THE UNIVERSE YOURS TO DISCOVER

The Galaxy in a new light High energy gamma ray astronomy with H.E.S.S.

The Ligh Energy Stereoscopic System

The Milky Way

Why? Exploring the nonthermal universe

How?

Detecting VHE gamma rays: The H.E.S.S. telescopes

What?

A tour of galactic particle accelerators

Whow ... Recent news

What's next?

Why? Exploring the nonthermal universe

How? Detecting VHE gamma rays:

The H.E.S.S. telescopes

What?

A tour of galactic particle accelerators

Whow ... Recent news

What's next?

Cosmic rays & the Galaxy

Magnetic fields in the Galaxy are a nuissance ...

... but they couple CRs to gas and make CRs important for our Galaxy!

Why? Exploring the nonthermal universe

How? Detecting VHE gamma rays: The H.E.S.S. telescopes

What? A tour of galactic particle accelerators

Whow! Recent hot topics

What's next?

Air showers look a bit like meteors

(from Sky & Telescope)

Background rejection

The early days

Galbraith and Jelley, 1953

February 21, 1953 NATURE

Light Pulses from the Night Sky associated with Cosmic Rays

IN 1948, Blackett¹ suggested that a contribution approximately 10^{-4} of the mean light of the night-sky might be expected from Čerenkov radiation² produced in the atmosphere by the cosmic radiation. The purpose of this communication is to report the results of some preliminary experiments we have made using a photomultiplier, which revealed the

thank Mr. W. J. Whitehouse and Dr. E. Bretscher for their encouragement, and Dr. T. E. Cranshaw for the use of the extensive shower array.

W. GALBRAITH

Whipple 1968

Detection of the Crab Nebula 1989 as first VHE gamma ray source

Copyright Digital Image Smithsonian Institution, 1998

H.E.S.S. 2003

100 times more sensitive

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Key feature of H.E.S.S: Wide field of view of 5°

Camera: 960 pixels, 0.16° 5° field of view Readout electronics in camera body 1 GHz analog memory for signal recording

Key feature of H.E.S.S: Location in Namibia

The H.E.S.S. telescopes

107 m² mirror area each

Observation in moonless nights, ~1000 h / year

Each night 5-10 objects are tracked and 300 images recorded per second (10 TBytes / Jahr) First analysis (almost) online in the same night on PC cluster in Namibia

> Final analysis and calibration in Europe

What? A tour of galactic particle accelerators:

- Binaries
- Pulsar wind nebulae
- Supernova remnants
- Star clusters
- { "Dark sources"}

How could cosmic accelerators work?

Man-made accelerators

How could cosmic accelerators work?

Man-made accelerators

Nature's accelerators

Energy

How could cosmic accelerators work?

Energy gain / cycle $\Delta E/E \sim \beta_{shock}$

- ... many 100 cycles to reach TeV energies ...
- ... takes several 100 years

Generates power law spectrum $dN/dE \sim E^{-2}$

- ... at some point, particle escapes ...
- ... to be precise: $dN/dE \sim E^{-\Gamma}$, $\Gamma = (R+2)/(R-1)$
 - R = shock compression ratio

For strong shocks (Mach # >> 1): $R = 4 \rightarrow \Gamma = 2$

For weaker shocks: $R < 4 \rightarrow \Gamma > 2$

Peak energy ~10¹⁵ eV

... depending on size of shock front ...

Nonlinear process with efficiency ~50%!

... accelerated particles generate plasma waves ...

Nature's accelerators

Shocks are everywhere!

- Supernovae
- Pulsars
- Stellar winds
- Jets of active galaxies
- Galactic mergers
- Solar system

A particle accelerator in the Solar System

From particles to radiation II

For uniform distribution of targets, γ-rays probe particle distribution

Energy-dependent

propagation modifies spectrum as a function of distance

Source of particles (e.g. pulsar)

Source size given by diffusion / convection speed and age of source or "livetime" of particles Target "material"

Radiative losses steepen spectrum as a function of distance

Bubbles: Gas density 10⁻²/cm³

Lifetime of 10 TeV proton: $\sim 10^9$ years

Clouds: Gas density >10³/cm³

Lifetime of 10 TeV proton: $\sim 10^4$ years

CMB: Photon density 0.26 eV/cm³

Lifetime of 10 TeV electron: $\sim 10^5$ years

In binary systems: 10⁴ eV/cm³

Lifetime of 10 TeV electron: <100 years

Pulsar wind nebulae Pulsed emission from pulsar magnetosphere Shocked e^{\pm} pulsar wind SNR

shell

G21.5-0.9 Chandra / H.Matheson & S.Safi-Harb

Pulsar "Kick" ?

NO! ... not for Vela-X, HESS J1825-137

Back to the Origin of Cosmic Rays (?)

Supernova remnant shells

shock wave running into gas clouds?

CR diffusion slower than shock speed ► CR confined to shell RX J1713.7-3946 Distance ~1 kpc (?) Diameter ~20 pc (?) Age ~1000 y (?)

RXJ 1713.7-3946

Proof that supernova shells accelerate particles to 100 TeV and beyond

X-rays: $X + pays \otimes B^2 = \gamma + pays = \rho_{gas}$ RX J0852.0-4622 RX J1713.7-3946

Spectral energy distribution

X-ray / y-ray correlation

Dynamic field amplification: $B^2 \sim \Phi_{CR} \sim \rho_{gas}$?

Supernova 1006

Distance 2.2 kpc ~500 pc above gal. plane Diameter ~20 pc Age 1002 y

X-rays (blue) Optical Radio (red)

NASA, ESA, Zolt Levay (STScI)

SN 1006 H.E.S.S. 2008

103 h of data

Interpretation Electrons in 30 μ G field or Protons in 0.05/cm³ gas

Westerlund 1 Stellar Cluster

A tour of galactic particle accelerators

- Binaries
- Pulsar wind nebulae
- Supernova remnants
- Star clusters
- "Dark sources"

Sources without (known) counterparts

Not all remain dark... HESS J1857+026

PSR J1856+0245 discovery Hessels et al. 2008, Arecibo period 81 ms, spin-down energy loss 4.6 x 10³⁶ ergs/s age 21000 y distance 9 kpc

Not all remain dark... HESS J1731-347

HESS J1731-347 Tian et al., arXiv:0801.3254

Recent news

Electrons: Dark Matter & H.E.S.S. ? UHECR sources ?

Dark Matter in the Galaxy

gamma rays and synchrotron rad.

we are here

contribution to cosmic rays

A. Garlick / space-art.co.uk

ATIC & PAMELA Cosmic Ray Electron News

H.E.S.S. electron spectrum

 $\zeta = 0$: proton shower $\zeta = 1$: γ / electron shower

Beyond our Galaxy

H.E.S.S. Extragalactic Coverage

more than 0.6 sr of extragalactic space covered
including about 100 "Auger" AGN within 100 Mpc
1 10²⁰ eV particle / 5000 km²y ≅ 10⁻¹³ ergs/cm²s

H.E.S.S. Extragalactic Coverage

Centaurus A

Flux ~0.8% Crab Spectral index 2.7±0.5±0.2

▶ M. Raue, Moriond

VHE gamma ray astronomy is a key tool in the challenge of investigating the nonthermal Universe

© Lynette Cook

What's next? H.E.S.S. & Fermi

The next big step

"Typical" CTA field of view

CTA – the Cherenkov Telescope Array An advanced facility for ground-based gamma-ray astronomy

Scientific Objectives

SNRsPulsarsMicro quasarsAGNsand PWNX-ray binaries

Origin of cosmic rays

Dark matter

Space-time & relativity

Cosmology

Wish list for CTA

- Higher sensitivity at TeV energies (x 10) more sources, details in extended sources
- Lower threshold (some 10 GeV) pulsars, distant AGN, source mechanisms
- Higher energy reach (100s of TeV) cutoff region of Galactic accelerators
- Wider field of view extended sources, surveys
- Improved angular resolution structure of extended sources
- Higher detection rates transient phenomena

Boosting sensitivity & resolution Arrays of Cherenkov telescopes

Low-energy section energy threshold of some 10 GeV

Core array: mCrab sensitivity in the 100 GeV–10 TeV domain

High-energy section 10 km² area at multi-TeV energies

CTA observation modes

CTA observation modes

Monitoring 4 telescopes

Monitoring 4 telescope Deep field ~1/2 of telescopes Monitoring 4 Telescopes

Deep field ~1/3 of telescopes

Monitoring 1 telescope

CTA observation modes

Survey mode

CTA Design Study

Armenia	Yerevan
Czech Republic	Prague
Finland	Turku
France	Annecy, Grenoble, Montpellier, LLR Palaiseau, APC Paris, Obs. Paris- Meudon, U. Paris VI-VII, CEA Saclay, Toulouse
Germany	HU Berlin, Bochum, <mark>DESY</mark> , Dortmund, Erlangen, Hamburg, MPI Heidelberg, U. Heidelberg, MPI Munich, Tübingen, Würzburg
Italy	INFN Padova, Pavia, Pisa, Trieste, Rome, Siena, INAF Rome, Brera, Bologna, Padova, Palermo, Torino,
Ireland	DIAS Dublin,
Japan	ICRC + Universities
Namibia	U. Namibia
Poland	Cracow, NCAC Warsaw, U. Warsaw, Lodz
Spain	IFAE, IEEC, UAB, UB Barcelona, UCM Madrid
South Africa	Northwest-Univ.
Switzerland	ETH Zurich, U. Zurich, Geneva, PSI
Sweden	Stockholm
UK	Leeds, Durham,

more interested

European Strategy Forum on Research Infrastructures ESFRI

EUROPEAN ROADMAP FOR RESEARCH INFRASTRUCTURES

Roadmap 2008