Magnetic moment $(g-2)_{\mu}$ — evidence for new physics?

Dominik Stöckinger

Dresden

May 2009

Dominik Stöckinger

・ロン ・四 と ・ ヨ と ・ ヨ と Magnetic moment $(g - 2)_{\mu}$ — evidence for new physics?

э

Outline

Motivation

- A 3σ deviation has been established
 - History
 - Current status and recent progress

Types of new physics

- SUSY could explain the deviation
 SUSY contributions
- 5 A new, better measurement?

6 Conclusions

A (1) > A (2) > A

Outline

- 2 A 3σ deviation has been established
 - History
 - Current status and recent progress
- 3 Types of new physics
- SUSY could explain the deviation
 SUSY contributions
- 5 A new, better measurement?
- 6 Conclusions

< 回 > < 三 > < 三

Muon magnetic moment

$$H_{\text{magnetic}} = -2(1 + a_{\mu}) \frac{e}{2m_{\mu}} \vec{B} \cdot \vec{S}$$

Measurement:

circular motion: $\omega_{c} = -\frac{e}{m_{\mu}}B$ spin precession: $\omega_{s} = -\frac{2(1+a_{\mu})e}{2m_{\mu}}B$ \rightarrow measure $\omega_{a} = \omega_{s} - \omega_{c} = -a_{\mu}\frac{e}{m_{\mu}}B$

= nar

Muon magnetic moment

$$H_{\text{magnetic}} = -2(1 + a_{\mu}) \frac{e}{2m_{\mu}} \vec{B} \cdot \vec{S}$$

Quantum field theory:

・ 同 ト ・ ヨ ト ・ ヨ

Muon magnetic moment

$$H_{\text{magnetic}} = -2(1 + a_{\mu}) \frac{e}{2m_{\mu}} \vec{B} \cdot \vec{S}$$

In principle, simple to measure and to calculate ↓ One of the most precisely measured and calculated quantities in particle physics ↓ rich history

Outline

Motivation

- History
- Current status and recent progress

3 Types of new physics

- SUSY could explain the deviation
 SUSY contributions
- 5 A new, better measurement?
- 6 Conclusions

< 回 > < 三 > < 三

History

'49 Schwinger: QED 1L:

Dominik Stöckinger

<ロ> (四) (四) (日) (日) (日) Magnetic moment $(g - 2)_{\mu}$ — evidence for new physics?

э.

'49 Schwinger: QED 1L: '68–'78 CERN measurement: '76- had vac. pol.: '78 CERN result:

$$\frac{\alpha}{2\pi}$$

 \Rightarrow QED up to 4-loop needed

 $(6.7 \pm .9) \times 10^{-8}$, also needed

agreement between exp and (QED+had)

-

History

'49 Schwinger: QED 1L: $\frac{\alpha}{2\pi}$ '68–'78 CERN measurement: \Rightarrow QED up to 4-loop needed $(6.7 \pm .9) \times 10^{-8}$, also needed '76- had vac. pol.: '78 CERN result: agreement between exp and (QED+had)

Magnetic moment $(g-2)_{\mu}$ — evidence for new physics?

'49 Schwinger: QED 1L: '68–'78 CERN measurement: '76- had vac. pol.: '78 CERN result: '83-today: QED '85-today Had light-by-light: '96-'05 e.w. contributions:

 $\frac{\alpha}{2\pi}$

 \Rightarrow QED up to 4-loop needed

 $(6.7\pm.9) imes10^{-8}$, also needed

agreement between exp and (QED+had) 4L,5L numerically [Kinoshita]

difficult!

 $(15.2 \pm 0.2) \times 10^{-10}$

'49 Schwinger: QED 1L: '68–'78 CERN measurement: '76- had vac. pol.: '78 CERN result: '83-today: QED '85-today Had light-by-light: '96-'05 e.w. contributions: '01 first BNL result: '06 final BNL result:

 $\frac{\alpha}{2\pi}$

 \Rightarrow QED up to 4-loop needed

 $(6.7\pm.9)\times10^{-8},$ also needed

agreement between exp and (QED+had) 4L,5L numerically [Kinoshita]

difficult!

 $(15.2 \pm 0.2) \times 10^{-10}$

weak contributions needed! bad agreement between exp and (QED+had+weak)

Era of the muon g - 2 experiment at Brookhaven

$${m a}_{\mu}^{
m exp} = ({
m 11\,659\,208\pm 6}) imes {
m 10^{-10}}$$

Dominik Stöckinger

< ロ > < 同 > < 三 > < 三 > Magnetic moment $(g - 2)_{\mu}$ — evidence for new physics?

Full SM: $a_{\mu} imes 10^{10} - 11659000$			
HMNT06:	180.4(5.1)	(3.4 <i>σ</i>)	
DEHZ06:	180.5(5.6)	(3.3 σ)	
FJ08:	179.5(6.5)	(3.1 <i>σ</i>)	
MRR07:	178.5(6.1)	(3.4 <i>σ</i>)	
dR08:	178.5(5.1)	(3.6 σ)	
Eve			
Exp:			
BNL06:	208.0(6.3)		

3σ deviation established

QED: ,,,,,

weak: weak:

In units of $[10^{-10}]$, according to [de Rafael '08]

11658471.8(0.1)

vp(LO+NLO)680.8(4.4) lbl 10.5(2.6)

15.2(0.2)

э

11659208.0(6.3)

< 同 > < 三 > < 三 >

Exp:

Hadronic vacuum polarization contributions:

$$\swarrow \qquad \leftrightarrow \mathbf{e^+e^-} \rightarrow \gamma^* \rightarrow \text{hadrons}$$

- consensus on methods final result/error depends on exp data
- τ -data ($\tau \rightarrow \nu + W^* \rightarrow \nu$ +hadrons) less reliable
- recent years: convergence of theoretical determinations
- new exp data (CMD2, SND, KLOE, B-factories)
 ⇒ significantly more precise!

< ロ > < 同 > < 三 > < 三 > -

Hadronic vacuum polarization contributions:

Recent evaluations: $a_{\mu} \times 10^{10} - 11659000$ HMNT06:... 689.4(4.5)DEHZ08:... 690.8(4.4)Jegerlehner08:... 691.0(5.3)

Hadronic vacuum polarization contributions:

Recent evaluations: $a_{\mu} \times 10^{10} - 11659000$ HMNT06:... 689.4(4.5)DEHZ08:... 690.8(4.4)Jegerlehner08:... 691.0(5.3)

Recent progress:

- [Benayoun et al '07] possible explanation of τ -based results \rightarrow confirmation of e^+e^- -based evaluations
- new precise KLOE data (will be incorporated in fits soon)

QED: ,,,,,

weak: weak:

In units of $[10^{-10}]$, according to [de Rafael '08]

11658471.8(0.1)

vp(LO+NLO)680.8(4.4) lbl 10.5(2.6)

15.2(0.2)

э

11659208.0(6.3)

< 同 > < 三 > < 三 >

Exp:

Hadronic light-by-light contributions

['85 Kinoshita et al]	$+4.9\pm0.5$
['95 Kinoshita et al]	-5.2 ± 1.8
['96 Prades et al]	-9.2 ± 3.2
['98 Kinoshita et al]	-7.9 ± 1.5
['01 Knecht, Nyffeler]	sign error identified

Cannot be computed from first principles — Error difficult to assess!

Currently ok — future bottleneck

< 回 > < 三 > < 三

Hadronic light-by-light contributions

new estimates with correct sign, using different approximations

[Bijnens, Prades '07]	10.0 ± 4.0
[Melnikov, Vainshtein '03]	13.6 ± 2.5
[Jegerlehner '08]	11.4 ± 3.8
[Prades, Vainshtein, de Rafael '08]	10.5 ± 2.6

Cannot be computed from first principles — Error difficult to assess!

Currently ok — future bottleneck

< 同 > < 三 > < 三

QED: ,,,,,

weak: weak:

In units of $[10^{-10}]$, according to [de Rafael '08]

11658471.8(0.1)

vp(LO+NLO)680.8(4.4) lbl 10.5(2.6)

15.2(0.2)

э

11659208.0(6.3)

< 同 > < 三 > < 三 >

Exp:

In spite of ...

many discovered errors

new developments

The case for a real discrepancy gets stronger

SM prediction too low by $\approx (28 \pm 8) \times 10^{-10}$

Why?

Possibilities

- Statistical fluctuation of experimental result
- missing higher-order contributions in SM-prediction
- underestimated theory error
- (computational error)
- physics beyond the SM

Outline

Motivation

- 2 A 3σ deviation has been established
 - History
 - Current status and recent progress

Types of new physics

- SUSY could explain the deviation
 SUSY contributions
- 5 A new, better measurement?
- 6 Conclusions

< 回 > < 三 > < 三

Relation $a_{\mu} - m_{\mu}$

generally:
$$\frac{\delta m_{\mu}(\text{N.P.})}{m_{\mu}} = C \Leftrightarrow \delta a_{\mu}(\text{N.P.}) = \mathcal{O}(C) \left(\frac{m_{\mu}}{M}\right)^2$$

In loops: new heavy particles, coupling to muons \Rightarrow

э

Relation $a_{\mu}-m_{\mu}$

generally:
$$\frac{\delta m_{\mu}(\text{N.P.})}{m_{\mu}} = C \Leftrightarrow \delta a_{\mu}(\text{N.P.}) = \mathcal{O}(C) \left(\frac{m_{\mu}}{M}\right)^2$$

In loops: new heavy particles, coupling to muons \Rightarrow

Therefore, assuming $|\delta m_{\mu}/m_{\mu}| < 1$:

$$\delta a_{\mu} = C \left(rac{m_{\mu}}{M}
ight)^2, \qquad |C| < \mathcal{O}(1) \qquad [Czarnecki, Marciano'01]$$

Classification of new physics

generally:
$$\frac{\delta m_{\mu}(\text{N.P.})}{m_{\mu}} = C \Leftrightarrow \delta a_{\mu}(\text{N.P.}) = \mathcal{O}(C) \left(\frac{m_{\mu}}{M}\right)^2$$

Allows classification of types of new physics:

$$C = O(\frac{\alpha}{4\pi}), \qquad Z', W', \text{ extra dim., } \dots$$

C = O(1), radiative muon mass generation technicolor, ... [Czarnecki,Marciano '01]

$$C = O(\tan \beta \frac{\alpha}{4\pi}),$$
 su

supersymmetry

~

(□) (□)

Classification of new physics

generally:
$$\frac{\delta m_{\mu}(\text{N.P.})}{m_{\mu}} = C \Leftrightarrow \delta a_{\mu}(\text{N.P.}) = \mathcal{O}(C) \left(\frac{m_{\mu}}{M}\right)^2$$

Allows classification of types of new physics:

$$\begin{split} & \mathcal{C} = \mathcal{O}(\frac{\alpha}{4\pi}), & Z', \ W', \ \text{extra dim., ...} \\ & \text{contributions very small!} \quad \delta a_{\mu} \sim 28 \times 10^{-10} \ \text{for M} < 100 \text{GeV} \\ & \mathcal{C} = \mathcal{O}(1), & \text{radiative muon mass generation} \\ & \text{technicolor, ...} \ _{\text{[Czarnecki,Marciano '01]}} \\ & \mathcal{C} = \mathcal{O}(\tan \beta \frac{\alpha}{4\pi}), & \text{supersymmetry} \end{split}$$

supersymmetry

Classification of new physics

generally:
$$\frac{\delta m_{\mu}(\text{N.P.})}{m_{\mu}} = C \Leftrightarrow \delta a_{\mu}(\text{N.P.}) = \mathcal{O}(C) \left(\frac{m_{\mu}}{M}\right)^2$$

Allows classification of types of new physics:

$$C = \mathcal{O}(\frac{\alpha}{4\pi}), \qquad Z', W', \text{ extra dim., } \dots$$

$$\begin{split} \mathcal{C} &= \mathcal{O}(1), & \text{radiative muon mass generation} \\ \text{technicolor, } \dots \text{ }_{\text{[Czarnecki,Marciano '01]}} \\ \text{contributions large!} & \delta a_{\mu} \sim 28 \times 10^{-10} \text{ for M>1TeV} \\ \mathcal{C} &= \mathcal{O}(\tan\beta\frac{\alpha}{4\pi}), & \text{supersymmetry} \end{split}$$

Classification of new physics

generally:
$$\frac{\delta m_{\mu}(\text{N.P.})}{m_{\mu}} = C \Leftrightarrow \delta a_{\mu}(\text{N.P.}) = \mathcal{O}(C) \left(\frac{m_{\mu}}{M}\right)^2$$

Allows classification of types of new physics:

$$C = \mathcal{O}(\frac{\alpha}{4\pi}), \qquad Z', W', \text{ extra dim., } \dots$$

C = O(1), radiative muon mass generation technicolor, ... [Czarnecki,Marciano '01]

 $C = O(\tan eta rac{lpha}{4\pi}),$ supersymmetry fits well! $\delta a_{\mu} \sim 28 imes 10^{-10}$ for M \sim 300GeV, tan $eta \sim 10$

~

< 同 > < 三 > < 三 >

- Different types of new physics can lead to very different contributions to a_µ
- *a*_µ is highly useful to discriminate between these different types of new physics

Outline

Motivation

- 2 A 3σ deviation has been established
 - History
 - Current status and recent progress

Types of new physics

SUSY could explain the deviation
 SUSY contributions

- 5 A new, better measurement?
- 6 Conclusions

< 回 > < 三 > < 三

SUSY and the MSSM

free parameters: \tilde{p} masses and mixings, μ and tan β ٩

э.

g-2 in the MSSM

Key to understand g - 2 in SUSY:

g - 2 = chirality-flipping interaction

$$ar{u}_{R}(
ho')rac{\sigma_{\mu
u}q^{
u}}{2m_{\mu}}u_{L}(
ho)+(L\leftrightarrow R)$$

in each Feynman diagram we need to pick up one chirality flip

$$\mu_L
ightarrow \mu_R$$
 or $\tilde{\mu}_L
ightarrow \tilde{\mu}_R$

In SM or MSSM: chirality flips governed by λ_{μ} , $m_{\mu} = \lambda_{\mu} \langle H_1 \rangle$

-

g-2 in the MSSM

In MSSM: second Higgs doublet H₂ important

$$\tan \beta = \frac{\langle H_2 \rangle}{\langle H_1 \rangle}, \qquad \mu = H_2 - H_1$$
 transition

some terms

some terms

 $\propto \lambda_{\mu} \, \mu \langle \mathcal{H}_{2} \rangle = m_{\mu} \, \mu \, \tan \beta \qquad \rightarrow a_{\mu}^{\text{SUSY}} \propto \tan \beta \, \text{sign}(\mu) \, \frac{m_{\mu}^{2}}{M_{\text{SUSY}}^{2}}$

potential enhancement $\propto \tan \beta = 1 \dots 50$ (and $\propto \text{sign}(\mu)$)
g-2 in the MSSM

In MSSM: second Higgs doublet H₂ important

$$\tan \beta = \frac{\langle H_2 \rangle}{\langle H_1 \rangle}, \qquad \mu = H_2 - H_1$$
 transition

some terms

$$\propto \lambda_\mu \langle {\cal H}_1
angle = m_\mu ~~~
ightarrow a_\mu^{
m SUSY} \propto rac{m_\mu^2}{M_{
m SUSY}^2}$$

some terms

 $\propto \lambda_{\mu} \,\mu \langle H_2 \rangle = m_{\mu} \,\mu \,\tan\beta \qquad \rightarrow a_{\mu}^{\text{SUSY}} \propto \tan\beta \,\text{sign}(\mu) \,\frac{m_{\mu}^2}{M_{\text{SUSY}}^2}$

potential enhancement $\propto \tan \beta = 1 \dots 50$ (and $\propto \text{sign}(\mu)$)

э.

1-Loop result if μ , $m_{\tilde{\mu}}$, $m_{\tilde{\chi}} \approx M_{\mathrm{SUSY}}$

$$a_{\mu}^{\text{SUSY}} \approx \frac{\alpha}{\pi 8 s_W^2} \tan \beta \operatorname{sign}(\mu) \frac{m_{\mu}^2}{M_{\text{SUSY}}^2}$$

numerically

$$a_{\mu}^{\text{SUSY}} \approx 12 \times 10^{-10} \tan \beta \, \text{sign}(\mu) \left(\frac{100 \text{GeV}}{M_{\text{SUSY}}}\right)^2$$

•
$$\propto \tan\beta \operatorname{sign}(\mu)$$

 $\odot \propto 1/M_{\rm SUSY}^2,$ but complicated dependence on individual masses

< ロ > < 同 > < 回 > < 回 > < □ > <

э.

1-Loop result if μ , $m_{\tilde{\mu}}$, $m_{\tilde{\chi}} \approx M_{\mathrm{SUSY}}$

$$a_{\mu}^{\rm SUSY} \approx rac{lpha}{\pi \ 8 s_W^2} \tan eta \ {
m sign}(\mu) \ rac{m_{\mu}^2}{M_{
m SUSY}^2}$$

numerically

$$a_{\mu}^{\text{SUSY}} \approx 12 \times 10^{-10} \tan \beta \, \text{sign}(\mu) \left(\frac{100 \text{GeV}}{M_{\text{SUSY}}}\right)^2$$

e.g. $a_{\mu}^{\rm SUSY} = 24 \times 10^{-10}$ for

$$\begin{array}{ll} \tan\beta=2, & M_{\rm SUSY}=100~{\rm GeV}\\ \tan\beta=50, & M_{\rm SUSY}=500~{\rm GeV} \end{array} (\mu>0) \end{array}$$

 \Rightarrow SUSY could easily be the origin of the observed deviation!

1-Loop result if μ , $m_{\tilde{\mu}}$, $m_{\tilde{\chi}} \approx M_{\mathrm{SUSY}}$

$$a_{\mu}^{\rm SUSY} \approx rac{lpha}{\pi \ 8 s_W^2} \tan eta \ {
m sign}(\mu) \ rac{m_{\mu}^2}{M_{
m SUSY}^2}$$

numerically

$$a_{\mu}^{\text{SUSY}} \approx 12 \times 10^{-10} \tan \beta \, \text{sign}(\mu) \left(\frac{100 \text{GeV}}{M_{\text{SUSY}}}\right)^2$$

e.g. $a_{\mu}^{\rm SUSY} = -96 \times 10^{-10}$ for

 $\tan \beta = 50$, $M_{\rm SUSY} = 250~{
m GeV}$ ($\mu < 0$)

 \Rightarrow such parameter points are ruled out by $a_{\mu}!$

Dominik Stöckinger

Magnetic moment $(g - 2)_{\mu}$ — evidence for new physics?

э.

Answers:

SUSY could be the origin of the observed $(28 \pm 8) \times 10^{-10}$ deviation!

 a_{μ} significantly restricts the SUSY parameters

 \rightarrow generically, positive μ , large tan β /small $M_{\rm SUSY}$ preferred

Precise analysis justified!

SUSY prediction

- 1-loop and most 2-loop contributions known
- remaining theory uncertainty of SUSY prediction: [DS '06]

$$\delta a_{\mu}^{
m SUSY} pprox 3 imes 10^{-10}$$

while

$$\delta a_{\mu}^{\mathrm{exp-SM}} pprox \mathbf{8} imes \mathbf{10}^{-10}$$

In view of future SM/exp improvements:

Long-term programme: full 2-loop MSSM prediction

Status of SUSY prediction

1-Loop

 $\propto \tan \beta$

[Fayet '80],... [Kosower et al '83],[Yuan et al '84],... [Lopez et al '94],[Moroi '96]

complete

2-Loop (SUSY 1L) e.g. $\propto \log \frac{M_{\rm SUSY}}{m_{\rm H}}$

[Degrassi, Giudice '98]

leading log

2-Loop (SM 1L)

e.g. $\propto \tan\beta \mu m_t$

[Chen,Geng'01][Arhib,Baek '02] [Heinemeyer, DS, Weiglein '03] [Heinemeyer, DS, Weiglein '04]

complete

э

Magnetic moment $(g - 2)_{\mu}$ — evidence for new physics?

Status of SUSY prediction

1-Loop

 $\propto \tan \beta$

[Fayet '80],... [Kosower et al '83],[Yuan et al '84],... [Lopez et al '94],[Moroi '96]

complete

2-Loop (SUSY 1L) e.g. $\propto \log \frac{M_{\rm SUSY}}{m_{\rm H}}$

[Degrassi, Giudice '98]

leading log

Aim: full computation!

2-Loop (SM 1L)

e.g. $\propto \tan\beta \mu m_t$

[Chen,Geng'01][Arhib,Baek '02] [Heinemeyer, DS, Weiglein '03] [Heinemeyer, DS, Weiglein '04]

complete

э

Dominik Stöckinger

Magnetic moment $(g - 2)_{\mu}$ — evidence for new physics?

New results

2-Loop (SUSY 1L)

Magnetic moment $(g - 2)_{\mu}$ — evidence for new physics?

э

SUSY contributions

First step: $(\tan \beta)^2$ enhanced corrections

- So far, all leading corrections $\propto \tan \beta$
- Even all other genuine two-loop diagrams $\propto \tan \beta$
- However, one two-loop contribution $(\tan \beta)^2$

・ 同 ト ・ ヨ ト ・ ヨ

SUSY could explain the deviation S

SUSY contributions

First step: $(\tan \beta)^2$ enhanced corrections

 $\pmb{a}_{\mu}^{
m SUSY} \propto$ chirality flip $\propto \lambda_{\mu}$

However, one-loop coupling to "wrong" Higgs doublet induces shift

$$\lambda_{\mu}
ightarrow rac{\lambda_{\mu}}{1 + \Delta_{\mu}}$$
 or $\delta m_{\mu}^{
m OS} = rac{m_{\mu}}{1 + \Delta_{\mu}} + \dots$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

First step: $(\tan \beta)^2$ enhanced corrections

 $\pmb{a}_{\mu}^{
m SUSY} \propto$ chirality flip $\propto \lambda_{\mu}$

However, one-loop coupling to "wrong" Higgs doublet induces shift

 a_{μ}^{SUSY}

$$\lambda_{\mu}
ightarrow rac{\lambda_{\mu}}{1 + \Delta_{\mu}}$$
 or $\delta m_{\mu}^{
m OS} = rac{m_{\mu}}{1 + \Delta_{\mu}} + \dots$

 $ightarrow rac{a_{\mu}^{
m SUSY}}{1+\Delta_{\mu}}$

Corresponding 2-loop shift in a_{μ}^{SUSY}

[Marchetti, Mertens, Nierste, DS '08]

Dominik Stöckinger

Magnetic moment $(g - 2)_{\mu}$ — evidence for new physics?

First step: $(\tan \beta)^2$ enhanced corrections

Numerical value:

$$\Delta_{\mu}(M_{\rm SUSY}) \approx -0.0018 \, \tan \beta \, {\rm sign}(\mu)$$

for large tan β : $\mathcal{O}(10\%)$ increase of $a_{\mu} \Rightarrow$ largest two-loop effect

< 回 > < 三 > < 三

SUSY contributions

First step: $(\tan \beta)^2$ enhanced corrections

Leading two-loop corrections:

$$\boldsymbol{a}_{\mu}^{\mathrm{SUSY}} = \boldsymbol{a}_{\mu}^{\mathrm{SUSY,IL}} \left(1 - \frac{4\alpha}{\pi} \log \frac{M_{\mathrm{SUSY}}}{m_{\mu}} \right) \left(\frac{1}{1 + \Delta_{\mu}} \right)$$

• $(\tan \beta)^2$: +1...+15%

[Degrassi, Giudice '98]

[Marchetti, Mertens, Nierste, DS '08]

→ B → < B</p>

Dominik Stöckinger

Second step: photon loops

All SUSY 1-loop diagrams with additional photon loop

- leading log: -7... 9% [Degrassi, Giudice '98]
- full result: subleading logs, $\log(m_{\chi}/m_{\tilde{\nu}_{\mu}})$, non-log terms
- additional terms O(1%)
- full result more precise

[v. Weitershausen, Schäfer, Stöckinger-Kim, DS '09]

A (10) > A (10) > A (10)

SUSY contributions

Third step: f/\tilde{f} -loops

All SUSY 1-loop diagrams with additional f/\tilde{f} -loop (3rd generation)

- finite, gauge invariant class of contributions
- enhanced by top/bottom Yukawa coupling
- partial results

[Schäfer, Stöckinger-Kim, v. Weitershausen, DS '09]

typically O(1%)

Outline

Motivation

- A 3σ deviation has been established
 History
 - Current status and recent progress

3 Types of new physics

- SUSY could explain the deviation
 SUSY contributions
- 5 A new, better measurement?

6 Conclusions

・ 同 ト ・ ヨ ト ・ ヨ

- We do not only need the LHC
- We do not only need the ILC
- We also need a better a_{μ} measurement!

- new experiment proposed and feasible (Brookhaven, FNAL, ???)
- improved SM evaluation possible
- projected accuracy: $a_{\mu}(\text{Exp-SM}) = 29.5(3.9 \text{ or } 3.4) \times 10^{-10}$

[Hertzog, Miller, de Rafael, Roberts, DS '07]

Would be of tremendous importance as a complement of LHC

[Glasgow g-2 workshop 2007] [Frascati PhiPsi workshop 2008]

- Constrain SUSY
- Superconservative bounds
- Selection criterion (SPS)
- Selection criterion (N.P.)
- $\tan \beta$ measurement

- new experiment proposed and feasible (Brookhaven, FNAL, ???)
- improved SM evaluation possible
- projected accuracy: $a_{\mu}(\text{Exp-SM}) = 29.5(3.9 \text{ or } 3.4) \times 10^{-10}$

[Hertzog, Miller, de Rafael, Roberts, DS '07]

Would be of tremendous importance as a complement of LHC

- (Glasgow g-2 workshop 2007) [Frascati PhiPsi workshop 2008] ion (SPS) ion (N.P.) ment
 - $[DS '06] \Rightarrow$ constrains general MSSM

300 400 500 MicselGeVI

Constrain SUSY

- Superconservative bounds
- Selection criterion (SPS)
- Selection criterion (N.P.)
- $\tan \beta$ measurement

- new experiment proposed and feasible (Brookhaven, FNAL, ???)
- improved SM evaluation possible
- projected accuracy: $a_{\mu}(\text{Exp-SM}) = 29.5(3.9 \text{ or } 3.4) \times 10^{-10}$

[Hertzog, Miller, de Rafael, Roberts, DS '07]

Would be of tremendous importance as a complement of LHC

[Glasgow g-2 workshop 2007] [Frascati PhiPsi workshop 2008]

Constrain SUSY

- Superconservative bounds
- Selection criterion (SPS)
- Selection criterion (N.P.)
- $\tan \beta$ measurement

[Olive '09] \Rightarrow orthogonal constraints on CMSSM parameters

- new experiment proposed and feasible (Brookhaven, FNAL, ???)
- improved SM evaluation possible
- projected accuracy: $a_{\mu}(\text{Exp-SM}) = 29.5(3.9 \text{ or } 3.4) \times 10^{-10}$

[Hertzog, Miller, de Rafael, Roberts, DS '07]

Would be of tremendous importance as a complement of LHC

[Glasgow g-2 workshop 2007]

[Frascati PhiPsi workshop 2008]

- Constrain SUSY
- Superconservative bounds
- Selection criterion (SPS)
- Selection criterion (N.P.)
- $\tan \beta$ measurement

[Martin, Wells '02] \Rightarrow region under the curves is excluded by a_{μ}

and nothing else

Dominik Stöckinger

 $(q-2)_{\mu} - evidence for new physics?$

- new experiment proposed and feasible (Brookhaven, FNAL, ???)
- improved SM evaluation possible
- projected accuracy: $a_{\mu}(\text{Exp-SM}) = 29.5(3.9 \text{ or } 3.4) \times 10^{-10}$

[Hertzog, Miller, de Rafael, Roberts, DS '07]

Would be of tremendous importance as a complement of LHC

[Glasgow g-2 workshop 2007] [Frascati PhiPsi workshop 2008]

- Constrain SUSY
- Superconservative bounds
- Selection criterion (SPS)
- Selection criterion (N.P.)
- $\tan \beta$ measurement

 $[\text{Hertzog, DS '08}] \Rightarrow \text{selects SPS "model"}$

- new experiment proposed and feasible (Brookhaven, FNAL, ???)
- improved SM evaluation possible
- projected accuracy: $a_{\mu}(\text{Exp-SM}) = 29.5(3.9 \text{ or } 3.4) \times 10^{-10}$

[Hertzog, Miller, de Rafael, Roberts, DS '07]

Would be of tremendous importance as a complement of LHC

[Glasgow g-2 workshop 2007]

[Frascati PhiPsi workshop 2008]

Czarnecki/Marciano:

[Ross '07]

- Constrain SUSY
- Superconservative bounds
- Selection criterion (SPS)
- Selection criterion (N.P.)
- $\tan \beta$ measurement

$$\frac{\delta m_{\mu}^{\mathrm{N.P.}}}{m_{\mu}} = \mathcal{C} \; \Rightarrow \; \delta a_{\mu}^{\mathrm{N.P.}} \approx \mathcal{C} \left(\frac{m_{\mu}}{M}\right)^2$$

strong dependence on type of N.P.:

$$C = \mathcal{O}(rac{lpha}{4\pi}, \ \mathbf{1}, \ aneta rac{lpha}{4\pi})$$

- new experiment proposed and feasible (Brookhaven, FNAL, ???)
- improved SM evaluation possible
- projected accuracy: $a_{\mu}(\text{Exp-SM}) = 29.5(3.9 \text{ or } 3.4) \times 10^{-10}$

[Hertzog, Miller, de Rafael, Roberts, DS '07]

Would be of tremendous importance as a complement of LHC

[Glasgow g-2 workshop 2007]

[Frascati PhiPsi workshop 2008]

- Constrain SUSY
- Superconservative bounds
- Selection criterion (SPS)
- Selection criterion (N.P.)
- $\tan \beta$ measurement

[Hertzog, Miller, de Rafael, Roberts, DS '07]

[Sfitter, M.Rauch '08]

Outline

Motivation

- A 3σ deviation has been established
 History
 - Current status and recent progress

3 Types of new physics

- SUSY could explain the deviation
 SUSY contributions
- 5 A new, better measurement?

6 Conclusions

・ 同 ト ・ ヨ ト ・ ヨ

Conclusions

• Experiment finalized, SM prediction has recently improved (and will further improve!)

$$a_{\mu}^{
m exp} - a_{\mu}^{
m SM} = (28\pm8) imes10^{-10} ~~~$$
3.4 σ

- Case for new physics below the TeV scale gets stronger!
- SUSY with low mass scale $\sim 200 \dots 600~GeV$ fits very well and large parameter regions already excluded
- Future, more precise measurement very important in the quest to understand TeV-scale new physics no matter what the result!