General Relationty

Experimental

Barak Kol Hebrew Un, Jerusalem DESY June 09

GR was a theorist's paradise
Past but an experimentalist's hell"
Present (Misner, Thorne, Wheeler)
Future

Review by Clifford Will

Past

• Perihelion shift (Mercury – Einstein 1915)

 $\Delta \theta = \frac{6\pi \, GM}{p} \quad \text{per revolution}$

Where p is the ellipse's semi-latus rectum

$$r(\theta) = \frac{p}{1 + e\cos(\theta)}$$

43.0"/cent out of 5600.0"/cent observed

Deflection of light

(Einstein 1915) Eddington's expedition (1919) 4*GM*

$$\Theta = \frac{10 m_{sun}}{d}$$
$$= 1.75"$$
 Sun grazing rays

Shapiro (1964) time delay

$$\delta t = 4 G M_{sun} \log \left[(r_{src} + \vec{x}_{src} \cdot \hat{n}) (r_e + \vec{x}_e \cdot \hat{n}) / d^2 \right]$$

Actually measure the echo time as it changes as the trajectory evolves.

Gravitational redshift

- Adams (1925) spectral shift from Sirius B
- Pound & Rebka (Jefferson labs Harvard, 1959)
- Mössnauer effect

 $\Delta v / = g h / f$

Figure 38.1.

The experiment of Pound and Rebka (1959) and Pound and Snider (1965) on the gravitational redshift of photons rising 22.5 meters against gravity through a helium-filled tube in a shaft in the Jefferson Physical Laboratory of Harvard University. The source of Co^{57} had an initial strength greater than a curie. The 14.4 keV gamma rays had to pass in through an absorber enriched in Feb's to reach the large-window proportional counters. Both source and absorber were placed in temperature-regulated ovens. The velocity of the source consisted of two parts: one steady (v_M) , to put the center of the emission line on the part of the transmission curve that is nearly straight; and the other alternating between $+v_U$ and $-v_W$. The departure from symmetry between the two cases $+v_W$ and $-v_H$ allows one to determine the offset v_D (effect of gravitational redshift) from the zero-gravity case of stationary emitter and stationary absorber. The final result for the redshift was (0.9990 \pm 0.0076) times the value 4.905 \times 10⁻¹⁵ of 2gh/c² predicted from the principle of equivalence (difference between "up" experiment and "down" experiment).

The binary pulsar

- Hulse-Taylor (1974, Nobel 1993)
- B1913+16

Radio Telescope

Arecibo Radio Telescope (Puerto Rico) An Australian radio-telescope array

Present

Strong gravity

- Black holes
- Gravitational waves
- Cosmology (CMB, ...)

Black hole candidates

A. Stellar Astro-ph/0612312

Ob!4

J. Casares

 \mathbf{SS}

Table 1. Confirmed black holes and mass determinations

	System	P_{orb} [days]	$\begin{array}{c} f(M) \\ [M_{\odot}] \end{array}$	Donor Spect. Type	Classification	${\stackrel{M_{\mathbf{x}}}{[M_{\odot}]}}^{\dagger}$	
¹ Iı	GRS 1915+105 ^a V404 Cyg	$33.5 \\ 6.471$	$9.5 \pm 3.0 \\ 6.09 \pm 0.04$	K/M III K0 IV	LMXB/Transient	$14 \pm 4 \\ 12 \pm 2$	
	Cyg X-1 LMC X-1	$5.600 \\ 4.229$	$\begin{array}{c} 0.244 \pm 0.005 \\ 0.14 \pm 0.05 \end{array}$	09.7 Iab 07 III	HMXB/Persistent	$10 \pm 3 > 4$	
	XTE J1819-254 GRO J1655-40	$2.816 \\ 2.620$	$\begin{array}{c} 3.13 \pm 0.13 \\ 2.73 \pm 0.09 \end{array}$	B9 III F3/5 IV	IMXB/Transient	$7.1 \pm 0.3 \\ 6.3 \pm 0.3$	
Abstract. R	BW Cir ^b	2.545	5.74 ± 0.29	G5 IV	LMXB/Transient	> 7.8	ice for th
existence of a	LMC X-3	$1.754 \\ 1.704$	$ \frac{5.8 \pm 0.5}{2.3 \pm 0.3} $	$^{-}$ B3 V	HMXB/Persistent	7.6 ± 1.3	dynamica
masses in exc	XTE J1550-564 411 1542 475	1.542	6.86 ± 0.71 0.25 \pm 0.01	G8/K8 IV	LMXB/Transient	9.6 ± 1.2 9.4 ± 1.0	ems which
gives us a hin	H1705-250	0.520	4.86 ± 0.13	K3/7 V	LMXB/Transient	6 ± 2	narizes th
history of bla	GS 1124-684 XTE J1859+226°	$0.433 \\ 0.382$	$\begin{array}{c} 3.01 \pm 0.15 \\ 7.4 \pm 1.1 \end{array}$	K3/5 V	,, ,,	7.0 ± 0.6	
	GS2000+250 A0620-003	$0.345 \\ 0.325$	5.01 ± 0.12 2.72 ± 0.06	K3/7 V K4 V	,,	7.5 ± 0.3 11 ± 2	
	XTE J1650-500	0.321	2.73 ± 0.56	K4 V	,,	11 ± 2	
	GRS 1009-45 GRO J0422+32	$0.283 \\ 0.212$	$\begin{array}{c} 3.17 \pm 0.12 \\ 1.19 \pm 0.02 \end{array}$	K7/M0 V M2 V	**	5.2 ± 0.6 4 ± 1	
	XTE J1118+480	0.171	6.3 ± 0.2	K5/M0 V		6.8 ± 0.4	

e d h e

[†] Masses compiled by Orosz (2003) and Charles & Coe (2006).

^a New photometric period of 30.8±0.2 days recently reported by Neil, Bailyn & Cobb (2006). The implied mass function, assuming constant velocity amplitude, would be 8.7 M_{\odot} .

^b Updated after Casares et al (2007).

^c Period is uncertain, with another possibility at 0.319 days (see Zurita et al 2002). This would drop the mass function to $6.18 M_{\odot}$.

$$f(M_{\rm x}) = K^3 P_{\rm orb} / 2\pi G = M_{\rm x}^3 \sin^3 i / (M_{\rm x} + M_{\rm c})^2$$

1992

10 light days

B. Super-massive at galaxy center

 $M \approx 4.4 \cdot 10^{6} M_{sun}$ $R \approx 8 Kpc \approx 25 K lyr$ $R_{s} \approx 0.1 AU \approx 9.3 \mu as$

Instrinsic diameter @1.3mm waves 35 µas

Doeleman et al (2008)

Genzel MPI Garching (2010) "beyond reasonable doubt"

The zodiac

Sagittarius A*

The sun's location relative to the stars and as see from earth changes over the year

The milky way galaxy

Name's origin

Gravitational waves

- Sources
- Detectors

Binary source

Collapse

Crab nabula – Was created by a supernova

Merger of Neutron stars – computerized simulation (AEI Potsdam)

Initial conditions: nearby and at rest (unrealistic)

InterFerometer Observatories (IFOs)

LIGO (Washington, USA)

Sensitivity

VIRGO (Italy)

GEO600

German-British collab near Hanover

Bird's eye view

The trench

Cosmology

- Cosmic Microwave Background (CMB)
- WMAP (launched 2001, 7 year data)

- Hubble const 70.5 km/s/Mpc, age 13.75 Gyr
- Matter content: 72% dark energy, 23% cold dark matter, 5% baryonic matter.

Planck

- Launched may 09 to L2 Lagrangian point.
- Prelim data Feb 10, Dec 10, final end 2012.

Supernovae survey

Distant supernovae are dimmer than expected – constrains cosmological parameters

- Supernova Cosmology project (Berkeley based, PI Perlmutter)
- SuperNova Legacy Project 2003-8

Large scale structure

Seeds of non-uniformity; Voids, filaments, walls.
Sloan Digital Sky Survey (I 2000, II 2006, III 2008 – 2014...)
2dF (2 deg field) Galaxy Redshift Survey (1997-2002)

FIG. 1: Scale drawing of our detector and attractor. The 3 small spheres near the top of the detector were used for a continuous gravitational calibration of the torque scale. Four rectangular plane mirrors below the spheres are part of the twist-monitoring system. The detector's electrical shield is not shown.

FIG. 6: [Color online] Constraints on Yukawa violations of the gravitational $1/r^2$ law. The shaded region is excluded at the 95% confidence level. Heavy lines labeled Eöt-Wash 2006, Eöt-Wash 2004, Irvine, Colorado and Stanford show experimental constraints from this work, Refs. [11], [14], [15] and [16, 17], respectively. Lighter lines show various theoretical expectations summarized in Ref. [9].

10-4

λ [m]

10-5

10⁻²

 10^{-3}

$$V(r) = -G\frac{m_1m_2}{r}[1 + \alpha \exp(-r/\lambda)]$$

Gravity Probe B experiment

- Geodesic precession of spin
- Frame dragging effect (due to earth's rotation)

Future NASA: Physics of the Cosmos (formerly Beyond Einstein)

- Joint Dark Energy Mission (JDEM)
- Laser Interferometer Space Antena (LISA)
- International X ray Observatory (IXO)
- Also post-included past missions: XMM-Newton, Chandra, Fermi, Planck

LISA

Laser Interferometer
 Space Antenna

See also advanced LIGO (2014)

5 million km apart

Near horizon

- X-ray from accretion disks
- Iron fluorescence from disks
- Quasi Periodic Oscillations (QPO)

Accretion disks

Shadow of horizon

Broderick & Loeb arXiv:0508386. System at 45° to line of sight.

Theoretical challenges

- Post-Newtonian approximation
- Effective Field theory approach
- Many of the deep concepts of Quantum Field Theory in a classical setting

EIH in CLEFT

Action

• Feynman rules

$$ds^2 = e^{2\phi} (dt - A_i \, dx^i)^2 - e^{-2\phi} \, \gamma_{ij} \, dx^i dx^j$$

Feynman diagrams

Summary

- We discussed past, present and future gravitational experiments
- Central topics: weak Post-Newtonian corrections, Black holes, gravitational waves, cosmology
- Theoretical and experimental challenges

Danke!

Questions?

ורה עציון ©