

T. Spadaro*, LNF INFN

Wednesday-Seminar in Zeuthen DESY, Germany, 27th January, 2010

*member of the KLOE and NA62 collaborations

Our physics – the landscape

Particle physics seems to be described by a simple and economical theory:

$$L_{SM} = L_{gauge}(A_a, \psi_i) + L_{Higgs}(\phi, A_a, \psi_i)$$

- Natural
- Experimentally tested with high accuracy
- Stable with respect to quantum corrections
- Highly symmetric (gauge and flavor symmetries)

- Necessary to explain data (presence of a non-symmetric vacuum)
- poorly tested in its dynamical form
- Not stable with respect to quantum corrections
- Determine the flavor structure of the model

Our physics – the future goals

Particle physics seems to be described by a simple and economical theory:

 $L_{SM} = L_{gauge}(A_a, \psi_i) + L_{Symmetry Breaking}(\phi?, A_a, \psi_i)$

Key problem addressed by high-P_T LHC experiments:

The dynamical structure of ew symmetry breaking mechanism Is there a Higgs boson? Is it fundamental or composite?

But the "genuine" Higgs mechanism is not stable. Theory prejudices: "the Higgs boson (if any) will not be alone;

A new sector (a) TeV scale might show up, to stabilize the electroweak scale, $\langle \phi \rangle = 246 \text{ GeV}$ " [Isidori, 2009 NA62 Physics workshop]

Key problem addressed by high-precision low-energy experiments: Investigate the symmetry properties of the Higgs sector

Kaon physics – the landscape

Kaon is the lightest strange particle, studied since 60's to test fundamental properties of nature. The SM appears remarkably simple @ $E \sim M_K$:

$$\mathbf{L}_{SM} = \mathbf{L}_{QCD}(\mathbf{m}_{u} = \mathbf{m}_{d}, \mathbf{m}_{s}) + \mathbf{L}_{QED} + \mathbf{L}_{IB}(\mathbf{m}_{u} - \mathbf{m}_{d}) + \mathbf{L}_{ev}$$

•Only 2 parameters in L_{QCD} : m_s and $m_d \sim m_u \sim (m_d + m_u)/2$

•L_{QED} and L_{IB} isospin-breaking: often neglected, but add 3^{rd} parameter

•L_{ew} links to physics @ e.w. scale, breaks many symmetries: P, CP, flavor

 Kaons special role

 weak decays
 theoretical cleanness
 short distance FCNC with the strongest SM suppression
 limited number of decay modes

Kaons reach the highest sensitivities to CPT violation, QM tests and are competitive with B decays to test new physics in LFV or CPV transitions

First achievements: CPV

K⁰'s produced are stable for decay via QCD, K⁰-K⁰ oscillation determined by 2nd order weak transitions (box diagrams)

 $\left|K_{S,L}\right\rangle \varpropto \left(1{+}\epsilon_{S,L}\right)\left|K^{0}\right\rangle {+} \left(1{-}\epsilon_{S,L}\right)\left|\overline{K}^{0}\right\rangle$

CPT demands $\delta = \varepsilon_{\rm S} - \varepsilon_{\rm L} = 0$

CP implies $K_{S,L}$ have definite CP, so $\varepsilon = 0$

first CP violation effects first revealed from K decays to $\pi\pi$ (1964)

it is a tiny effect: $|\varepsilon| = (2.221 \pm 0.006) \times 10^{-3}$

Mixing studied with precision (in the past decade, data dominated by CPLEAR experiment)

Evidence of T violation in time evolution of strangeness-tagged kaon decays

Direct CPV: the ε'/ε saga

For deeper insight into CPV compare $K_{L,S} \rightarrow \pi\pi$ decay widths @ level of 10^{-4}

A new class of high-sensitivity experiments (NA31→NA48, E731→ KTeV)

kaons produced by proton interaction on fixed Be target

unprecedented fluxes, to collect >10⁶ K_L $\rightarrow \pi^0 \pi^0$

guarantee thorough control of systematics by careful setup design

The NA48 experiment

Enriched K_s beam: bend fraction of p beam via channelling crystal

Simultaneous K_I/"K_S" beams: assure K_{s} - K_{L} overlap in FV

Alternate analyzing magnet polarities during data taking

Magnetic spectrometer:

 $\sigma_{\rm p}/{\rm p} = 1.02\% \oplus 0.044\% \ {\rm p} \ [{\rm GeV}]$

Electromagnetic calorimeter (LKr):

 $\sigma_{\rm F}/{\rm E} < 3.2\% / \sqrt{{\rm E}[{\rm GeV}] \oplus 9\%} / {\rm E}[{\rm GeV}] \oplus 0.42\%$

 $\sigma_{x,v}[mm] = 0.42 / \sqrt{E[GeV]} \oplus 0.6$

The KTeV experiment

Final results for ε'/ε

Effort of ~ 20 years, ended only recently:

KTeV 2007: $R(\epsilon'/\epsilon) = (19.2 \pm 1.1_{stat} \pm 1.8_{syst})10^{-4}$

[KTeV 2003: $R(\epsilon'/\epsilon) = (20.7 \pm 1.5_{stat} \pm 2.4_{syst})10^{-4}, 50\%$ of data]

World average: $R(\epsilon'/\epsilon) = (16.8 \pm 1.4)10^{-4}$, with a 13% CL

ε'/ε as a test for new physics?

So called "superweak" theories predicting $\epsilon'/\epsilon = 0$ are ruled out

An accurate SM prediction of direct CPV in $\pi\pi$ decays is still missing:

$$\mathcal{H}^{(\Delta S=1)} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \left\{ \sum_{i=1}^{10} \left[z_i(\mu) - \frac{V_{td}}{V_{ts}^*} \frac{V_{us}^*}{V_{ud}} y_i(\mu) \right] Q_i \right\}$$

yes, easily related to CKM elements, $Re(\epsilon'/\epsilon) \propto Im(V_{td}V_{ts}^*)$

obtain Wilson coefficients (z_i, y_i) as a function of CKM elements, of the masses of heavy degrees, of the gauge couplings

but, difficult to precisely evaluate K-- $\pi\pi \Delta S=1$ hadronic elements @ low energy: use non perturbative QCD for the Q_i's, but a dangerous cancellation occurs: e.m. \Leftrightarrow QCD penguins

A future task for lattice, RBC/UKQCD collaborations are working

"20% result within 3 years for ε'/ε and $\Delta I=1/2$ rule!" [N. Christ (RBC), KAON2009]

If so, it will provide stringent CKM test and will probe for new physics (see later on)

CPV comparing K and B mesons

Significant progress in time for knowledge of $\varepsilon_{\rm K}$, now better than 3 per mil!

from $|\epsilon_{\rm K}| = (2.284 \pm 0.014)10^{-3}$ [PDG04] to $|\epsilon_{\rm K}| = (2.221 \pm 0.006)10^{-3}$

the SM prediction relates $\boldsymbol{\epsilon}_{\mathbf{K}}$ to $\overline{\rho}$ and $\overline{\eta}$ parameters of CKM matrix:

 $|\varepsilon_{\rm K}| = C_1 B_{\rm K} V_{cb}^2 \eta [C_2 + C_3 V_{cb}^2 (1-\rho)]$, where C_i uncertainty is negligible

Past uncertainty dominated by contribution from **B**_K parameter and V_{cb}

CPV, K vs B mesons: lattice improvements

The "bag parameter" B_{K} is the QCD matrix element of a 4-quark operator,

$$B_{K}=rac{\left\langle \overline{K_{0}}|\mathcal{O}_{LL}|K_{0}
ight
angle }{rac{8}{3}f_{K}^{2}M_{K}^{2}} \ \ \mathcal{O}_{LL}=\left(ar{s}d
ight)_{L}\left(ar{s}d
ight)_{L}$$

Recent lattice calculations significantly improved [Sachrajda, NA62PW 2009]

now exact flavor symmetry and good chiral symmetry are achieved by DWF technique discretization error reduced, results closer to continuum limit

RBC/UKQCD collaboration new result, 5% error, $B_K = 0.720(39)$

used by PDG 09 review, ~10% difference PDG07: $B_K = 0.79(4)(9)$

This result confirmed by Aubin et al. 09, $B_K = 0.724(8)(28)$, with 4% error

Averaging to be done with care [P. Boyle @ KAON 2009, Lelluch @ LATTICE 08]

a FLAVIANET group is devoted to Lattice result averaging (FLAG)

CPV: K vs B mesons and V_{cb}

 V_{cb} limiting present impact of ϵ_K on UT fits:

Parametric uncertainty for $\varepsilon_{\rm K}$ scales as $\sigma(|V_{cb}^{4}|)$

expected value from UT inputs from B physics: $|\varepsilon_K| = (1.78 \pm 0.25)10^{-3}$

~2σ difference wrt experimental value [Buras, Guadagnoli, Lunghi, Soni]

agreement changes if V_{cb} from exclusive decays 38.6(1.1) wrt inclusive 41.54(73)

Would be easy to find new physics explanations...

Kaons and unambiguous new physics signals

... for the moment, better to discuss NP unambiguous signatures:

1. CPT violation: foreseen in extra-dimensions, impossible to conceive in SM

2. Violation of quantum mechanics: foreseen in certain quantum gravity models

3. Direct search for lepton flavor violation: channels forbidden/ultra rare in SM

Dedicated experimental designs to reach ultimate sensitivities:

1. Precise measurement of main channel widths (τ 's, BR's) and charge asymmetries

2. Production of coherent KK pairs

3. Fixed target experiments: huge statistics, stringent veto and PID, dedicated triggers

For 1. and 2. \rightarrow KLOE

For 3. \rightarrow Fixed target experiments

An independent approach to K physics: KLOE

Precision physics benefits of independent approaches: the KLOE

The KLOE detector

Large cylindrical drift chamber + lead/scintillating-fiber calorimeter + superconducting coil providing a 0.52 T field

 σ_p/p 0.4 % (tracks with θ > 45°)

 σ_x^{hit} 150 μm (xy), 2 mm (z)

 σ_x^{vertex} ~1 mm

 $\sigma_{E}/E \qquad 5.7\% / \sqrt{E(\text{GeV})}$ $\sigma_{t} \qquad 54 \text{ ps} / \sqrt{E(\text{GeV})} \oplus 50 \text{ ps}$ (relative time between clusters) $\sigma_{L}(\gamma\gamma) \qquad \sim 2 \text{ cm} (\pi^{0} \text{ from } K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{0})$

Kaon physics at KLOE

KK pairs emitted ~back to back, p ~ 110 MeV

Identification of $K_{S,L}(K^{+,-})$ decay (interaction) tags presence of $K_{L,S}(K^{-,+})$

Almost pure K_{L,S} and K^{+,-} beams of known momentum + PID (kinematics & TOF):

Access to absolute BR's

• Precise measurements of K_{Le3} from factors and K_L , K^+ lifetimes (acceptance ~0.5 τ_L , τ_+)

Above points crucial for V_{us} determination

CPT symmetry test from Kaons

The most stringent test of CPT symmetry comes from kaon decays $\left|K_{S,L}\right\rangle = \frac{1}{\sqrt{2\left(1 + \left|\varepsilon_{S,L}\right|\right)}} \left[\left(1 + \varepsilon_{S,L}\right) \left|K^{0}\right\rangle \pm \left(1 - \varepsilon_{S,L}\right) \left|\overline{K}^{0}\right\rangle\right]$ **Diagonal states for t evolution:**

$$δ = \frac{1}{2} (ε_{s}-ε_{L}): CPT violation in mixing,$$

Probability conservation implies a unitarity constraint (Bell-Steinberger)

 $\delta = \frac{1}{2} \frac{\left(m_{\overline{K}^0} - m_{\overline{K}^0}\right) - (i/2)\left(\Gamma_{\overline{K}^0} - \Gamma_{\overline{K}^0}\right)}{\Delta m + i\Delta\Gamma/2}$

$$\begin{pmatrix} \Gamma_{S} + \Gamma_{L} \\ \Gamma_{S} - \Gamma_{L} \end{pmatrix} + i \tan \phi_{SW} \end{pmatrix} \begin{pmatrix} \Re \epsilon - i \Im \delta \\ 1 + \epsilon^{2} \end{pmatrix} = \frac{1}{\Gamma_{S} - \Gamma_{L}} \Sigma_{f} A_{L}(f) A_{S}^{*}(f) \qquad \Delta m = m_{L} - m_{S} \\ \Delta \Gamma = \Gamma_{S} - \Gamma_{L} \\ \phi_{SW} = \arctan(2\Delta m/\Delta\Gamma) \end{pmatrix}$$
Experimental inputs

Advantage of K⁰ system: sum over all final states, but only few ($\pi\pi, \pi\pi\pi$, and π lv) give significant contribution

Impact of new data on CPT test: KLOE

With KLOE data, improved CPT violation test: Precise measurement of BR($K_S \rightarrow \pi\pi$), $K_S \rightarrow \pi l\nu$ charge asymmetry, UL for $K_S \rightarrow 3\pi^0$

After CPLEAR measurements (2001) After KLOE measurements (2006) $\operatorname{Re}(\epsilon) = (164.9 \pm 2.5) \times 10^{-5}$ $\operatorname{Im}(\delta) = (2.4 \pm 5.0) \times 10^{-5}$ $\operatorname{Im}(\delta) = (2.4 \pm 5.0) \times 10^{-5}$ $\operatorname{Im}(\delta) = (0.4 \pm 2.1) \times 10^{-5}$ $\operatorname{Im}(\delta) = (0.4 \pm 2.1) \times 10^{-5}$ $\operatorname{Im}(\delta) = (0.4 \pm 2.1) \times 10^{-5}$ $\operatorname{Im}(\delta) = (0.4 \pm 2.1) \times 10^{-5}$

 $\begin{bmatrix} -1 \\ -1 \\ 0.15 \\ 0.16 \\ 0.17 \\ 0.18 \end{bmatrix} = \begin{bmatrix} -1 \\ 0.15 \\ 0.16 \\ 0.17 \\ 0.18 \end{bmatrix} = \begin{bmatrix} -1 \\ 0.16 \\ 0.17 \\ 0.18 \end{bmatrix}$

Impact of new data on CPT test: KTeV

Further improvement from KTeV in 2008:

New measurement of $\operatorname{Arg}(K_L \to \pi\pi / K_S \to \pi\pi) = \phi^{+-} = 43.8(6)$ [KTeV 08] As precise as previous world average $\phi^{+-} = 43.4(7)$ [PDG 06]

	CPLEAR 01	KLOE 06	PDG 08	KTeV 08
Re ε (×10⁵)	164.9±2.5	159.6±1.3	161.2±1.6	161.2±1.6
Im δ (×10 ⁵)	2.4±5.0	0.4±2.1	-0.6±1.9	-0.1±1.4
Comment	K→πlv vs proper time	$K_S → π lν, ππ$ UL($K_S → 3π^0$)	Better treatment of CPLEAR data	New φ +−
M_{K} - $M_{\underline{K}}$, 10 ⁻¹⁹ GeV	3.3 ± 7.0	0.5 ± 3.0	-0.9 ± 2.6	-0.1 ± 2.0

Limit on ΔM obtained assuming $\Gamma_{K} = \Gamma_{\overline{K}}$ (no CPTV in decay): $|M_{K} - M_{\overline{K}}| / M_{K} < 4 \ 10^{-19}$ Compare with: $|M_{B} - M_{\overline{B}}| / M_{B} < 10^{-14}$ and $|M_{p} - M_{\overline{p}}| / M_{p} < 10^{-9}$

Test of quantum mechanics coherence

Study t evolution of KK decays into $\pi\pi^{-}\pi\pi$ final states, unique at ϕ factory Test QM coherence: I(Δt) $\propto e^{-\Gamma_{L}|\Delta t|} + e^{-\Gamma_{S}|\Delta t|} - 2(1 - \zeta_{S,L}) e^{-(\Gamma_{S} + \Gamma_{L})|\Delta t|/2} \cos(\Delta m \Delta t)$ $K_{S(L)} \rightarrow \pi^{+}\pi^{-}$ at $t_{1} \longleftarrow \phi \longrightarrow K_{L(S)} \rightarrow \pi^{+}\pi^{-}$ at t_{2}

Searches for unambigous NP signals: LFV

Huge efforts along the years to isolate signals from LFV transitions, which are forbidden/ ultra rare in the SM

Cfr. also $\tau \rightarrow e\gamma, \tau \rightarrow \mu\gamma$, $\tau \rightarrow$ Ill modes [see P. del Amo Sanchez, PIC 2009]

Sensitivity roughly increased by 2 order of magnitudes per decade

K physics in the LHC era – T. Spadaro – Wednesday seminar in Zeuthen, DESY, 27 January 2010

Direct searches for LFV with kaons

Searches motivation: tests for tree-level LFV amplitudes possible in Technicolor, SUSY, ...

E.g., horizontal bosons in extended TC: $M_H \approx 85 \text{ TeV} \left[\frac{10^{-11}}{B(K^+ \to \pi^+ \mu^+ e)} \right]^{1}_{\mathbf{d}}$

Activity still alive, results continue to come (cfr. new KTeV limits):

$$\begin{split} & K_L \rightarrow \mu e \ (10^{-11}) \\ & 22 \ PRL \ 63 \ (1989) \ 2181, \ BNL \ E791 \\ & 3.9 \ PRL \ 70 \ (1993) \ 1049, \ BNL \ E791 \\ & 3.3 \ PRL \ 70 \ (1993) \ 1049, \ BNL \ E791 \\ & 9.4 \ PR \ D51 \ (1995) \ 2061 \ KEK \ E137 \\ & 0.5 \ PRL \ 81 \ (1998) \ 5734 \ BNL \ E871 \\ K_L \rightarrow \pi^0 \mu e \ (10^{-11}) \\ & 620 \ PL \ B432 \ (1998) \ 230, \ FNAL \ E799 \\ & 7.6 \ PRL \ 100 \ (2008) \ 131803, \ FNAL \ KTeV \\ K_L \rightarrow \pi^0 \pi^0 \mu e \ (10^{-11}) \\ & 17 \ PRL \ 100 \ (2008) \ 131803, \ FNAL \ KTeV \end{split}$$

 $K^+ \rightarrow \pi^+ \mu^+ e^- (10^{-11})$

2.1 PRL 64 (1990) 165, BNL E777

0.39 PRL 85 (2000) 2450, BNL E865

- 0.21 PR D72 (2005) 012005, BNL E865
- 0.13* PR D72 (2005) 012005, BNL E865 *E865 combined

 $K_L \rightarrow \mu^{\pm} \mu^{\pm} e^{\mp} e^{\mp} (10^{-11})$ 610 PRL 76 (1996) 4312, FNAL E799 12 PRL 87 (2001) 111802, FNAL KTeV 4.1 PRL 90 (2003) 141801, FNAL KTeV

Direct search for LFV

World kaon data dominated by results from fixed target experiments

Results generally dominated by statistics collected

Would need higher fluxes to improve by relevant factors

Direct search for LFV – results and lessons

SM extensions with < ~100 TeV mediator masses ruled out by exp, with some model dependence (Technicolor, SUSY)

Outcome might have been regarded as disappointing, but allowed focus to be put on new possibilities:

- Presence of NP effects in loop amplitudes
- Seek deviations in processes suppressed in the SM
- Precision physics of medium, rare and not-so-rare processes

Golden modes: leptonic & semi-leptonic widths in the SM, predicted @ % level or better, accounting for radiative & isospin-breaking corrections

Kaon decay studies are very well suited to match required precisions:

• Experiments with clean environment, low level of background

Kaon decays with leptons: precise predictions

 $K \rightarrow lv (K_{l2})$ and $K \rightarrow \pi lv (K_{l3})$ decay observables linked to the wanted short distance physics with <u>independent</u> theoretical uncertainty:

 $K_{\mu 2}/\pi_{\mu 2}$: f_K/f_{π} uncertainty reduced from latest lattice results

NP test from (semi)leptonic K decays

Measurements of $K \rightarrow \pi l \nu$, $l \nu$ decays can shed light on NP BSM

Precise determination of V_{us} from BR's for $K \rightarrow \pi l \nu$, ff slopes, etc.: allows most precise test of unitarity of the CKM matrix translates into a severe constraint for many NP models

Test of SM from $\Gamma(K_{\mu 2})/\Gamma(\pi_{\mu 2})$:

probes NP RH contributions to charged weak currents probes H⁺ exchange in every SM extension with 2 Higgs doublets

LF violation test from $\Gamma(K_{e2})/\Gamma(K_{\mu 2})$ (most recent results): sensitive to NP effects, which might be at % level wrt SM prediction

Interest in V_{us} measurement with kaons

In SM, universality of weak coupling dictates:

 $G_F^2 (|V_{ud}|^2 + |V_{us}|^2) = G^2 (\text{from } \mu \text{ lifetime}) = (g_w/M_w)^2 [V_{ub} \text{ negligible}]$

One can test for possible breaking of one of the two conditions:

CKM unitarity: is $(|V_{ud}|^2 + |V_{us}|^2) = 1$?

coupling universality: is $G_F^2 (|V_{ud}|^2 + |V_{us}|^2) = G^2$ (from μ lifetime)?

New physics extensions of the SM can indeed break coupling universality:

Interest in V_{us} measurement with kaons

A measurement of $G_{CKM} = G_F(|V_{ud}|^2 + |V_{us}|^2)$ with error @ 0.5%

- is sensitive to tree masses $M_{_{\rm NP}}\sim 10~{\rm TeV}$ and to loop masses $M_{_{\rm NP}}\sim 1~{\rm TeV}$
- is competitive with ew precision tests:

K physics in the LHC era – T. Spadaro – Wednesday seminar in Zeuthen, DESY, 27 January 2010 **29**

$V_{\mu s}$ from semileptonic kaon decays

Master formula: $\Gamma(K_{l3(\gamma)}) = |V_{us}|^2 |f_+^{K^0 \pi^-}(0)|^2 \frac{G_F^2 m_K^5}{128\pi^3} S_{EW} C_K^2 I_{K\ell} (1 + \delta_K^{\ell})$

Theoretical inputs:

- $f_{+}(0)$, FF @ zero momentum transfer: theoretical calculation Recent result from UKQCD/RBC, 07 prel.: $f_{+}(0) = 0.964(5)$
- $\delta_{K}^{\ell} = 2(\Delta_{K}^{SU(2)} + \Delta_{K}^{\ell})$, I-breaking + em effects: Recent χ Pt results: $\Delta_{K+}^{SU(2)} = +2.9(4)\%$, $\Delta_{K}^{\ell} = +0.50(11)\% +0.05(13)\% \ell = e +0.70(11)\% +0.01(12)\% \ell = \mu$
- S_{EW} , short distance correction (=1.0232), $C_{K} = 1$ (2^{-1/2}) for K⁰ (K⁺) decays

Experimental inputs:

- $I_{K}^{\ell} = I(\{\lambda_{+}\}, \{\lambda_{0}\}, 0)$, phase space integral, $\lambda_{+}, \lambda_{0} \rightarrow t$ -dependence of vector, scalar ffs
- $\Gamma_{K(3(\gamma))}$, semileptonic decay width evaluated from γ -inclusive BR and lifetime
- **m**_K, appropriate kaon mass

Recent measurements for all relevant inputs: **BR's**, τ 's, ff's

Vus from Kl3 decays

World data for K_L , $K^+ \rightarrow \pi l \nu$ BR's quite satisfactory, determined by experiments with very different techniques:

KLOE @ DAΦNE e⁺e⁻ collider (tagged K_{L,S}, K^{+,-} from φ decays) absolute branching ratios for K_L, K⁺, and K_S
NA48 @ CERN (intense K⁰,K⁺ beams from SPS proton beam) ratio of BR's for K_L and K^{+,-}
KTeV @ Fermilab (intense K_L beam from Tevatron proton beam) ratio of K_L BR's
ISTRA+ @ IHEP, Protvino ratio of K⁻₁₃ BR's

K physics in the LHC era – T. Spadaro – Wednesday seminar in Zeuthen, DESY, 27 January 2010

32

Results for f_0V_{us} *from Kl3 decays*

1. Agreement of $f_+(0)V_{us}$ for K⁺ and K⁰ is a brilliant success in calculating Isospin-breaking and e.m. corrections @ few 10⁻³:

2.81(38)% found vs 2.9(4)% [Kastner-Neufeld 08] or 2.36(22)% [Cirigliano 07 χPt O(p⁴)]

2. For each K charge state of K_{L3} decays, can test e / μ universality:

$$r_{\mu e} = \frac{(R_{\mu e})_{\text{obs}}}{(R_{\mu e})_{\text{SM}}} = \frac{\Gamma_{\mu 3}}{\Gamma_{e 3}} \cdot \frac{I_{e 3} \left(1 + \delta_{e 3}\right)}{I_{\mu 3} \left(1 + \delta_{\mu 3}\right)} = \frac{g_{\mu}^2}{g_{e}^2}$$

Results satisfy universality:

 $g_{\mu}^2/g_e^2 = 1.0050(44)$

Cfr. with test from $\tau \rightarrow l\nu\nu$ decays, sharing the same theoretical scenarios: $g_{\mu}^2/g_e^2 = 1.0005(41)$ [PDG08]

Precision from K's comparable to that from τ 's

V_{us}/V_{ud} from K_{u2} decays

Can also get $|V_{\mu\nu}/V_{\mu\nu}|$ from K, $\pi \rightarrow \mu\nu$ widths [Marciano PRL93 231803,2004]:

$$\frac{\Gamma(K \to \mu\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))} = \frac{m_K \left(1 - \frac{m_\mu^2}{m_K^2}\right)^2}{m_\pi \left(1 - \frac{m_\mu^2}{m_\pi^2}\right)^2} \left(\frac{|V_{us}|^2}{|V_{ud}|^2} \frac{f_K^2}{f_\pi^2} \frac{1 + \frac{\alpha}{\pi}C_K}{1 + \frac{\alpha}{\pi}C_\pi}\right)$$

Theoretical inputs:

structure-dependent e.m. correction $1+\alpha/\pi (C_{\rm K}-C_{\pi}) = 0.9930(35)$ [Marciano PRL93 (2004), Cirigliano Rosell JHEP 0710 (2007)]

form factor ratio $f_K/f_{\pi} = 1.189(7)$ [MILC-HPQCD collaboration, arXiv:0706.1726]

Experimental inputs:

 $m_{K,\pi,\mu}$, BR($K_{\mu2}, \pi_{\mu2}$), $\tau_{K,\pi}$ very accurate: BR($K_{\mu2}$) = 0.6366(17) [KLOE PLB632, 2006] Obtain: $|V_{us}/V_{ud}| = 0.2322(15)$

V_{us}/V_{ud} from K_{u2} vs V_{us} from Kl3

Weak coupling universality test

Agreement between weak couplings from K decays and from μ lifetime:

$$G_{\rm F}$$
 = 1.166371(6)×10⁻⁵ GeV⁻² \leftarrow

 $G_{CKM} = 1.16620(40) \times 10^{-5} \text{ GeV}^{-2} \leftarrow$

Agreement at this level of accuracy implies observation of short distance radiative corrections at ~40 σ level [Marciano-Sirlin]: $2 \alpha/\pi \log M_Z/M_o + ... \sim 2.5\%$

Might be able to extract from this: $M_Z = (90 \pm 7)$ GeV!
Weak coupling universality test: BSM

Agreement between weak couplings from K and from μ constraints NP

In SO(10) Z_{γ} boson [Marciano]:

$$G_F = G_{CKM} [1 - 0.007 \times 8/3 \times \ln(M_Z/M_W)/(M_Z/M_W^2 - 1)]$$

Implies: M_{Z'} > 750 GeV @ 95% CL

Weak coupling universality test: BSM

In non-universal gauge interaction model, a tree level contribution from a Z' boson breaking unitarity might be present [K. Y. Lee PRD 76, 117702 2007]

This gauge structure might appear in extended technicolor models

Weak coupling universality test: MSSM

Scanning over MSSM parameter space, unitarity is sensitive to the squark-slepton mass difference [R. Barbieri 85, K. Hagiwara et al. 95, A Kurylov 00]

K physics in the LHC era – T. Spadaro – Wednesday seminar in Zeuthen, DESY, 27 January 2010 39

A model-independent analysis of K data

From the unitarity constraint $\Delta = (1\pm 6) \ 10^{-4}$ can constrain new physics: naively, if $\Delta_{NP} \approx M_W^2 / \Lambda_{NP}^2$, then $\Lambda_{NP} > O(TeV)$

Model "independent" approach: effective lagrangian + symmetries World @ O(100 GeV), Buchmuller-Wyler 86, Leung et al. 86

World @ O(1 GeV), Cirigliano et al. 09

Did we knew that from collider bounds? [Han, Skiba PRD 71:075009 05] model-independent analysis of 237 measurements from HEP data fit 21 NP parameters obtain $\Delta_{NP} = (-4.7\pm2.9) \ 10^{-3}$

Kaon data improves by a factor of 5 on HEP data

If new physics is flavor-blind or with minimal flavor violation, can state: $\Lambda_{NP} > 11 \text{ TeV} @ 90\% \text{ CL}$

[Cirigliano, Gonzalez-Alonso, Jenkins arXiv:0908.1754, 2009]

$K_{\mu 2}$ again – Sensitivity to NP

In two Higgs doublet models (MSSM, too), exchange of H⁺ provides an additional scalar current, which might contribute sizeably wrt to SM:

$$\frac{\Gamma(\mathbf{K} \to \ell \nu)}{\Gamma_{SM}(\mathbf{K} \to \ell \nu)} \cong \left| 1 - \frac{m_{K^+}^2}{M_{H^+}^2} \left(1 - \frac{m_d}{m_s} \right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta} \right|$$
[Hou PRD48 (1992) 2342, Isidori-Paradisi]

NP effect is suppressed for π_{l2} wrt K_{l2} , so NP might appear in $Kl2 / \pi l2$, predicted in the SM to be:

$$\frac{\Gamma(K_{\ell 2(\gamma)}^{\pm})}{\Gamma(\pi_{\ell 2(\gamma)}^{\pm})} = \left|\frac{V_{us}}{V_{ud}}\right|^2 \frac{f_K^2 m_K}{f_\pi^2 m_\pi} \left(\frac{1 - m_\ell^2 / m_K^2}{1 - m_\ell^2 / m_\pi^2}\right)^2 \times (1 + \delta_{\rm em})$$

NP test from comparing V_{us}/V_{ud} from $M \rightarrow l\nu$ with $V_{us}(K_{l3})/V_{ud}(0^+ \rightarrow 0^+)$:

$$\frac{V_{us}(K_{\ell 2})}{V_{us}(K_{\ell 3})} \times \frac{V_{ud}(0^+ \to 0^+)}{V_{ud}(\pi_{\ell 2})} \bigg| \stackrel{?}{=} \bigg| 1 - \frac{m_{K^+}^2}{M_{H^+}^2} \left(1 - \frac{m_d}{m_s} \right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta}$$

Result is: $\left| \frac{V_{us}(K_{\ell 2})}{V_{us}(K_{\ell 3})} \times \frac{V_{ud}(0^+ \to 0^+)}{V_{ud}(\pi_{\ell 2})} \right| = 1.004(7)$

NP sensitivity from $K \rightarrow \mu \nu \sim as$ that from BR(B $\rightarrow \tau \nu$) = 1.73(35)×10⁻⁴

For Belle and Babar updates and a combined fit in 2-Higgs doublet models, see P. Del Amo Sanchez, PIC2009

Error dominated by theoretical uncertainties in form factors

Test competitive with expected sensitivity from 10fb⁻¹ ATLAS data, following gg/gb \rightarrow t(b) H⁺, H⁺ $\rightarrow \tau v$

Form factor evaluation: progress from lattice

Lattice produced solid results with recent improvements...

...but other tools are available to validate these calculations

Form factor evaluation: progress from lattice

Dispersive parametrization of $f_0(t)$ from Kµ3 + K π scattering data relate value in the Callan-Treiman point to f_K/f_{π} [Stern et al., Pich et al.] The correction needed, $\Delta_{CT} = (-3.5\pm8) \ 10^{-3}$, is evaluated in p-QCD

New-physics potential of $R_K = \Gamma(K_{e2})/\Gamma(K_{\mu2})$

SM prediction w 0.04% precision, benefits of cancellation of hadronic uncertainties (no f_K): $R_K = 2.477(1) \times 10^{-5}$ [Cirigliano Rosell arXiv:0707:4464]

Helicity suppression can boost NP [Masiero-Paradisi-Petronzio PRD74 (2006) 011701]

In R-parity MSSM, LFV can give 1% deviations from SM:

$$R_K^{LFV} \simeq R_K^{SM} \left[1 + \left(\frac{m_K^4}{M_H^4}\right) \left(\frac{m_\tau^2}{m_e^2}\right) |\Delta_R^{31}|^2 \tan^6 \beta \right]$$

NP dominated by contribution of ev_{τ} final state, with effective coupling $lH^{\pm}\nu_{\tau} \rightarrow \frac{g_2}{\sqrt{2}} \frac{m_{\tau}}{M_W} \Delta_{13}$, from loop Present exp. accuracy on $R_K @ 6\%$ New measurement of R_K can be very interesting, if error is pushed @ 1% or better

Analysis of $K_{e2}/K_{\mu 2}$ @ KLOE - basic principles

KLOE integrated ~2.5 fb⁻¹ of data & BR(K_{e2})~10⁻⁵: expect < ~4×10⁴ events Perform direct search for K_{e2} and K_{µ2}, no tag: gain ×4 of statistics Select 1-prong kinks in DC, K track from IP & secondary P > 180 MeV Exploit tracking of K and secondary: assuming $m_v=0$ get M^2_{lep}

K physics in the LHC era – T. Spadaro – Wednesday seminar in Zeuthen, DESY, 27 January 2010 **46**

R_{K} analysis @ KLOE, kinematic selection

Rule of the game: reject Kµ2 by 10⁴, with Ke2 efficiency of O(50%)... Background composition: Kµ2 events with bad P_K , bad P_I reconstruction Apply quality cuts for K and exploit $\Phi \rightarrow KK$ two-body kinematics

R_{K} analysis @ KLOE, quality criteria

 $M_{lep}^2 = f(P_K, P_l, \cos\theta) \rightarrow a$ -priori error δM_{lep}^2 is scaled by opening angle Achieve cancellation in Ke2/Kµ2 efficiencies, applying cos θ trailing cuts

Total efficiency ~ 33% at this level: select ~60% of Ke2 decaying in FV

Analysis of R_K @ KLOE, electron identification

Apply quality cuts, enough to count $K_{\mu 2}$, not for K_{e2} (still Bkg ~ 10×Sig) Further rejection for K_{e2} : extrapolate track to EmC, select closest cluster PID exploits EmC granularity: energy deposits E_k into 5 layers in depth Combine cell-level information into a single NN variable

 R_{K} analysis, fitting for Ke2 counting

Two-dimensional binned likelihood fit in the NN- M²_{lep} plane

R_{K} @ KLOE – Radiative corrections

...too bad. Perform a dedicated analysis to measure DE, 4% accuracy:

- Explicitly detect radiated photon
- Fair agreement of DE/IB with expectation from theory, $\chi Pt O(p^4)$

RK in the NA48/2 experiment

NA48/2: unseparated, simultaneous K[±] highly collimated beams, designed to precisely measure K[±] $\rightarrow \pi^{+,0}\pi^{-,0}\pi^{\pm}$ dalitz-plot density

Analysis of Ke2/Kµ2 at NAxx

Scintillator hodoscope:

• establish event time (σ ~150 ps), initiate trigger

LKr calorimeter: efficient vetoing, e.m. energy resolution

• $\sigma_{\rm E}/{\rm E} = 3.2\%/\sqrt{{\rm E}[{\rm GeV}] \oplus 9\%/{\rm E}[{\rm GeV}] \oplus 0.42\%}$

• $\sigma_{x,y} = 4.2 \text{mm}/\sqrt{\text{E}[\text{GeV}]} \oplus 0.6 \text{ mm}$, granularity of ~13,000 2×2 cm² cells Hadron calorimeter, Muon veto system

Analysis starting samples:

 K_{e2} trigger: 1 track (hodoscope) & 1-track activity in DCH's & $E_{LKr} > 10$ GeV

K_{μ2} trigger: 1 track (hodoscope), downscaled

First useful data in 2003-4 NA48/2 runs, two preliminary results for R_K...

Analysis of Ke2/Km2 at NA62 – 2007 data

...then design of NA62 run optimized for Ke2/Kµ2; major parameters tuned:

Analysis of Ke2/Kµ2 at NA62: µ background

Electron PID by LKr: $0.95 < E_{cl}/P_{trk} < 1.10$ guaranteeing rejection by ~10⁶! But: check probability for µ's to fake e's [O(10⁻⁶)] by directly measuring it: Subsample of data taken with Pb wall between HOD's Use HOD pulse heights to select µ's (pure @ <10⁻⁷) with MIP energy loss in Pb Evaluate 6.28(17)% Kµ2 bkg to Ke2, error dominated by sample statistics

Analysis of Ke2/Km2 at NA62

Data taking lasted 4 months: the world largest data set of Ke2, > 100 Kevts

Preliminary result presented in 2009 from 51089 candidates

Presenting new results for R_K (2009)

Experiment	KLOE	NA62				
Ke2's on tape	30 k	100 k		PDG'08		— June'09 average
Kin.	$10^3 @ \varepsilon \sim 60\%$	10 ³ —1, p _{lep} in				Clark (1972)
Rejection		20—60 GeV				
e/µ rejection	10 ³	3—1.5 10 ⁵ , p _{lep}		•		Heard (1975)
		in 20—60 GeV				Heintze (1976)
Bkg to Ke2	16%	8%				neinize (1370)
Ke2g (SD)	Include as bkg	Suppress in				KLOE (2009)
	Dedicated	analysis				final result
	mmt.					NA62 (2009)
Ke2 counts	14 k	50 k				preliminary
$R_K \times 10^5$	2.493(25)(19)	2.500(12)(11)		SM		
Total error	1.3%	0.64%	Z.Z Z.3	2.4	2.3	2.0 2.7 2.8 R _K ×10 ⁵
Status	Final result	Preliminary				

NP search from 2009 R_K results

The present and future of K physics

Sensitivity to new physics from the TeV scale reduced by small mass Approach for the present and future of K physics:

1. push at the limit accuracy of fundamental tests:

Violation of CPT symmetry [KLOE-2]

Test presence of QM decoherence in KK evolution [KLOE-2]

Measure T symmetry violation from μ polarization in K $\rightarrow \pi \mu \nu$ [TREK @ JPARC]

2. study processes suppressed in SM, detect NP in loop transitions:

Improve on $R_K = Ke2/K\mu2$, in the near [KLOE-2], mid-term [NA62] future

 $K^+ \rightarrow \pi \nu \nu$: from present evidence [E787/949] to O(10%) BR mmt [NA62]

 $K_L \rightarrow \pi v v$: from present limits [KEK391a] to future mmt [E14 @ JPARC]

Old and new experiments to reach the sensitivity frontier

The KLOE-2 project

Dafne upgrade in luminosity, with new crabbed waist scheme

goal is an increase by × 5 with relatively low cost and minor modifications first test successful on Dafne

KLOE-2 project

Phase 0: resume data taking *(a)* end 2009: minimal upgrade, get 5 fb⁻¹, i.e., aim at integrating ×2 of present statistics

Phase 1: full KLOE upgrade, start after 2011 to integrate > 20 fb⁻¹

Physics goal	Detector upgrade						
Neutral K interferometry: CPTV, QM	Insertion of an inner tracker						
violations	Tagging system for yy physics						
LFV studies, rare KS decays	Increase read out granularity of EmC						
η,η' physics, γγ physics	FEE maintenance and upgrade						
$\sigma(ee \rightarrow hadrons)$ at low q^2 and μ anomaly	Computing and networking upgrades						

Golden K modes

FCNC processes dominated by Z penguin and box diagrams

Can give direct information on CKM matrix elements:

No long distance contributions from processes with intermediate γ's

Hadronic matrix elements can be obtained from BR's of leading K decays

$$K_L \rightarrow \pi^0 \nu \nu$$
 is nearly pure CPV

SM prediction for $K \rightarrow \pi \nu \nu$

SM prediction [Buras et al., Mescia and Smith, Brod and Gorbahn]

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = \kappa_{+} \left[\left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} + \left(\frac{\operatorname{Re} \lambda_{t}}{\lambda^{5}} X(x_{t}) + \frac{\operatorname{Re} \lambda_{c}}{\lambda} P_{c}(X) \right)^{2} \right] = 8.5(7) \times 10^{-11}$$

$$BR(K_{L} \to \pi^{0} \nu \bar{\nu}) = \kappa_{L} \left(\frac{\operatorname{Im} \lambda_{t}}{\lambda^{5}} X(x_{t}) \right)^{2} = 2.6(4) \times 10^{-11}, \text{ where } x_{q} \equiv m_{q}^{2}/m_{W}^{2} \text{ and } \lambda_{c} = V_{us}$$

$$\lambda_{t} = V_{us} V_{ts}^{*} V_{td}$$

Loops favor top contribution

Hadronic matrix elements from BR(Ke3) via isospin rotation:

$$\kappa_{+} = r_{K^{+}} \frac{3\alpha^2 \operatorname{BR}(K^{+} \to \pi^0 e^+ \nu)}{2\pi^2 \sin^4 \theta_W} \lambda^8$$

Charm contribute to theory error: non-parametric error 7% for K⁺ vs 3% for K_L

SM prediction for $K \rightarrow \pi \nu \nu$ *and NP*

SM prediction for $K \rightarrow \pi \nu \nu$ and NP

Exciting possibilities from theory improvements for ϵ'/ϵ

SM prediction for $K \rightarrow \pi \nu \nu$ and NP

Exciting possibilities from theory improvements for ϵ'/ϵ

K physics in the LHC era – T. Spadaro – Wednesday seminar in Zeuthen, DESY, 27 January 2010

65

To reach 10⁻¹², PID & vetoes also reject unclosed bkg (K₁₃, K₁₄, ...)

	Stopped K ⁺	Decay in flight
Kinematics	K ⁺ at rest	Must track K ⁺
Photon vetoes	Low-energy photons	High-energy photons
PID	Range π - μ - e decay chain	Advanced Cerenkov counters Muon detectors

Fixed target approach: E949 @ AGS

The entire AGS beam of 65 x 10¹² (Tp/ spill) at a momentum of 21.5 GeV/c was delivered to the E949 K⁺ production target

Duty Factor: 2.2 s / 5.4 s ~ 40%

1 interaction length Pt target

Before separators: 500π : 500 p : 1 K

After separators: Purity $K:\pi \sim 3--4:1$

Incoming 710 MeV/c K⁺ identified by Č and slowed

down by BeO and Active Degrader

~27% K⁺ stopped in the target (1.6 MHz)

Tracking in 1 T solenoid field

Final results from E787/E949 (2008)

Combined results, from E787 (1995-8 runs) & E949 (12-weeks run in 2001)

The in-flight approach: NA62 @ CERN

750 MHz beam \rightarrow **50 MHz K**+ \rightarrow **6 MHz decay in 60-m fiducial volume**

NA62 expected sensitivity

Decay Mode	Events			
Signal: $K^+ \rightarrow \pi^+ \nu \nu$ [flux = 4.8×10 ¹² decay/year]	55 evt/year			
$K^+ \rightarrow \pi^+ \pi^0 \ [\eta_{\pi 0} = 2 \times 10^{-8} (3.5 \times 10^{-8})]$	4.3% (7.5%)			
$K^+ \rightarrow \mu^+ \nu$	2.2%			
$K^+ \rightarrow e^+ \pi^+ \pi^- \nu$	≤3%o			
Other 3 – track decays	≤1.5%			
$\mathrm{K}^+ ightarrow \pi^+ \pi^0 \gamma$	~2%			
$K^+ \rightarrow \mu^+ \nu \gamma$	~0.7%			
$K^+ \rightarrow e^+(\mu^+) \pi^0 \nu$, others	negligible			
Expected background	≤13.5% (≤17%)			

year & running efficiency defined from NA48 story: ~100 days/year, 60% overall efficiency

NA62 timescale

	2009			2010			2011			2012						
K12 alloc.																
CEDAR																
GigaTrk 🗌		Prototype Test						Eng	g 1 Eng 2/F			Prod				
LAV			Pro	oducti	on of	Mech	anics	anics & Assembly				ow in			e e e e e e e e e e e e e e e e e e e	
STRAW												tensit				int
RICH			PMT Procurement					t: 100 / month				y run:				
LKR												(no C			ואונ	
MUV												этк)				5
TDAQ	TEI	_L1/T ⁻	TC Pro	DC.												

The hardest job: $K^0 \rightarrow \pi^0 \nu \nu$

The future for $K^0 \rightarrow \pi^0 vv$, K^0TO

E391a seen as a preparation for KOTO (E14 @ J-Parc) [see T. Masuda, PIC 2009]

Wrt E391a: ×10 K_L beam, ×10 acceptance, ×10 running time

30 GeV primary beam

20-m K1.1 beamline

Core/halo, $10^{-4} \rightarrow 10^{-5}$

Neutron/K_L, $40 \rightarrow 7$

Schedule:

2009, construction & survey of beamline

2010, construction of CsI calorimeter & engenireeing run

2011, 1st physics run: 3-7 SM evts/ 3 years

Possible upgrades: 100 SM evts

Conclusions – kaon physics alive and kicking

Kaons pushing fundamental principles at severe test:

- CPV, CPTV, and QM decoherence at state-of-art
- Progress from lattice, expect results will constrain more severely CKM fits soon

Recent K decay mmts greatly improve knowledge of gauge coupling:

• Effective coupling measured @ 0.2% (!), thus constraining many NP scenarios

New and interesting tests of NP from two-body decay studies:

- Sensitivity to NP from $K_{\mu 2}/\pi_{\mu 2}$: complementary wrt & competitive with $B \rightarrow \tau v$
- Golden LFV observable, R_K: KLOE final @ 1.3%, NA62 prel. @ 0.6% error

The future: NP test from decays w clean theoretical signatures, K → πνν Sound theoretical basis, prediction @ % level Sensitive to extremely high NP scales: 10% BR ⇒ NP sensitivity up to TeV A new experimental challenge, to compete with/complement LHC data

Additional information

K physics in the LHC era – T. Spadaro – Wednesday seminar in Zeuthen, DESY, 27 January 2010 75

Overview of KLOE data

Data taking for KLOE experiment, years 2001-2005, now run completed

2001–5: ~2.5 fb⁻¹ integrated @ $\sqrt{s}=M(\phi)$, yielding ~2.5 × 10⁹ K_SK_L pairs Maximum peak luminosity, 2.5 10³² cm⁻² s⁻¹

The TREK experiment @ J-parc

Physics goal: measurement of transverse μ polarization in K $\rightarrow \pi\mu\nu$ decays In SM, $P_T = \frac{\sigma_{\mu} \cdot (p_{\pi^0,\gamma} \times p_{\mu^*})}{|(p_{\pi^0,\gamma} \times p_{\mu^*})|} \sim 10^{-7}$: P_T in 10⁻³—10⁻⁴ implies T-violating NP

Stopped K-beam, upgraded E246 detector

Muons polarization measured as forward-backward asymmetry

Aim at improving E246 limit $P_T < 5 \ 10^{-3}$ by ×50

Beam ×30, detector acceptance ×10, syst ×10⁻¹:

Improved $\boldsymbol{\mu}$ polarimeter: measure energy and

direction of emitted e⁺, better alignment

Finer segmentation of active target

Better tracking, improve rejection of $K_{\pi 2}$ bkg

New APD readout for CsI calorimeter

2009: R&D + ask for budget, 2012-13: start run