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Plasma accelerators allow for extreme electric fields
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Laser Electron Accelerator
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Depavtment of Physics, Univevsity of California, Los Angeles, California 90024
(Received 9 March 1979)

An intense electromagnetic pulse can create a weak of plasma oscillations through the
action of the nonlinear ponderomotive force. Electrons trapped in the wake can be ac-
celerated to high energy. Existing glass lasers of power density 10*®*W/cm* shone on plas-
mas of densities 10'® em™® can yield gigaelectronvolts of electron energy per centimeter
of acceleration distance. This acceleration mechanism is demonstrated through computer
simulation. Applications to accelerators and pulsers are examined.

——————

40 TWV laser pulse (3%x10'8W/cm?)
inside plasma with n,=4.3%10'8 cm-3

— 30 pC of electrons at | GeV

accelerated over a distance < 3 cm 003 0.5 0.175 0.3 0.4 0.6 0.8 1.0

(with > 33 GV/m fields)

Leemans et al., Nature Physics 2, 696 (2006)



Lasers provide sub-femtosecond synchronization
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Laser-plasma accelerator basics
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High-intensity lasers can drive large plasma wakes

Background plasma

Laser pulse
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Laser pulse properties /
a=2

Ac = 800 nm Electron-depleted cavity

AT =25 fs FWHM
wo = 23 um FWHM

Plasma background density
np, < 5%10'8 ¢m-3

Laser pulse propagates into a plasma-density ramp, wake forms
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High-intensity lasers can drive large plasma wakes
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High-intensity lasers can drive large plasma wakes
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Ay o ny 2 (~ 10 um)

Resonant
AT

pulse duration 2¢
Esarey et al., Rev. Mod. Phys. (2009)

Accelerating electric field strength: E ~(
€

mcm a’ ” = a’
) ) v oo mhyrfem’] (i+a12)

E =100 GV/m
(for n=10'® cm-3,a= )

more than 103 times larger than in conventional RF accelerators



Plasma wakes may break and electrons get trapped

Laser pulse properties
a=2
Ac = 800 nm
AT =25 fs FWHM
wo = 23 um FWHM

Plasma background density
np, < 5%10'8 ¢m-3

Laser pulse propagates into a plasma-density ramp, electrons get trapped
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Plasma wakes may break and electrons get trapped

3
Laser pulse properties
a=2
Ac = 800 nm

AT = 25 fs FWHM
wo = 23 pum FWHM

Plasma background density
np < 5x10'8 cm3

Charge Density
Time = 54631 |1/ w,]

X, [C { (.'JDJ

osiris
v2.0

== 10.00

3

Charge Density (e v,/ ']

T

INSTITUTO
SUPERIOR
TECNICO

0.10

R

0.01

570

Laser pulse propagates into a plasma-density ramp, electrons get trapped

-

*

uone|nwis (D|d) [192-ul-3pnJed Q¢



Injection controls charge, energy spread, emittance

Self-injection (or wave-breaking):
hard to control, stability issues
— undesirable

Controlled injection:

control over accelerated charge,
bunch energy spread, and
emittance, less fluctuations

Methods for controlled injection:

* Density down-ramp injection
[Bulanov et al., Phys. Rev. E 58, R5257 (1998);
Geddes et al., Phys. Rev. Lett. 100,215004 (2008)]

* Laser-triggered injection
[Esarey et al., Phys. Rev. Lett. 79, 2682 (1997);
Faure et al., Nature 444, 737 (2006)]

* lonization injection
[Umstadter et al.,, Phys. Rev. Lett. 76,2073 (1996);
Pak et al., Phys. Rev. Lett. 104, 025003 (2010)]

* External beam injection
[Dewa et al., Nucl. Instrum. & Methods Phys. Res.
A 410,357 (1998); Dorchies et al., Phys. Plasmas 6
2903 (1999)]
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In principle, triggered injection into a plasma wave could achieve beam
quality (low emittance) beyond state-of-the-art photocathodes
(due to space-charge shielding provided by ions, rapid acceleration)




Bunch durations from LPAs are inherently short

Ay o ny 2 (~ 10 um)

A

Resonant
pulse duration

Esarey et al., Rev. Mod. Phys. (2009)

Laser-plasma based accelerators are intrinsic sources of femtosecond electron beams

Full width electron bunch duration is a fraction of the plasma wavelength: A7, < A—Cp

e.g. AT « 50 fs High peak currents o

— Drive high peak brightness photon sources



Generation of soft-X-rays from an LPA driven undulator

Observation angle (mrad)

30 10 0
Wavelength (nm)
* ~| pC of charge in effective
electron spectrum

* ~10° photons per shot

* Estimated peak brillance
1.3%x10!7 (s mrad? mm? 0.1% BW)-!
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Fuchs et al., Nature Physics 5, 826 (2009)
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Generation of soft-X-rays from an LPA driven undulator

40

Fuchs et al., Nature Physics 5, 826 (2009)
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Quadrupole magnets act as electron energy filter

Fuchs et al., Nature Physics 5, 826 (2009)
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[cf. Gruner et al,
Appl. Phys. B 86,431 (2007)]
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Phase-space characterization of LPA beams needed

Many properties of electrons beams from laser-wakefield accelerators
have only been insufficiently characterized:

upper limit 50 fs RMS with electrooptic sampling [van Tilborg, Leemans et al., Phys. Rev. Lett. 96,014801 (2006)]

inferred from PIC simulations

. (e.g.at A/ 2)

inferred from PIC simulations

inferred from PIC simulations, old pepper pot measurements [Fritzler et al., Phys. Rev. Lett. 92, 165006 (2004)]



Phase-space characterization of LPA beams needed

Many properties of electrons beams from laser-wakefield accelerators
have only been insufficiently characterized:

upper limit 50 fs RMS with electrooptic sampling [van Tilborg, Leemans et al., Phys. Rev. Lett. 96,014801 (2006)]

inferred from PIC simulations

. (e.g.at A/ 2)

inferred from PIC simulations

inferred from PIC simulations, old pepper pot measurements [Fritzler et al., Phys. Rev. Lett. 92, 165006 (2004)]

DESY know how would help to analyze LPA beams more thoroughly:

(C)OTR, IR/THz spectrometry, transverse deflection cavities,
characterization of XUV/x-ray emission from undulators, characterization of betatron emission

Also important: beam position measurements (BPMs), transport and imaging (magnetic beam transport systems)



Energy gain scalings and single-stage limitations

|. Laser diffraction: mitigated by transverse plasma density tailoring (plasma channel)

Capillary discharge plasma waveguides

* Plasma fully ionized for t > 50 ns

* After t ~ 80 ns plasma is in quasi-
equilibrium: Ohmic heating is balanced by
conduction of heat to wall

* Ablation rate small: cap. lasts for >10°
shots

*n, = 107 -10'" cm3
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Energy gain scalings and single-stage limitations

|. Laser diffraction: mitigated by transverse plasma density tailoring (plasma channel)

Electron density ne (10" cm™?)
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In this example:
Zr = 2 mm, guiding over |6 mm, guiding efficiency > 90 %

Karsch, Osterhoff et al., New ]. Phys. 9,415 (2007)
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Capillary discharge plasma waveguides

* Plasma fully ionized for t > 50 ns

* After t ~ 80 ns plasma is in quasi-
equilibrium: Ohmic heating is balanced by
conduction of heat to wall

* Ablation rate small: cap. lasts for >10°
shots

*n, = 107 -10'" cm3
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Energy gain scalings and single-stage limitations

2. Electron-laser dephasing: mitigated by longitudinal plasma density tailoring (plasma taper)

Constant density plasma

Laser pulse, plasma wave travel with vyae = vz < ¢
Electrons travel with vwaye < Ve = ¢

= they outrun the accelerating field structure

Rising density plasma

Plasma wave phase velocity vwae may be set to ve

[Rittershofer, Gruner et al., submitted]



Energy gain scalings and single-stage limitations

3. Laser depletion: energy loss into plasma wave excitation

Staging necessary for
higher electron energies




Constructing a TeV-class LPA-based linear collider

Design based on

* 10 GeV LPA modules at ne = 10" cm-?
BErkeley Lab Laser Accelerator (BELLA)

* quasi-linear wake: e- and e+, wake control

* staging and coupling modules

Requires extensive development
of laser technology
* High repetition rate
(10’s of kHz)
* High average power
(100’s of kW to MW)

* Improved laser-wallplug efficiency
(10 %)

W.P. Leemans and E. Esarey, Physics Today (March 2009)



Accelerator length is determined by staging technology

Development of compact staging technology critical to collider application



Plasma mirrors allow for compact staging modules

Conventional optics approach - stage length determined by damage threshold of final laser optic

Plasma optics approach - minimizing stage length relies on destruction of final laser mirror

High laser intensity (10'® W/cm?) generates a smooth, critical density plasma surface
— minimizes L. = 0.005 to 0.100 m

Crucial points:
* Renewable mirror surface required
* High demands on temporal laser contrast



Efficiency requirements demand laser development



Efficiency requirements demand laser development

Wallplug efficiency of modern
|00 TW-scale Ti:sapphire lasers < |%

However:

Fiber technology and diode pumping
might significantly improve laser
efficiencies in the future

Optical parametric amplification could
allow for high average output power

(cf. ELI kHz rep. rate, PWV frontend)
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User facilities require beam parameter stability

Laser-plasma accelerators have suffered from low shot-to-shot reproducibility

WVays to improve electron beam stability

* Minimizing variations in laser and plasma parameters
see Osterhoff et al, Phys. Rev. Lett. 101, 085002 (2008)

* Improved control over crucial laser parameters

e.g., pulse-front tilt (Popp et al., accepted for publication in Phys. Rev. Lett.),
laser pointing (Gonsalves et al., Phys. Plasmas |17,056706 (2010))

Ap

» Employing laser pulses matched to plasma conditions "L ~ 5

» Driving acceleration process in the quasi-linear regime, no dark currents ¢~ 1

* Separating injection & acceleration stages, controlling injection, no wavebreaking



A steady-state-flow gas cell stabilizes plasma conditions

Osterhoff et al.,
Phys. Rev. Lett. |01, 085002 (2008)
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A steady-state-flow gas cell stabilizes plasma conditions

Osterhoff et al.,
Phys. Rev. Lett. 101, 085002 (2008)
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Eliminating laser intensity-front tilt increases stability

E' "'a'l i Prob aga;tio;l Hnrectlon - Popp et al., accepted for publication in Phys. Rev. Lett.
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Summary

Laser-plasma accelerator technology has advanced quickly in recent years

Milestone experiments: quasi-monoenergetic beams, plasma guiding and GeV electron energies, controlled
injection, stability enhancements, soft-X-ray undulator radiation

Lots of research still to be done for compact photon source or collider user facility

Milestone experiments needed: emittance measurements, slice energy spread characterization, FEL, |0 GeV
accelerator module, staging, positron capturing, advancements in laser technology (luminosity requirements)

Major fields of work:
Staging, efficiency increase, improved stability, beam characterization and optimization

Plasma accelerators may have the potential to revolutionize accelerator technology
and could make user facilities much more compact, affordable, and therefore accessible
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