^2 ((1-\bar{\rho})^2 + \bar{\eta}^2)$$

 $f_{B_d}^2 B_{B_d}$: non-perturbative contribution, uncertainty $\approx 10\%$

W. Gradl - Recent results from B factories

$\Delta m_d / \Delta m_s$

• B_s also oscillates • Δm_s

Precisely measured at Tevatron CDF, Phys. Rev. Lett. 97 062003 (2006)

 $\Delta m_s = 17.77 \pm 0.10 ({
m stat}) \pm 0.07 ({
m sys}) \, \hbar {
m ps}^{-1}$

■ $f_{B_s}^2 B_{B_s}$ easier to calculate in LQCD: larger mass of *s* quark ■ smaller uncertainties than $f_{B_d}^2 B_{B_d}$

Turning the tables

- Use overconstrained UT to fit for B_K , $f_{B_s}\sqrt{B_{B_s}}$, ξ
- Include angles and $|V_{ub}|/|V_{cb}|$ information in fit, exclude Δm_d , Δm_s , ε_K
- Compare to Lattice QCD Lubitz & Tarantino, arXiv:0807.4605v1 [hep-lat]

	UT	LQCD
B _K	0.75 ± 0.07	$\textbf{0.75} \pm \textbf{0.07}$
$f_{B_s}\sqrt{B_{B_s}}$ (MeV)	264.7 ± 3.6	270 ± 30
ξ	1.26 ± 0.05	1.21 ± 0.04
$f_{B_d}(MeV)$	191 ± 13	200 ± 20

UT_{fit}

- Remarkable agreement
- Precision from UT fit comparable to current LQCD

Constraints as of Winter 2009

UTfit collaboration (M. Bona et al.), http://www.utfit.org

The Unitarity Triangle as of Winter 2009

http://ckmfitter.in2p3.fr

 $ar{
ho} = 0.154 \pm 0.022$ $ar{\eta} = 0.342 \pm 0.014$ $\sin 2eta = 0.695 \pm 0.020$

http://www.utfit.org

CP conserving vs CP violating constraints

■ Non-degenerate UT from *CP* conserving quantities!

Some tension between global and sides-only fits but below 3σ

Summary

- B Factory programme very successful in establishing CKM theory
- CKM dynamics provides at least lion's share of observed CP violation [I. Bigi]
- Works beautifully at current precision
- Some (hints of) tensions exist, but effects of New Physics likely to be subtle
- Good control of QCD essential for precision flavour physics
- Need to acquire high precision data and interpret it with high precision: Progress in experiment and theory needed
- Next generation Flavour factories: LHCb starting soon
 Super Flavour Factory under consideration