Deutsches Elektronen-Synchrotron Zeuthen (September 30th, 2010)

LASER-PLASMA ACCELERATION **A SENSIBLE TECHNOLOGY FOR ACTUAL APPLICATIONS?**

Gruppe für Plasmabeschleunigung Universität Hamburg

Contributions

A. J. Gonsalves, K. Nakamura, S. Shiraishi, T. Sokollik, J. van Tillborg, Cs. Tóth, C. B. Schroeder, E. Esarey, and W. P. Leemans

Lawrence Berkeley National Laboratory Berkeley, United States

M. Fuchs, R. Weingartner, D. Habs, and F. Grüner Ludwig-Maximilians-Universität München Germany

in collaboration with

L. O. Silva Instituto Superior Técnico Lisbon, Portugal

S. M. Hooker University of Oxford United Kingdom

A. Popp, Zs. Major, F. Krausz, and S. Karsch Max-Planck-Institut für Quantenoptik Garching, Germany

U. Schramm Forschungszentrum Dresden Rossendorf Germany

Plasma accelerators allow for extreme electric fields

Volume 43, Number 4

PHYSICAL REVIEW LETTERS

Laser Electron Accelerator

T. Tajima and J. M. Dawson Department of Physics, University of California, Los Angeles, California 90024 (Received 9 March 1979)

An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density 10^{18} W/cm² shone on plasmas of densities 10^{18} cm⁻³ can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulsers are examined.

40 TW laser pulse $(3 \times 10^{18} \text{ W/cm}^2)$ inside plasma with $n_e = 4.3 \times 10^{18} \text{ cm}^{-3}$

 \rightarrow 30 pC of electrons at I GeV

accelerated over a distance < 3 cm (with > 33 GV/m fields)

23 July 1979

Leemans et al., Nature Physics 2, 696 (2006)

Lasers provide sub-femtosecond synchronization

Target

e.g. for 4D imaging of electronic motion in atoms, molecules and solids

Laser-plasma accelerator basics

Wake excitation

Electron injection

High-intensity lasers can drive large plasma wakes

Background plasma

Laser pulse properties

a = 2 $\lambda_c = 800 \text{ nm}$ $\Delta \tau = 25 \text{ fs FWHM}$ $w_0 = 23 \ \mu m FWHM$

Plasma background density $n_p \le 5 \times 10^{18} \text{ cm}^{-3}$

Laser pulse propagates into a plasma-density ramp, wake forms

Laser pulse

Electron-depleted cavity

3D particle-in-cell (PIC) simulation

High-intensity lasers can drive large plasma wakes

High-intensity lasers can drive large plasma wakes

Accelerating electric field strength:

more than 10³ times larger than in conventional RF accelerators

$$-\frac{1}{1+a^2/2} \approx (96 \text{V/m}) \sqrt{n_0 [\text{cm}^{-3}]} \frac{a^2}{(1+a^2/2)}$$

 $E \approx 100 \text{ GV/m}$ (for $n \approx 10^{18} \text{ cm}^{-3}, a \approx 1$)

Plasma wakes may break and electrons get trapped

Laser pulse properties

a = 2 $\lambda_c = 800 \text{ nm}$ $\Delta \tau = 25 \text{ fs FWHM}$ $w_0 = 23 \ \mu \text{m FWHM}$

Plasma background density $n_p \le 5 \times 10^{18} \text{ cm}^{-3}$

Laser pulse propagates into a plasma-density ramp, electrons get trapped

Plasma wakes may break and electrons get trapped

Injection controls charge, energy spread, emittance

Self-injection (or wave-breaking): hard to control, stability issues → undesirable

<u>Controlled injection:</u> control over accelerated charge, bunch energy spread, and emittance, less fluctuations

Methods for controlled injection:

- Density down-ramp injection [Bulanov et al., Phys. Rev. E 58, R5257 (1998); Geddes et al., Phys. Rev. Lett. 100, 215004 (2008)]
- Laser-triggered injection
 [Esarey et al., Phys. Rev. Lett. 79, 2682 (1997);
 Faure et al., Nature 444, 737 (2006)]
- Ionization injection

[Umstadter et al., Phys. Rev. Lett. 76, 2073 (1996); Pak et al., Phys. Rev. Lett. 104, 025003 (2010)]

• External beam injection

[Dewa et al., Nucl. Instrum. & Methods Phys. Res. A 410, 357 (1998); Dorchies et al., Phys. Plasmas 6 2903 (1999)]

In principle, triggered injection into a plasma wave could achieve beam quality (low emittance) beyond state-of-the-art photocathodes (due to space-charge shielding provided by ions, rapid acceleration)

Bunch durations from LPAs are inherently short

Laser-plasma based accelerators are intrinsic sources of femtosecond electron beams

Full width electron bunch duration is a fraction of the plasma wavelength:

e.g. $\Delta T_e \ll 50$ fs (for $n \approx 5 \times 10^{18} \text{ cm}^{-3}, a \approx 1$) High peak currents

$$\Delta au_e \ll rac{\lambda_p}{c}$$

→
$$I \gtrsim 10 \text{ kA} \text{ (for } Q \approx 100 \text{ pC)}$$

→ Drive high peak brightness photon sources

Generation of soft-X-rays from an LPA driven undulator

Generation of soft-X-rays from an LPA driven undulator

Fuchs et al., Nature Physics 5, 826 (2009)

$$\lambda = \frac{\lambda_u}{2n\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \Theta^2 \right)$$

Quadrupole magnets act as electron energy filter

Fuchs et al., Nature Physics 5, 826 (2009)

~I pC of charge in effective electron spectrum

 $\sim 10^5$ photons per shot

Estimated peak brillance 1.3×10¹⁷ (s mrad² mm² 0.1% BW)⁻¹

> First small step towards a table-top FEL [cf. Grüner *et al.*, Appl. Phys. B 86, 431 (2007)]

Phase-space characterization of LPA beams needed

Many properties of electrons beams from laser-wakefield accelerators have only been insufficiently characterized:

- Pulse duration upper limit 50 fs RMS with electrooptic sampling [van Tilborg, Leemans et al., Phys. Rev. Lett. 96, 014801 (2006)]
- Slice energy spread inferred from PIC simulations
- Longitudinal and transverse beam density modulations (e.g. at λ / 2) inferred from PIC simulations
- Transverse beam emittance and source size inferred from PIC simulations, old pepper pot measurements [Fritzler et al., Phys. Rev. Lett. 92, 165006 (2004)]

Phase-space characterization of LPA beams needed

Many properties of electrons beams from laser-wakefield accelerators have only been insufficiently characterized:

- Pulse duration upper limit 50 fs RMS with electrooptic sampling [van Tilborg, Leemans et al., Phys. Rev. Lett. 96, 014801 (2006)]
- Slice energy spread inferred from PIC simulations
- Longitudinal and transverse beam density modulations (e.g. at λ / 2) inferred from PIC simulations
- Transverse beam emittance and source size inferred from PIC simulations, old pepper pot measurements [Fritzler et al., Phys. Rev. Lett. 92, 165006 (2004)]

DESY know how would help to analyze LPA beams more thoroughly:

(C)OTR, IR/THz spectrometry, transverse deflection cavities, characterization of XUV/x-ray emission from undulators, characterization of betatron emission

Also important: beam position measurements (BPMs), transport and imaging (magnetic beam transport systems)

I. Laser diffraction: mitigated by transverse plasma density tailoring (plasma channel)

Capillary discharge plasma waveguides

- Plasma fully ionized for t > 50 ns
- After t ~ 80 ns plasma is in quasiequilibrium: Ohmic heating is balanced by conduction of heat to wall
- Ablation rate small: cap. lasts for >10⁶ shots
- $n_p \approx 10^{17} 10^{19} \text{ cm}^{-3}$

I. Laser diffraction: mitigated by transverse plasma density tailoring (plasma channel)

•
$$n_p \approx 10^{17} - 10^{19} \text{ cm}^{-3}$$

2. Electron-laser dephasing: mitigated by longitudinal plasma density tailoring (plasma taper)

Constant density plasma

Laser pulse, plasma wave travel with $v_{wave} \approx v_g < c$ Electrons travel with $v_{wave} < v_e \leq c$

 \Rightarrow they outrun the accelerating field structure

 $\frac{Rising\ density\ plasma}{Plasma\ wave\ phase\ velocity\ v_{wave}\ may\ be\ set\ to\ v_e}$

⇒ electrons can be phase locked
[Rittershofer, Grüner et al., submitted]

3. Laser depletion: energy loss into plasma wave excitation

<u>Staging necessary for</u> <u>higher electron energies</u>

Constructing a TeV-class LPA-based linear collider

Requires extensive development of laser technology

- High repetition rate (10's of kHz)
- High average power (100's of kW to MW)
- Improved laser-wallplug efficiency (10%)

Design based on

- 10 GeV LPA modules at $n_e \approx 10^{17}$ cm⁻³ BErkeley Lab Laser Accelerator (BELLA)
- quasi-linear wake: e- and e+, wake control
- staging and coupling modules

W. P. Leemans and E. Esarey, Physics Today (March 2009)

Accelerator length is determined by staging technology

Development of compact staging technology critical to collider application

Plasma mirrors allow for compact staging modules

Conventional optics approach - stage length determined by damage threshold of final laser optic

<u>Plasma optics approach - minimizing stage length relies on destruction of final laser mirror</u>

High laser intensity (10¹⁶ W/cm²) generates a smooth, critical density plasma surface \rightarrow minimizes L_c \approx 0.005 to 0.100 m

Crucial points:

- Renewable mirror surface required
- High demands on temporal laser contrast

Efficiency requirements demand laser development

Efficiency requirements demand laser development

rently beyond state-of-the-art laser technology! Wallplug efficiency of modern 100 TW-scale Ti:sapphire lasers < 1%

However:

Fiber technology and diode pumping might significantly improve laser efficiencies in the future Optical parametric amplification could allow for high average output power (cf. ELI kHz rep. rate, PW frontend)

Efficiency requirements demand laser development

rently beyond state-of-the-art laser technology! Wallplug efficiency of modern 100 TW-scale Ti:sapphire lasers < 1%

However:

Fiber technology and diode pumping might significantly improve laser efficiencies in the future Optical parametric amplification could allow for high average output power (cf. ELI kHz rep. rate, PW frontend)

User facilities require beam parameter stability

Laser-plasma accelerators have suffered from low shot-to-shot reproducibility

Ways to improve electron beam stability

- Minimizing variations in laser and plasma parameters see Osterhoff et al., Phys. Rev. Lett. 101, 085002 (2008)
- Improved control over crucial laser parameters e.g., pulse-front tilt (Popp et al., accepted for publication in Phys. Rev. Lett.), laser pointing (Gonsalves et al., Phys. Plasmas 17, 056706 (2010))
- Employing laser pulses matched to plasma conditions
- Driving acceleration process in the quasi-linear regime, no dark currents
- Separating injection & acceleration stages, controlling injection, no wavebreaking

$$au_L pprox rac{\lambda_p}{2c}$$

 $a \approx 1$

A steady-state-flow gas cell stabilizes plasma conditions

FLUENT simulation

A steady-state-flow gas cell stabilizes plasma conditions

Acceleration results	Gas cell
Peak energies	220 MeV
Energy fluctuations	± 2.5 %
Energy spread	> 2 % RMS
Peak charge	~ 10 pC
Charge fluctuations	±16 %
Divergence	0.9 mrad RMS
Pointing stability	I.4 mrad RMS
Injection	~ 100 %

Osterhoff et al., Phys. Rev. Lett. 101, 085002 (2008)

Shots

Eliminating laser intensity-front tilt increases stability

Popp et al., accepted for publication in Phys. Rev. Lett.

- Intensity or pulse-front tilt usually originates from laser angular chirp (AC) caused by an imperfect stretcher/compressor alignment • hard to diagnose
- small amounts of AC have large effect on the stability of LPAs

→ Way to tailor betatron radiation photon source?
 → useful for beam cooling?

Summary

Laser-plasma accelerator technology has advanced quickly in recent years <u>Milestone experiments</u>: quasi-monoenergetic beams, plasma guiding and GeV electron energies, controlled injection, stability enhancements, soft-X-ray undulator radiation

Lots of research still to be done for compact photon source or collider user facility <u>Milestone experiments needed</u>: emittance measurements, slice energy spread characterization, FEL, 10 GeV accelerator module, staging, positron capturing, advancements in laser technology (luminosity requirements)

Major fields of work: Staging, efficiency increase, improved stability, beam characterization and optimization

Plasma accelerators may have the potential to revolutionize accelerator technology and could make user facilities much more <u>compact</u>, <u>affordable</u>, and therefore <u>accessible</u>

Thanks for your attention!