

Caren Hagner, Universität Hamburg

- Neutrino mass, mixing and neutrino oscillations
- OPERA experiment
- Detector performance
- Special events: charm, v_e
- v_T candidate
- Outlook

Caren Hagner, Universität Hamburg

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Neutrino Mass and Mixing

$$\Delta m_{solar}^{2} = m_{2}^{2} - m_{1}^{2} \approx 8 \cdot 10^{-5} \text{eV}^{2},$$
$$|\Delta m_{atm}^{2}| = |m_{3}^{2} - m_{2}^{2}| \approx 2 \cdot 10^{-3} \text{eV}^{2}$$

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{22} & s_{23} \\ 0 & -s_{23}^{\Theta} c_{23}^{O} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & \theta_{13}, \delta & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
$$\theta_{23} \approx 45^{\circ} \qquad \theta_{13} < 13^{\circ}, \delta ? \qquad \theta_{12} \approx 33^{\circ}$$

Neutrino Oscillations (simplified)

Flavor eigenstates v_{μ} , v_{τ} with $\theta_{23} \approx 45^{\circ}$

$$\begin{pmatrix} \boldsymbol{v}_{\mu} \\ \boldsymbol{v}_{\tau} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_{2} \\ \boldsymbol{v}_{3} \end{pmatrix}$$

Mass eigenstates v₂,v₃

MINOS Results: Fit to Oscillation Hypothesis

OPERA: Oscillation Project with Emulsion tRacking Apparatus

Physics runs: 2008 and 2009 completed, 2010 ongoing

CNGS beam ("pure" v_µ)

Total exposure expected: 22.5.10¹⁹ pot

 $\langle E_v \rangle = 17 \text{GeV}$ <u>comparison of CC-event rates:</u> $\overline{v}_{\mu} / v_{\mu} = 2.1\%$ $(\overline{v}_e + v_e) / v_{\mu} = 0.87\%$ Prompt v_ negligible ($\approx 10^{-7}$)

4.5.1019pot/year

Profile of neutrino beam @ LNGS

and a state of the state of the

ana an an an th' th a st

h bh ba baanna

OPERA

OPERA: v_{T} detection

Background Processes

Most important background processes:

- Charm production and decay
- · Hadron re-interactions in lead
- Large angle myon scattering in lead

Caren Hagner, Universität Hamburg

Assume: Maximal mixing, 22.5x10¹⁹pot (=5years @ 4.5x10¹⁹pot/year)

τ decay channel	B.R. (%)	Signal ∆m² = 2.5 x 10 ⁻³ eV²	Background
$\tau ightarrow \mu$	17.7	2.9	0.17
$\tau \rightarrow e$	17.8	3.5	0.17
$\tau \rightarrow h$	49.5	3.1	0.24
$\tau \rightarrow 3h$	15.0	0.9	0.17
Total		10.4	0.75

Expected events:

- ~ 23600 v_{μ} CC+NC interactions
- ~ 160 v_e^{r} interactions
- ~ 115 v_{τ} CC interactions
- ~ 10 identified v_{τ}
- < 1 background

OPERA target: lead-emulsion-bricks

lead-emulsion-brick (total ≈ 150.000)

target mass: ≈ 1,35 kton

105000 m² of lead surface 111000 m² of film surface (9 million films)

"Emulsion Cloud Chamber" (ECC)

Hybrid Target Structure

OPERA - Detector

Target Region:

- Target Tracker (Scintillator)
- Lead/Emulsion Bricks (75.000 per Supermodule)

OPERA - Detector

Magnetic Spectrometer:

Magnet-Region:
Iron & RPCsPrecision Tracker:
6 Planes of Drifttubes

The Electronic Detectors

1.52 T

Target Trackers (Plastic Scintillator)

Magnetic Spectrometer

Reconstruction (I): Magnetic Spectrometer

Electronic data (Target Tracker & Muon spectrometer) ul 2008, 03:27 (UTC), XZ projection t: 218184565. Eve 6 500 Columns (top view) -500 -1000 1000 0 Selected brick Event: 218184565, 6 Jul 2008, 03:27 (UTC), YZ projection Brick in cell 500 Empty cell Rows (side view) -500 1000 -1000

Track identified as a muon (P=3.394 GeV/c)

Rekonstruktion (II): Brick Finding

Electronic data (Target Tracker & Muon spectrometer)

Scanning effort/event: CHORUS 1x1 mm² DONUT 5x5 mm² OPERA 100x100 mm²

So far, 640.000 cm² of CS surface have been scanned in OPERA

- automatic extraction of 25 bricks / 8 hour shift
- ~90'000 bricks handled until 2009 for the extraction of ~7000 event bricks

- Inserting and extracting the bricks by Brick Manipulation System (BMS)
- Aligning the films (X-ray and cosmics)
- Developing the films
- Scanning

Brick Analysis

The selected bricks are sent to scanning labs (at present 12)

Performance of Emulsion Film Detector

PERA

basic detector: AgBr crystal, size = 0.2 micron detection eff.= 0.16/crystal 10¹³ "detectors" per film

intrinsic resolution: 50 nm

deviation from linear-fit line. (2D)

Scanning of Emulsions

4 systems + sub systems Total scanning power : 325 cm²/h 33 systems in Europe Total scanning power : 660 cm²/h

CNGS beam performance & statistics

)PERA

Example of a CC event:

Example of a NC event:

Caren Hagner, Universität Hamburg

This analysis corresponds to ~35% of the 2008-2009 run statistics, = 1.89×10^{19} pot

1813 events found in the target (scan input)

Events with neutrino vertices located by scanning: 1617 (Brick tagging efficiency) x (vertex location efficiency) $\approx 60\%$

Events for which "decay search" was completed: 1088 (187NC, 901CC)

With the above statistics, and for $\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$ and full mixing, OPERA expects:

~ 0.5 v_{τ} events

Impact Parameter Measurement

PER

PERA

γ – Detection and Reconstruction of π^0 mass

EM shower energy measured by shower shape analysis and Multiple Scattering method

π^0 mass resolution (real data)

1 σ mass resolution: ~ 66 MeV

Charm candidate event (dimuon)

Caren Hagner, Universität Hamburg

Charm candidate event (4-prong)

 D_0 hypothesis: F.L.= 313.1µm, ϕ = 173.2⁰, invariant mass = 1.7 GeV

Main Kinematic Cuts for Charm Events

- P(daughter) >2.5 GeV/c, Pt(kink) > 0.5 GeV/c (for kink events)
- looser cuts for multi-prong events.

20 charm candidate events selected by the kinematic cuts, 3 of them with 1-prong kink topology. Expected: 16.0 ± 2.9 out of which 0.80 ± 0.22 with kink topology Expected BG: ~2 events

Examples of distributions:

v_e candidate event

electron

From a subsample of ~ 800 located events we detected $6 v_e$ candidates

Additional physics subject: study ν_{μ} - ν_{e} oscillations

The v_T candidate event

Muonless event 9234119599, taken on 22 August 2009, 19:27 (UTC) (as seen by the electronic detectors)

Caren Hagner, Universität Hamburg

)PERA

v_T candidate: from CS to vertex location

Large area scanning Full reconstruction of vertices and gammas

10000 µm

reconstructed v_T candidate event

Red regions: measured values for v_{T} candidate

- Invariant mass of $\gamma \gamma$ system compatible with π^0 mass value.
- Invariant mass of the $\pi \gamma \gamma$ system compatible with ρ (770)

π ^o mass	ρ mass	
120 ± 20 ± 35 MeV	640 ⁺¹²⁵ ₋₈₀ ⁺¹⁰⁰ ₋₉₀ MeV	

• ρ appears in about 25% of the τ decays:

$$\tau
ightarrow
ho (\pi \pi^0) \nu_{\tau}$$

OPERA collaboration:

"Observation of a first v_{τ} candidate event in the OPERA experiment…", Phys. Lett. B 691 (2010) 138.

Significance of v_T Observation

We observe 1 event in the 1-prong hadron τ decay channel

<u>background expectation for 1 prong hadron decay :</u>

 0.011 events (reinteractions)
 + 0.007 events (charm)
 = 0.018 ± 0.007 (syst) events 1-prong hadron

probability that the observed event is due to background: 1.8 % significance of $v_{\rm T}$ observation in OPERA: 2.36 σ

• <u>background from all decay modes:</u> 0.045 ± 0.020 (syst) events total BG

probability that the observed event is due to background: 4.5 % significance of $v_{\rm T}$ observation in OPERA: 2.01 σ

for $\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$ and full mixing, we expect:

 0.54 ± 0.13 (syst) v_{τ} CC events in all τ decay channels and 0.16 ± 0.04 (syst) v_{τ} CC events in the 1-prong hadron τ decay channel

and we have observed 1 event.

We can exclude at 90% CL, that

 $|\Delta m_{23}^2| > 7.5 \times 10^{-3} \text{ eV}^2$ (for full mixing)

Outlook

- 2010: Getting close to nominal 4.5x10¹⁹pot
- 2011: Negotiations with Cern ongoing, aim at partial compensation for 2012 break
- 2012 (?): LHC stop \rightarrow no SPS, no pots
- We need enough pots (22.5x10¹⁹) to obtain a significant (4σ) result with high probability
- All events of 2008 and 2009 scanned by end 2010.

Waiting for more v_T candidates...

OPERA Collaboration

Belgium IIHE-ULB Brussels Croatia IDD Zegreb	Italy Bari Bologna LNF Frascati L'Aquila, LNGS Naples		Russia NR RAS Moscow PI RAS Moscow TEP Moscow SINP MSU Moscow
IRB Zagreb			
France LAPP Annecy IPNL Lyon IPHC Strasbourg	Padova Rome Salerno		Switzerland Bern TH Zurich
	Japan		
Germany Hamburg	Aichi Toho Kobe		FunisiaCNSTN Tunis
Rostock	Nagoya		
	Utsunomiya		Turkey
Israel 🔯 Technion Haifa	Korea 4 Jinju 8		METU Ankara