Status of the ATLAS experiment

Takanori Kono University of Hamburg

DESY seminar, LHC forum

LHC forum (DESY, Hamburg and Zeuthen

Introduction

- LHC and ATLAS operation in 2009
 - LHC beam operation
 - ATLAS detector and trigger
 - Commissioning with single beam/beam splash
- Performance studies
 - Performance of each sub-detector
 - Combined reconstruction
- Charged particle multiplicities at $\sqrt{s}=900 \text{ GeV}$
- Conclusion

LHC (Large Hadron Collider)

ATLAS operation since Nov. 2009

- **LHC** 20/11 : First beam circulating in the LHC
 - 23/11 : First collision at $\sqrt{s}=900 \text{ GeV}$
 - 6/12 : Stable beams \rightarrow Inner Detector fully on
 - 8/12 : Collision at $\sqrt{s}=2.36$ TeV
 - 16/12 : End of 2009 runs

$\sqrt{s}=900 \text{ GeV}$ L=7 × 10²⁶ cm⁻²s⁻¹

ATLAS

- Total collision candidates at 900 GeV
 - 920 k events, ~21 µb⁻¹
- In stable beam condition
 - 540 k events, ~12 µb⁻¹

• With ID and solenoid ON, good data quality

• 380 k events, ~9 µb⁻¹

(cross section estimated from the observed rates at MBTS/LAr endcap, uncertainty ~ 30 %)

- Sample at 2.36 TeV
 - 34 k events
 - Without stable beam condition
 - ID not fully on

2010/3/9-10

ATLAS detector

Trigger

- ATLAS trigger
 - 3 level trigger system
 - General strategy was to use L1 only selection
- L1 trigger (hardware)
 - Main triggers
 - BPTX (colliding bunch)
 - MBTS (detector activity)
- High Level Trigger (HLT, software trigger)
 - Event streaming
 - Online beam spot calculation
 - Space point (hit) counting algorithm at Level-2 and loose tracking at Event Filter
 - Runs on L1 BPTX trigger (prescaled)
 - Used for the MBTS trigger efficiency study
 - All others in pass-through mode

- Beam pick-up system (BPTX)
 - 4 sensors on each side, ~175 m upstream of the interaction point
 - Used to trigger on colliding bunches

- Minimum Bias Trigger Scintillator (MBTS)
 - 16 scintillators on each side
 - 2.1<|η|<3.8

2010/3/9-10

Trigger rates and online beam-spot monitoring

Detector timing wrt. collision

• Most detectors were well timed-in within 25 ns during the combined cosmic running

• Overall adjustment to the collision timing was done with single beam data (splash events)

Particles from collision

Particles from single beam

TGC timing with single beam run

- Two peaks correspond to two sides
- Timing in each side within 1-2 bunch crossings (BC) TGC: Thin Gap Chamber (Endcap muon trigger chambers)

Candidate collision event

LHC forum (DESY, Hamburg and Zeuthen)

2010/3/9-10

Selecting collision events with timing

- •MBTS timing difference on two sides
 - Peak at $\sim \pm 25$ ns for single beam events
 - Peak at 0 ns seen with both beams

• These results came out just a few hours after the first collision

• DAQ → Reconstruction at Tier0 → Distribution to Tier2 sites takes typically ~4 hours

Performance studies

LHC forum (DESY, Hamburg and Zeuthen)

Inner Detector

- Pixel
- SCT (Semi-Conductor Tracker, silicon strip)
- TRT (Transition Radiation Tracker)
 - e/π sepration
- Precise tracking and vertexing
 - $\sigma/p_T = 3.4*10^{-4} (GeV) \oplus 0.015$
- 2 T solenoid field
- |η|<2.5

6.2m

Invariant mass of two oppositely charged tracks with

- More than 6 Pixel+SCT hits
- $p_T > 100 \text{ MeV}$

• Refit the vertex of the two tracks and require the direction of the two track momentum sum to be consistent with the primary to secondary vertex

• K_S^0 sample is used extensively for tracking studies

LHC forum (DESY, Hamburg and Zeuthen)

Pixel dE/dX and $\Lambda \rightarrow p\pi$

dE/dX from the Pixel detector

• Bands from π , K, proton

- dE/dX of proton candidates selected using $\Lambda/\overline{\Lambda}$ mass constraint
- Proton band is dominant
- Pion band from the BG is also seen

LHC forum (DESY, Hamburg and Zeuthen)

Calorimetry

- EM calorimeter
 - LAr, accordion structure
 - e/γ identification
 - σ/E ~ 1% at 100 GeV
- Hadronic calorimeter
 - Fe/scintillator tiles
 - σ/E ~ 50 %/√E⊕0.03

Raw cell energy distributions

- Random trigger \rightarrow noise
- Collision candidates
- Reasonable agreement between data and minimum bias MC
- Data points taken at $\sqrt{s}=2.38$ TeV is also shown for the Tile calorimeter measurement

Response to hadrons

Calorimeter response to single hadron → Will be used for hadronic calibration

<u>E/p</u>

- Isolated track: no track in a cone of 0.4
 - 0.5<pt<10 GeV
 - |η|<0.8
- Energy sum of cells in a cone of R=0.1 around the isolated track

Jets

EM shower shapes

Distributions of longitudinal and lateral EM shower shape variables.

140

ATLAS Preliminary

Electron ID with TRT, Di-photon mass

LHC forum (DESY, Hamburg and Zeuthen)

1200

Photon conversion

Conversion at the 1st layer of SCT pt (track1) = 0.79 GeV (e-) pt (track2) = 1.75 (GeV) (e+) Both track extends to TRT with high threshold hits (3 and 11, respectively)

- Use multi tracking algorithms
 - Inside-out, Outside-in
 - TRT only
- Small $\Delta \phi$ and $\Delta cot \theta$
- $D-R_1-R_2 \sim 0$
- Common vertex

Muon distributions

- Muons reconstructed using Muon spectrometer and ID
 - p_T >2.5 GeV and $|\eta|$ <2.5 in runs with toroid magnet on
- Muon candidates have very low transverse momentum at 900 GeV
 - ~50 candidates mostly in the endcap
- Good agreement between data/MC ithin the statistical uncertainty

Muon

Detector status

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	97.5%
SCT Silicon Strips	6.3 M	99.3%
TRT Transition Radiation Tracker	350 k	98.2%
LAr EM Calorimeter	170 k	98.6%
Tile calorimeter	9800	98.0%
Hadronic endcap LAr calorimeter	5600	99.9%
Forward LAr calorimeter	3500	100%
LVL1 Calo trigger	7160	99.5%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	98.5%
RPC Barrel Muon Trigger	370 k	99.5%
TGC Endcap Muon Trigger	320 k	100%

Detectors status is excellent with >99 channels operational

Analysis

Charged particle multiplicities at $\sqrt{s}=900$ GeV

• The measurement of charged particles in inclusive proton-proton collision constrains phenomenological models of soft QCD

• Important ingredient for future studies of high p_T physics at the LHC

$$\sigma_{Tot} = \sigma_{el} + \sigma_{SD} + \sigma_{DD} + \sigma_{ND}$$

Single Diffractive Double Diffractive Non Diffractive

Distributions of primary charged particles in inelastic events

$$\frac{1}{N_{ev}} \cdot \frac{dN_{ch}}{d\eta}, \quad \frac{1}{N_{ev}} \cdot \frac{1}{p_T} \cdot \frac{dN_{ch}}{dp_T}, \quad \frac{1}{N_{ev}} \cdot \frac{dN_{ev}}{dN_{ch}}, \quad \langle p_T \rangle vs. N_{ch}$$

Phase space

$$p_T^{\text{track}} > 0.5 \text{ GeV}$$

 $|\eta| < 2.5$
 $N_{\text{ch}} \ge 1$

Final results should reflect what was measured directly with little model dependence as possible
Do not extrapolate to unmeasured phase space

Analysis method

- Trigger
 - L1_MBTS_1, require at least 1 out of the 32 MBTS scintillators fires
 - Single-arm trigger overlapping with the acceptance of the tracker
 - Efficiency ~ 100 % (estimated from data)
- Tracking (Inside-out pattern recognition)
 - $\circ p_T > 0.5 \text{ GeV}, |\eta| < 2.5$
 - Number of hits on the track (>1 Pixel, >6 SCT hits)
 - $|d_0^{PV}| < 1.5 \text{ mm}, |z_0^{PV} \sin \theta| < 1.5 \text{ mm}$
 - Remove secondary charged particles
- Require primary vertex
 - Vertexing requires >3 tracks with p_T >150 MeV, $|d_0^{BS}|$ <4 mm
- Apply correction for trigger, tracking and vertexing efficiencies
 - Tracking efficiency from MC with many cross checks with data
 - Trigger and vertexing efficiency from data
- ► ~330 k events after selection
 - Contribution of beam background estimated from unpaired bunches is $< 10^{-4}$

Tracking distributions

• Very good agreement between data/MC

• Secondary particles in $|d_0^{PV}| < 1.5 \text{ mm}$, $|z_0^{PV} \sin \theta| < 1.5 \text{ mm}$ are subtracted by normalizing MC using the side-band

Efficiencies

Tracking efficiencies as functions of p_T and η Estimated from MC

Vertex reconstruction efficiency parameterized as a function of the number of tracks without the d_0 and z_0 cuts

LHC forum (DESY, Hamburg and Zeuthen)

- Distributions are normalized to the number of events
- All MC tunes underestimate ATLAS data
- data/MC agree well only for $p_T\!\!<\!\!0.7$

 N_{ch} distribution and $< p_T > vs. N_{ch}$

- All MC underestimate data at N_{ch}>10
- Increase of $\langle p_T \rangle$ as a function of N_{ch}. Change of slope at N_{ch}~10 (also seen at CDF)

LHC forum (DESY, Hamburg and Zeuthen)

Comparison with other experiments

Comparison to UA1

- N_{ch} higher than ATLAS data by ~ 20 %
- Consistent with the double-arm trigger requirement used by UA1 which rejects events with low charged particle multiplicities

Comparison to CMS

- \bullet N_{ch} consistently lower than ATLAS data
- Different treatment of diffractive components

Conclusion

- ATLAS data-taking with 900 GeV collision was very successful
 - 380 k collision events with ID fully on and good data quality
 - Detector operational status is excellent
- Performance studies with collision events
 - Tracking (alignment, resonances, vertexing)
 - Response to hadrons (single hadron, jets, missing E_T)
 - Electron & photon isolation (shower shapes, di-photon mass, γ conversion)
 - Muon reconstruction (limited statistics but reasonable distributions)
 - In general data show good agreement with minimum bias MC
- Charged particle multiplicity measurement
 - Measurement done in $p_T > 0.5$ GeV, $|\eta| < 2.5$ ($N_{ch} \ge 1$)
 - All MC tunes underestimate ATLAS data
- Expecting higher CM energy and luminosity from LHC and more physics to come in 2010

Backup slides

Main physics goals

- Discovery of Higgs particle
- Search for physics beyond the Standard Model
- Large cross section for QCD dijet

Luminosity

Timing with TRT

Average drift timing edge from TRT

LHC forum (DESY, Hamburg and Zeuthen)