


#### Super Flavour Factories:



DESY Zeuthen, Berlin 5th May 2010

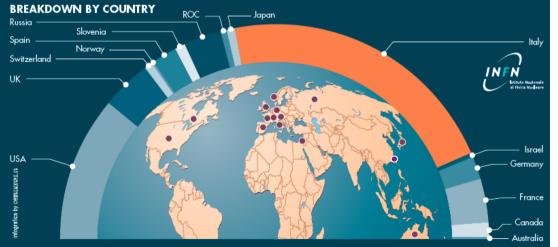


Conceptual Design Report: arXiv:0709.0451 Valencia Workshop Report: arXiv:0810.1312 http://web.infn.it/superb/

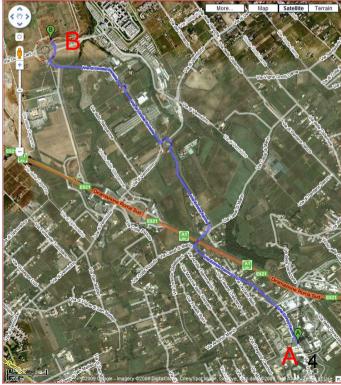


# Overview

- What is SuperB?
- Physics Case in the LHC era
- Accelerator Aspects
- Detector Design
- Current Status
- A few words about Belle-II
- Summary




# What is SuperB?




### SuperB in a Nutshell

- High Luminosity e<sup>+</sup>e<sup>-</sup> collider.
- Aim to reach  $\mathcal{L} \ge 10^{36}$  cm<sup>-2</sup>s<sup>-1</sup>.
- Low emittance operation.
- Utilize 'crab waist' technique (now tested and proven to work).
- Stable accelerator design:
  - Approved by Machine Advisory Committee.
- Commission as early as 2015.
- Strong international interest in this physics: >300 Conceptual Design Report signatories from:



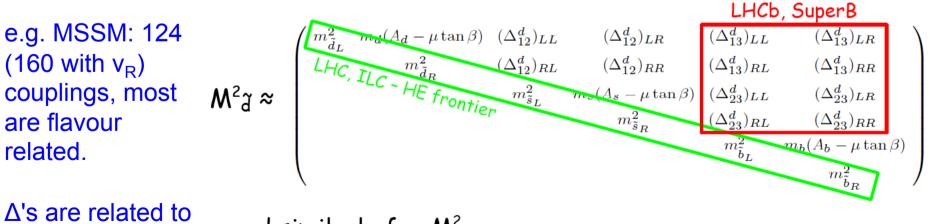
- Physics Goal:
  - Elucidate new physics in the LHC era as thoroughly as possible.
- Two possible sites in the suburbs of Rome:
  - INFN LNF (Frascati)/ESRA [A]
  - Tor Vergata Campus (Rome II) [B]





### SuperB

- Aims to constrain flavour couplings of new physics at high energy:
  - Refine understanding of nature if new physics exists at high energy.
    - We need to test the ansatz that new physics might be flavour blind:
      - Case 1: trivial solution  $\rightarrow$  Reject more complicated models.
      - Case 2: non-trivial solution  $\rightarrow$  Reject flavour blind models.


Quarks and neutrinos have non-trivial couplings. e,g, the CKM matrix in the Standard Model of particle physics. How far fetched is a trivial flavour blind new physics sector?

$$J^{\mu} = (\overline{u}, \overline{c}, \overline{t}) \frac{\gamma^{\mu} (1 - \gamma^5)}{2} \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}s_{13} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$



## SuperB

- Aims to constrain flavour couplings of new physics at high energy:
  - Refine understanding of nature if new physics exists at high energy.
    - We need to test the ansatz that new physics might be flavour blind:
      - Case 1: trivial solution  $\rightarrow$  Reject more complicated models.
      - Case 2: non-trivial solution  $\rightarrow$  Reject flavour blind models.



New Physics mass scale.



- Aims to constrain flavour couplings of new physics at high energy:
  - If the LHC doesn't find new physics: SuperB indirectly places constraints beyond the reach of the LHC and SLHC.
  - and if the LHC does find new physics, there is even more work to do at SuperB.
  - Some of the examples of this will follow shortly...



### SuperB

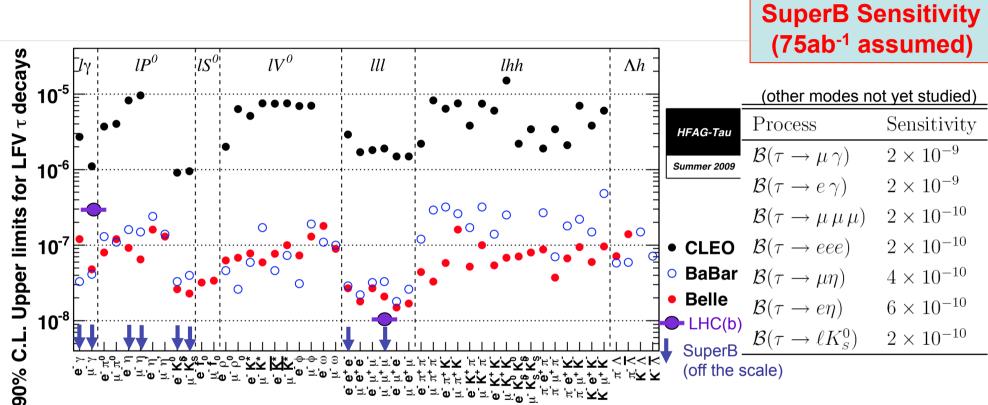
- The measurements to be made at SuperB fall into two categories:
  - New physics sensitive goals of the experiment
    - Some of these physics processes will be discussed in a moment: B, D, τ, Y, ....
    - This is why we want to build SuperB!
  - Standard Model calibrations (*I won't talk about this much*)
    - This is how we validate our understanding of the detector: repeating measurements done by BaBar/ Belle and LHCb.
    - The equivalent of doing W, Z and PDF physics at ATLAS/CMS.



**Case studies:** 

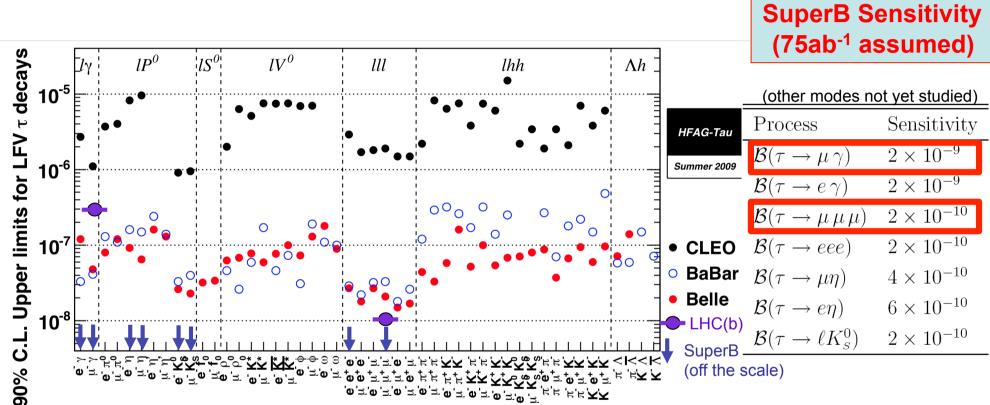
- **1. Lepton Flavour Violation**: T decay as an example of many LFV measurements possible at SuperB.
- **2. Neutral Higgs A0**: what can the flavour sector add to high  $p_T$  searches?
- 3. Charged Higgs: what do we know; what will LHC tell us; what does SuperB add?
- 4. ΔS measurements: high mass particle interferometry.

# Physics Case in the LHC era


Why is a Super Flavour Factory like SuperB relevant when we have the energy frontier experiments and LHCb?

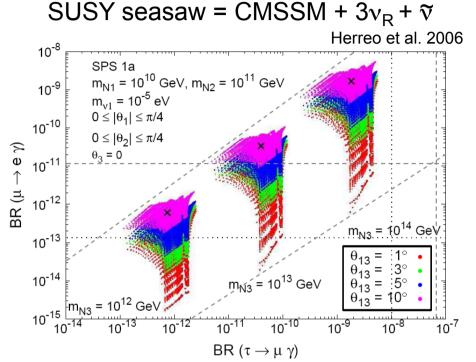
What is the minimum data set to make sure that we are doing something sensible?




#### **Charged Lepton Flavour Violation**

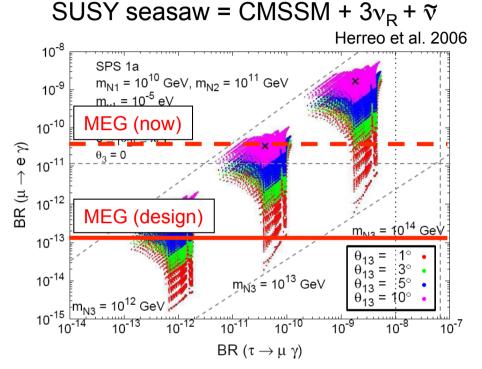





- LHC is *not* competitive (Re: ATLAS, CMS, and LHCb).
- 80% polarised e<sup>-</sup> beam helps reduce SM background.
- SuperB sensitivity ~10 50× better than New Physics allowed branching fractions.

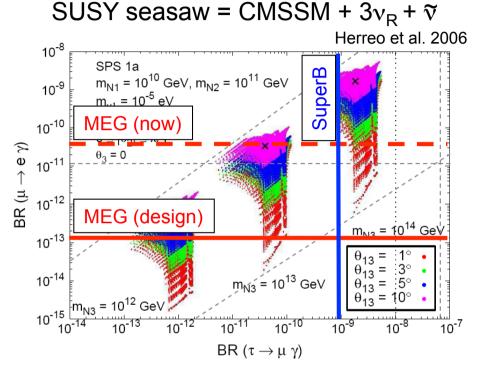





- LHC is *not* competitive (Re: ATLAS, CMS, and LHCb).
- 80% polarised e<sup>-</sup> beam helps reduce SM background.
- SuperB sensitivity ~10 50× better than New Physics allowed branching fractions.

- $\tau \rightarrow \mu \gamma$  upper limit can be correlated to  $\theta_{13}$  (neutrino mixing/CPV, T2K etc.) and also to  $\mu \rightarrow e \gamma$ .
- Complementary to flavour mixing in quarks.
- Golden modes:
  - $-\tau \rightarrow \mu \gamma$  and  $3\mu$ .
- e<sup>-</sup> beam polarization:
  - Lower background
  - Better sensitivity than competition!
- e<sup>+</sup> polarization may be used later in programme.
- CPV in  $\tau \rightarrow K_S \pi v$  at the level of ~10<sup>-5</sup>.
- Added Bonus:
  - Can also measure τ g-2 (polarization is crucial).
  - σ(g-2) ~2.4 ×10<sup>-6</sup> (statistically dominated error).

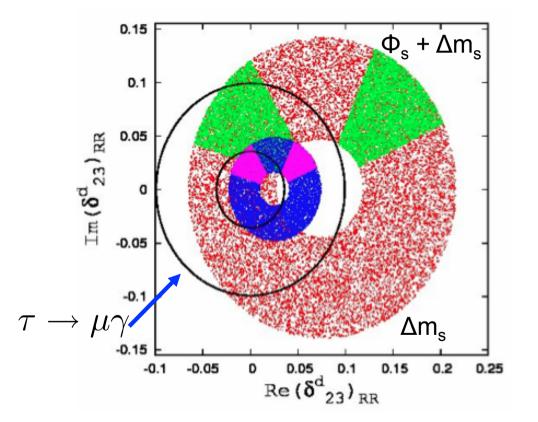



Use  $\mu$   $\gamma/3I$  to distinguish SUSY vs. LHT.

- $\tau \rightarrow \mu \gamma$  upper limit can be correlated to  $\theta_{13}$  (neutrino mixing/CPV, T2K etc.) and also to  $\mu \rightarrow e \gamma$ .
- Complementary to flavour mixing in quarks.
- Golden modes:
  - $-\tau \rightarrow \mu \gamma$  and  $3\mu$ .
- e<sup>-</sup> beam polarization:
  - Lower background
  - Better sensitivity than competition!
- e<sup>+</sup> polarization may be used later in programme.
- CPV in  $\tau \rightarrow K_S \pi v$  at the level of ~10<sup>-5</sup>.
- Added Bonus:
  - Can also measure τ g-2 (polarization is crucial).
  - σ(g-2) ~2.4 ×10<sup>-6</sup> (statistically dominated error).



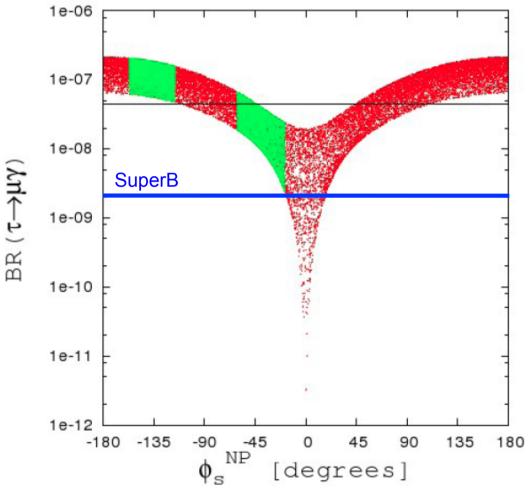
Use  $\mu$   $\gamma/3I$  to distinguish SUSY vs. LHT.


- $\tau \rightarrow \mu \gamma$  upper limit can be correlated to  $\theta_{13}$  (neutrino mixing/CPV, T2K etc.) and also to  $\mu \rightarrow e \gamma$ .
- Complementary to flavour mixing in quarks.
- Golden modes:
  - $-\tau \rightarrow \mu \gamma$  and  $3\mu$ .
- e<sup>-</sup> beam polarization:
  - Lower background
  - Better sensitivity than competition!
- e<sup>+</sup> polarization may be used later in programme.
- CPV in  $\tau \rightarrow K_S \pi v$  at the level of ~10<sup>-5</sup>.
- Added Bonus:
  - Can also measure τ g-2 (polarization is crucial).
  - σ(g-2) ~2.4 ×10<sup>-6</sup> (statistically dominated error).



Use  $\mu$   $\gamma/3I$  to distinguish SUSY vs. LHT.

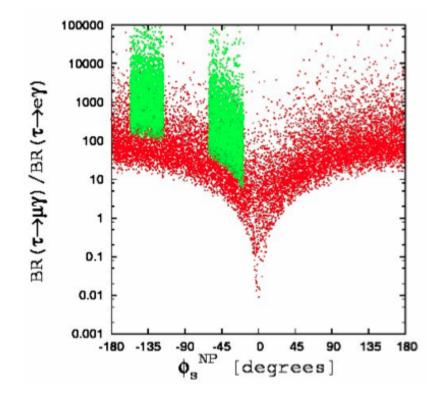



 $m_{\tilde{q}} = 300 \, GeV$  BLUE  $m_{\tilde{q}} = 500 \, GeV$  RED



- SU(5) SUSY GUT Model (arXiv: 0710.5443, Parry and Zhang).
- Model has non-trivial SUSY squark couplings.
- Current  $B_S$  mixing measurement favours  $B(\tau \rightarrow \mu\gamma)>3\times 10^{-9}$ .
- Need SuperB to probe to this sensitivity.

N.B. Different New Physics Models have different features, and different hierarchies!






- SU(5) SUSY GUT Model (arXiv: 0710.5443, Parry and Zhang).
- Model has non-trivial SUSY squark couplings
- Current  $B_S$  mixing measurement favours  $B(\tau \rightarrow \mu\gamma)>3\times 10^{-9}$ .
- Need SuperB to probe to this sensitivity.

N.B. Different New Physics Models have different features, and different hierarchies!

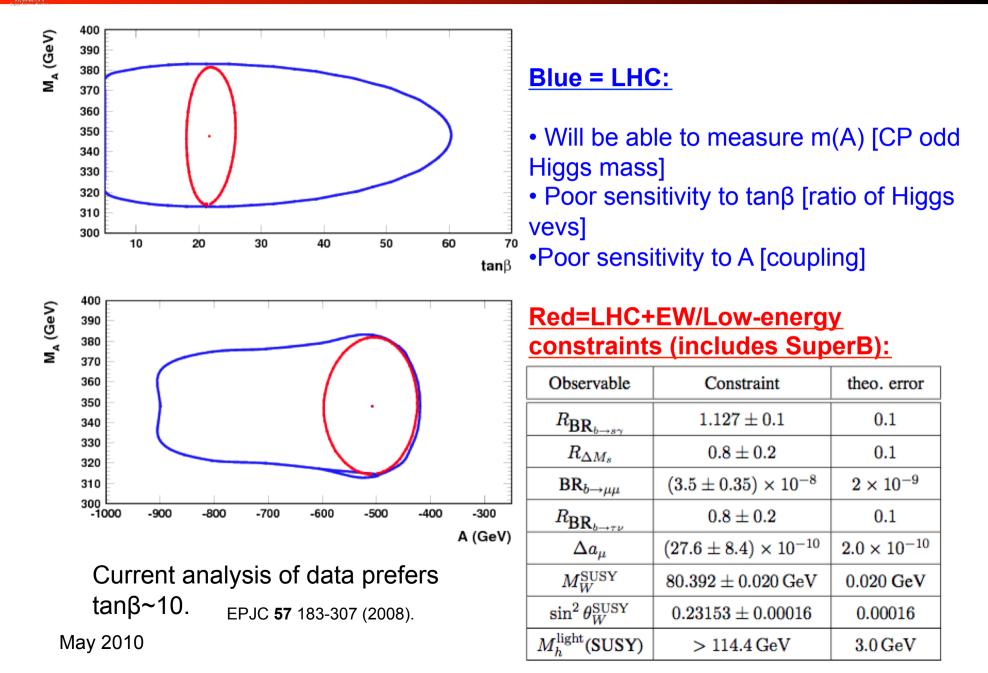




- SU(5) SUSY GUT Model (arXiv: 0710.5443, Parry and Zhang).
- Model has non-trivial SUSY squark couplings
- Current  $B_S$  mixing measurement favours  $B(\tau \rightarrow \mu\gamma)>3\times 10^{-9}$ .
- Need SuperB to probe to this sensitivity.

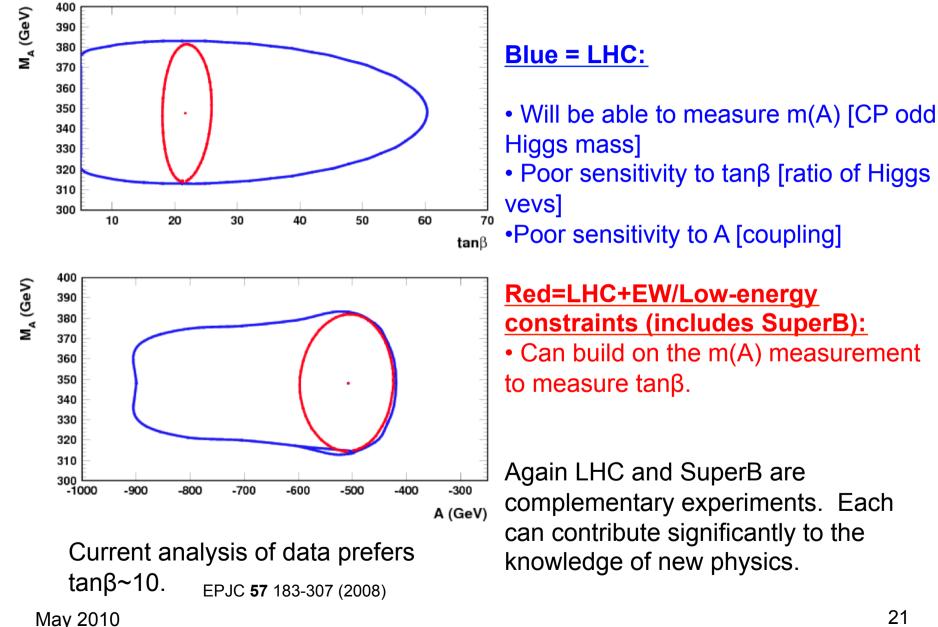
N.B. Different New Physics Models have different features, and different hierarchies!




#### Some Higgs Phenomenology

N.B. The SM Higgs (within CMSSM) can also be constrained using b to s $\gamma$ , g-2 and  $\Omega_{CDM}$ . SuperB has input to s $\gamma$  and the g-2 constraints. e.g. See: Weiglein et al. arXiv:0707.3447

Here I show two non-SM scenarios.




### CMSSM: LHC/SuperB complementarity





### CMSSM: LHC/SuperB complementarity

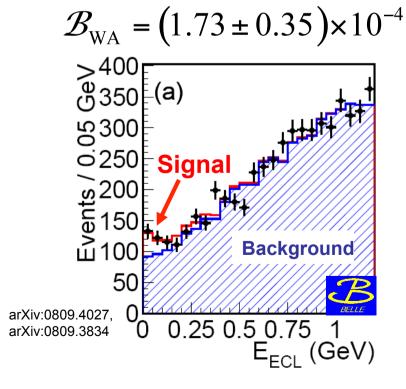


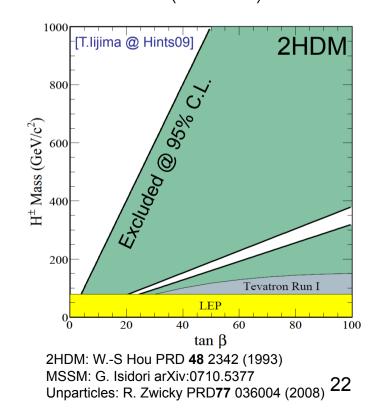






- Within the SM, sensitive to  $f_B$  and  $|V_{ub}|$ :  $\mathcal{B}_{SM} \sim 1.6 \times 10^{-4}$ .
- $\mathcal{B}$  affected by new physics.
  - MFV models like 2HDM / MSSM.
  - Unparticles.

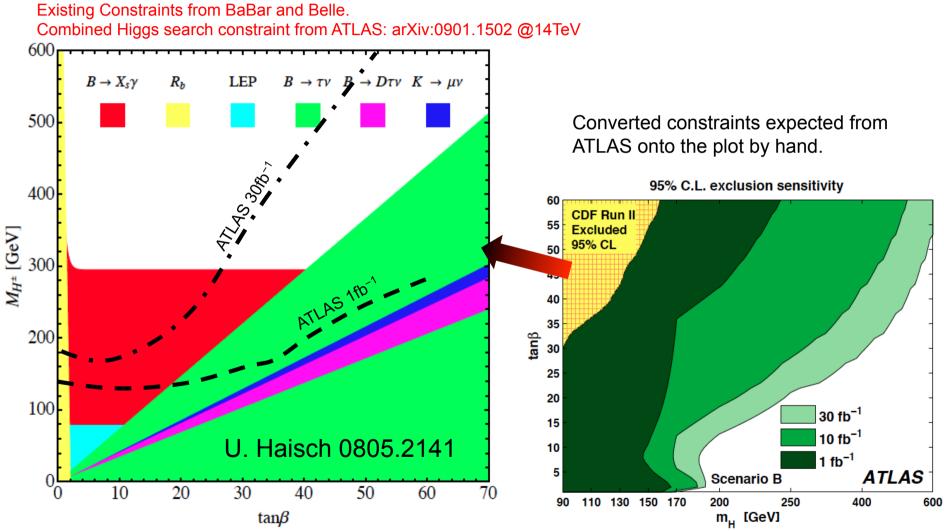

MSSM.  


$$\mathcal{B}_{S\mathcal{M}}(B^+ \rightarrow l^+ v_l) = \frac{G_F^2 m_B m_l^2}{8\pi} \left(1 - \frac{m_l^2}{m_B^2}\right) f_B^2 |V_{ub}|^2 \tau_B$$
(modulo v).

 $(H^+,W^+)$ 

b

• Fully reconstruct the event (modulo v).

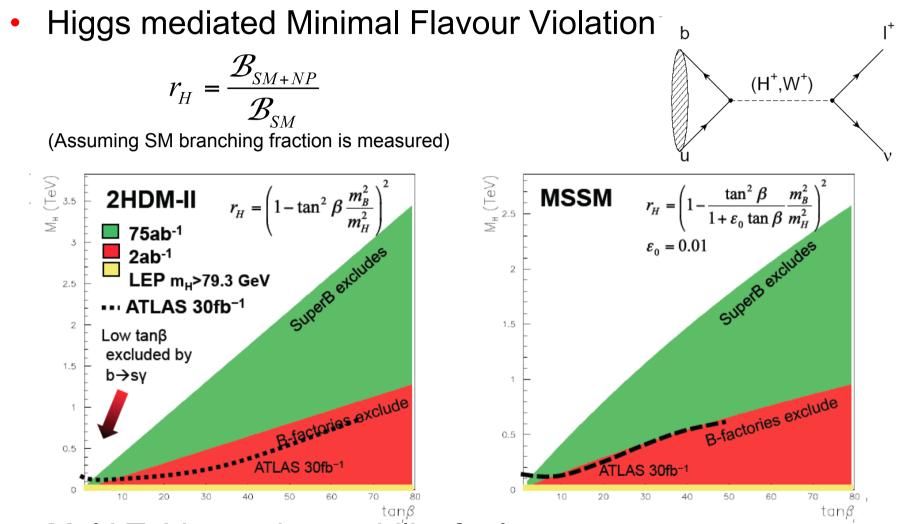







### **Charged Higgs**

B-factory searches competitive with LHC era: e.g. 2HDM




LHC expected to have 5fb-1 @14TeV ~ 2015.

May 2010

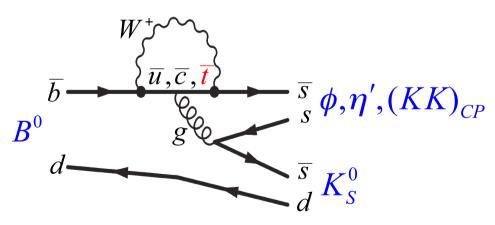


# **Charged Higgs**



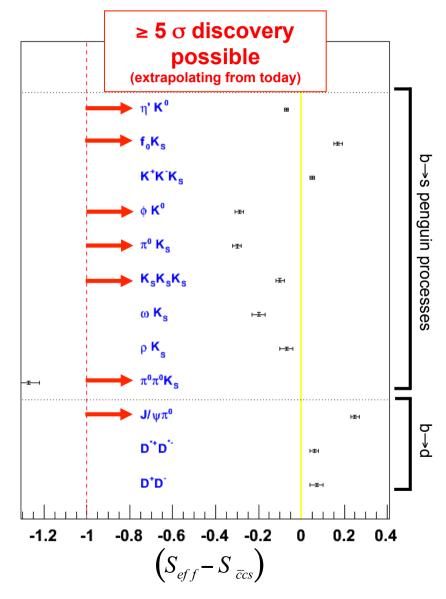
- Multi TeV search capability for large tanβ.
- Includes SM uncertainty ~20% from  $V_{ub}$  and  $f_B$ .

B-factories actually have 1.5ab<sup>-1</sup> of data: ATLAS sensitivity sketched from combined sensitivity plots in arXiv:0901.0512.




#### Time-dependent CP Violation as a New Physics probe

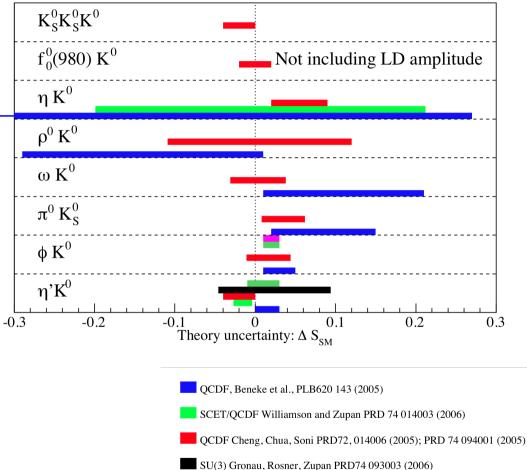



#### $\Delta S$ measurements

- β=(21.1±0.9)° from Charmonium decays.
- Look in many different b→s and b→d decays for sin2β deviations from the SM:
- The golden channel is:



 Deviations would be from high mass particles in loops: H, χ, ...


May 2010





#### $\Delta S$ measurements

- The SM uncertainty is strongly mode dependent.
- Golden modes have to be well measured and theoretically clean.
- Prefer to also have robust constraints from more than one theoretical approach.
- Precision measurements of the reference Charmonium decay also have a small SM uncertainty.

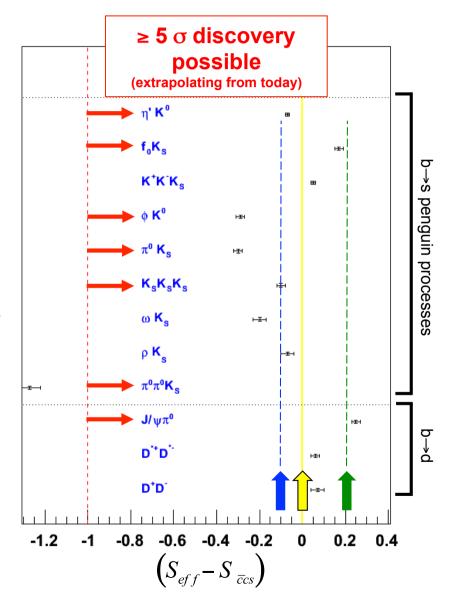


QCDF Buchalla, Hiller, Nir, Raz, JHEP 09, 074 (2005)



#### ∆S measurements

- We were reminded that we should be careful with what we compare:
  - New Physics could affect cc̄s sin2β.
- 1) Predict  $sin 2\beta$  from indirect constraints.


 $[\sin(2\beta)]_{noV_{ub}}^{prediction} = 0.87 \pm 0.09.$ 

- 2) Compare to ccs measurement.  $[\sin 2\beta]_{c\bar{cs}} = 0.672 \pm 0.023$
- 3) Compare to clean penguin measurements.  $[\sin 2\beta]_{b \to s-penguin}^{clean} = 0.58 \pm 0.06$

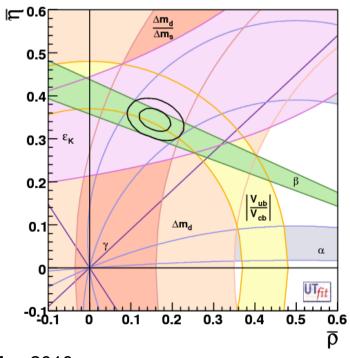
#### (or the average of the two) Are these 2.1-2.7σ hints for new physics?

Lunghi and Soni, Phys.Lett.B**666** 162-165 (2008). Buras and Guadagnoli Phys Rev D **78** 033005 (2008).

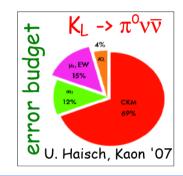
 Can theory error be reduced for other modes?



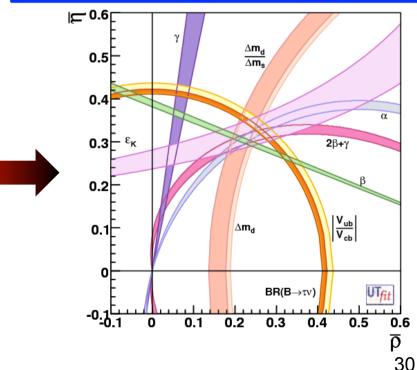



#### $\Delta S$ measurements

| Mode                          | Curre | ent Pro | ecision | Predie | cted Pr | recision $(75  \mathrm{ab}^{-1})$ | Disco     | very Potential |
|-------------------------------|-------|---------|---------|--------|---------|-----------------------------------|-----------|----------------|
|                               | Stat. | Syst.   | Th.     | Stat.  | Syst.   | Th.                               | $3\sigma$ | $5\sigma$      |
| $J/\psi K^0_S$                | 0.022 | 0.010   | < 0.01  | 0.002  | 0.005   | < 0.001                           | 0.02      | 0.03           |
| $\eta' K_S^0$                 | 0.08  | 0.02    | 0.014   | 0.006  | 0.005   | 0.014                             | 0.05      | 0.08           |
| $\phi K^0_S \pi^0$            | 0.28  | 0.01    | _       | 0.020  | 0.010   | _                                 | 0.07      | 0.11           |
| $f_0K_S^0$                    | 0.18  | 0.04    | 0.02    | 0.012  | 0.003   | 0.02                              | 0.07      | 0.12           |
| $K^{0}_{S}K^{0}_{S}K^{0}_{S}$ | 0.19  | 0.03    | 0.013   | 0.015  | 0.020   | 0.013                             | 0.08      | 0.14           |
| $\phi K^0_S$                  | 0.26  | 0.03    | 0.02    | 0.020  | 0.010   | 0.005                             | 0.09      | 0.14           |
| $\pi^0 K^0_S$                 | 0.20  | 0.03    | 0.025   | 0.015  | 0.015   | 0.025                             | 0.10      | 0.16           |
| $\omega K_S^0$                | 0.28  | 0.02    | 0.035   | 0.020  | 0.005   | 0.035                             | 0.12      | 0.21           |
| $K^+K^-K^0_S$                 | 0.08  | 0.03    | 0.05    | 0.006  | 0.005   | 0.05                              | 0.15      | 0.26           |
| $\pi^0\pi^0K^0_S$             | 0.71  | 0.08    | —       | 0.038  | 0.045   | —                                 | 0.18      | 0.30           |
| $ ho K_S^0$                   | 0.28  | 0.07    | 0.14    | 0.020  | 0.017   | 0.14                              | 0.41      | 0.61           |
| $J/\psi\pi^0$                 | 0.21  | 0.04    | _       | 0.016  | 0.005   | _                                 | 0.05      | 0.08           |
| $D^{*+}D^{*-}$                | 0.16  | 0.03    | _       | 0.012  | 0.017   | _                                 | 0.06      | 0.11           |
| $D^+D^-$                      | 0.36  | 0.05    | _       | 0.027  | 0.008   | _                                 | 0.09      | 0.14           |




#### **Precision CKM**

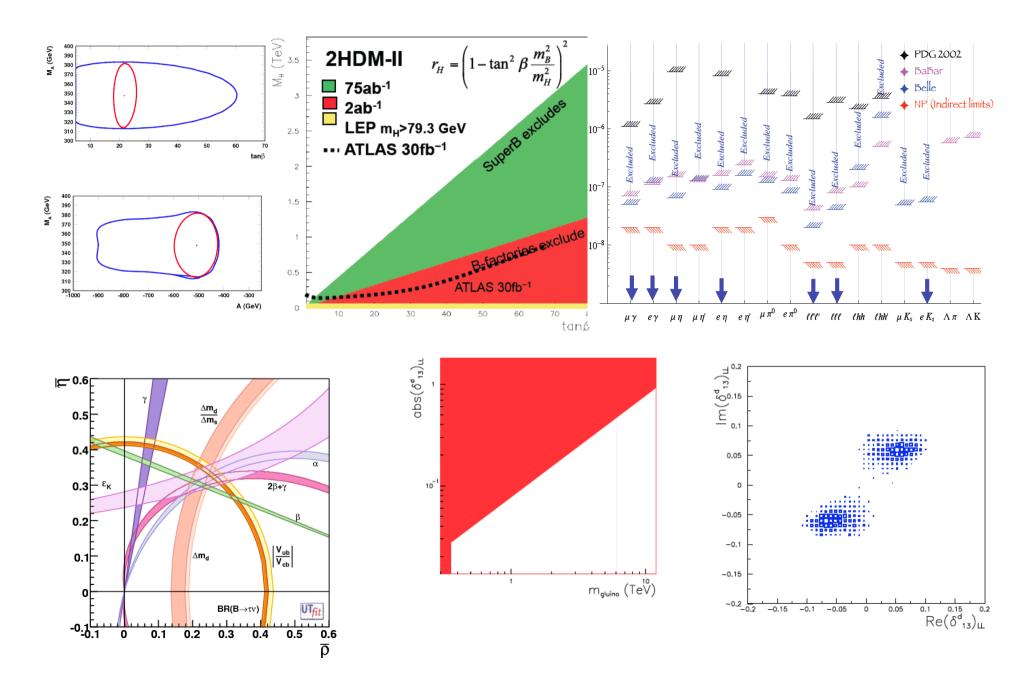

- CKM is a 36 year old ansatz.
- Works at the 10% level.
- No underlying physical insight.
- Small new physics contributions not ruled out (% level).



Precision CKM from SuperB will open up more new physics search opportunities: e.g.  $K \rightarrow \pi \nu \nu$ :



K⁺ decay has a similar error budget.




|   | SuperB                                                                 | B physics @ Y(4            | 4S)                       | Variety of measu                          | rements for any o                      | bservable        |
|---|------------------------------------------------------------------------|----------------------------|---------------------------|-------------------------------------------|----------------------------------------|------------------|
|   | Observable                                                             | B Factories (2 $ab^{-1}$ ) | Super $B$ (75 $ab^{-1}$ ) | Observable                                | B Factories $(2 \text{ ab}^{-1})$      | Super $B$ (75 at |
|   | $\sin(2eta) \; (J/\psi \; K^0)$                                        | 0.018                      | 0.005 (†)                 |                                           | 2007                                   | 107 (1)          |
|   | $\cos(2\beta) \; (J/\psi  K^{*0})$                                     | 0.30                       | 0.05                      | $\mathcal{B}(B \to \tau \nu)$             | 20%                                    | 4% (†)           |
|   | $\sin(2eta)~(Dh^0)$                                                    | 0.10                       | 0.02                      | $\mathcal{B}(B \to \mu \nu)$              | visible                                | 5%               |
|   | $\cos(2eta)~(Dh^0)$                                                    | 0.20                       | 0.04 🚽                    | $\mathcal{B}(B \to D\tau\nu)$             | 10%                                    | 2%               |
|   | $S(J/\psi  \pi^0)$                                                     | 0.10                       | 0.02                      |                                           |                                        |                  |
|   | $S(D^+D^-)$                                                            | 0.20                       | 0.03                      | $\mathcal{B}(B  ightarrow  ho \gamma)$    | 15%                                    | 3% (†)           |
|   | $\alpha \ (B \to \pi \pi)$                                             | $\sim 16^{\circ}$          | 3°                        | ${\cal B}(B	o\omega\gamma)$               | 30%                                    | 5%               |
|   | $\alpha \ (B \to \rho \rho)$                                           | $\sim 7^{\circ}$           | 1-2° (*)                  | $A_{CP}(B \to K^* \gamma)$                | 0.007 (†)                              | 0.004 († *)      |
|   | $\alpha \ (B \to \rho \pi)$                                            | $\sim 12^{\circ}$          | 2°                        | $A_{CP}(B \to \rho \gamma)$               | $\sim 0.20$                            | 0.05             |
|   | $lpha \ (	ext{combined})$                                              | $\sim 6^{\circ}$           | $1-2^{\circ}$ (*)         | $A_{CP}(b \to s\gamma)$                   | 0.012 (†)                              | 0.004 (†)        |
|   | $\gamma \ (B \to DK, D \to CP \text{ eigenst})$                        | ates) $\sim 15^{\circ}$    | 2.5°                      | $A_{CP}(b \to (s+d)\gamma)$               | 0.012 (1)                              | 0.004 (†)        |
|   | $\gamma (B \to DK, D \to \text{suppressed})$                           | states) $\sim 12^{\circ}$  | 2.0°                      |                                           |                                        |                  |
|   | $\gamma (B \rightarrow DK, D \rightarrow \text{multibody})$            | states) $\sim 9^{\circ}$   | 1.5°                      | $S(K_s^0\pi^0\gamma)$                     | 0.15                                   | 0.02 (*)         |
|   | $\gamma \ (B \to DK, \text{ combined})$                                | $\sim 6^{\circ}$           | $1-2^{\circ}$             | $S( ho^0\gamma)$                          | possible                               | 0.10             |
| ſ | $2\beta + \gamma \ (D^{(*)\pm}\pi^{\mp}, \ D^{\pm}K^{0}_{S}\pi^{\mp})$ | ) 20°                      | 5°                        |                                           |                                        |                  |
|   | - · · · · · · · · · · · · · · · · · · ·                                |                            | 0.05 ( )                  | $A_{CP}(B \to K^*\ell\ell)$               | 7%                                     | 1%               |
|   | $S(\phi K^0)$                                                          | 0.13                       | 0.02 (*)                  | $A^{FB}(B \to K^*\ell\ell)s_0$            | 25%                                    | 9%               |
|   | $S(\eta' K^0)$                                                         | 0.05                       | 0.01 (*)                  | $A^{FB}(B \to X_s \ell \ell) s_0$         | 35%                                    | 5%               |
|   | $S(K_s^0 K_s^0 K_s^0)$                                                 | 0.15                       | 0.02 (*)                  | $\mathcal{B}(B \to K \nu \overline{\nu})$ | visible                                | 20%              |
| 7 | $S(K_s^0\pi^0)$                                                        | 0.15                       | 0.02 (*)                  | $\mathcal{B}(B \to \pi \nu \bar{\nu})$    | _                                      | possible         |
|   | $S(\omega K_s^0)$                                                      | 0.17                       | 0.03 (*)                  |                                           | agible also at LUC                     | <u> </u>         |
|   | $S(f_0K_s^0)$                                                          | 0.12                       | $0.02\;(*)$               |                                           | ossible also at LHC                    |                  |
|   |                                                                        |                            |                           | Sim                                       | nilar precision at LH                  | CD               |
|   | $ V_{cb} $ (exclusive)                                                 | 4% (*)                     | 1.0% (*)                  | <b>Example of</b> «                       | SuperB specific                        | cs »             |
|   | V <sub>cb</sub>   (inclusive)                                          | 1% (*)                     | 0.5% (*)                  | _                                         | addition to exclus                     |                  |
|   | $ V_{ub} $ (exclusive)<br>$ V_{ub} $ (inclusive)                       | 8% (*)<br>8% (*)           | 3.0% (*)<br>2.0% (*)      |                                           | 0                                      | 2                |
|   | Pabl (mensive)                                                         | 070 (*)                    | 2.070 (*)                 | channels wi                               | th $\pi^0$ , $\gamma$ 's, $\nu$ , many | <b>NS</b>        |

| Process                                                                                                              | Sensitivity                             | Mode                                          | Observable                                                                                   | $B$ Factories (2 $\rm{ab}^{-1})$                | Super $B$ (75 ab <sup>-1</sup>             |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------|
|                                                                                                                      |                                         | $D^0 \to K^+ K^-$                             | $y_{CP}$                                                                                     | $2 - 3 \times 10^{-3}$                          | $5	imes 10^{-4}$                           |
| ${\cal B}(	au 	o \mu  \gamma)$                                                                                       |                                         | $D^0 \to K^+ \pi^-$                           | $y'_D$                                                                                       | $2-3 \times 10^{-3}$                            | $7 \times 10^{-4}$                         |
| ${\cal B}(	au 	o e \gamma)$                                                                                          | $2	imes 10^{-9}$                        | TD0 T = 1                                     | $x_D^{\prime 2}$                                                                             | $1-2 \times 10^{-4}$                            | $3 \times 10^{-5}$                         |
| $\mathcal{B}(	au 	o \mu \mu \mu)$                                                                                    | a) $2 \times 10^{-10}$                  | $D^0 \to K^0_s \pi^+ \pi^-$                   |                                                                                              | $2-3 \times 10^{-3}$<br>$2-3 \times 10^{-3}$    | $5 \times 10^{-4}$<br>$5 \times 10^{-4}$   |
| • • • • •                                                                                                            | ·                                       | Average                                       | $x_D$<br>$y_D$                                                                               | $\frac{2-3 \times 10^{-3}}{1-2 \times 10^{-3}}$ | $3 \times 10^{-4}$                         |
| $\mathcal{B}(	au  ightarrow eee)$                                                                                    | $2 	imes 10^{-10}$                      | Trongo                                        | $x_D$                                                                                        | $2-3 \times 10^{-3}$                            | $5 \times 10^{-4}$                         |
| $\mathcal{B}(	au 	o \mu \eta)$                                                                                       | $4	imes 10^{-10}$                       | $D^0 \rightarrow K^+ \pi^-$                   | .0                                                                                           |                                                 | $3 \times 10^{-5}$                         |
| $\mathcal{B}(\tau \rightarrow en)$                                                                                   | $6	imes 10^{-10}$                       |                                               | y'                                                                                           | To be evaluated at LHCb                         | $7 \times 10^{-4}$                         |
|                                                                                                                      |                                         | $D^0 \to K^+ K^-$ $D^0 \to K^0_S \pi^+ \pi^-$ | YCP<br>T                                                                                     | evalut                                          | $5 \times 10^{-4}$<br>$4.9 \times 10^{-4}$ |
| ${\cal B}(	au 	o \ell K^0_s)$                                                                                        | $2 	imes 10^{-10}$                      | $D \rightarrow K_{S} \pi^{-} \pi^{-}$         | $x \\ y$                                                                                     | To be LHC.                                      | $3.5 \times 10^{-4}$                       |
|                                                                                                                      |                                         |                                               | q/p                                                                                          | at                                              | $3 \times 10^{-2}$<br>2°                   |
|                                                                                                                      |                                         |                                               | $\phi$                                                                                       |                                                 | 2                                          |
| $B_s$ at                                                                                                             | Y(5S)                                   | C                                             | hannel                                                                                       | Sensi                                           | itivity                                    |
| Observable Er                                                                                                        | ror with $1 \text{ ab}^{-1}$ Error with | an -                                          | $p^0 \rightarrow e^+ e^-, D^0 -$                                                             |                                                 | $10^{-8}$                                  |
| ΔΓ                                                                                                                   | $0.16 \text{ ps}^{-1}$ 0.03             |                                               | $p^0 \rightarrow \pi^0 e^+ e^-, L$                                                           | 1 1                                             | 10-8                                       |
| Γ                                                                                                                    | $0.07 \text{ ps}^{-1}$ 0.01             |                                               | $egin{aligned} & h^0 	o \eta e^+ e^-,  D^0 \ & h^0 	o K^0_s e^+ e^-,  H^0_s \end{aligned}$   |                                                 | $10^{-8}$<br>$10^{-8}$                     |
| $eta_s$ from angular analysis                                                                                        | 20°                                     |                                               | $\mu^{-} \rightarrow K_{s}^{+}e^{+}e^{-}, I$                                                 | <b>e</b>                                        | $10^{-8}$                                  |
| $A^s_{ m SL}$                                                                                                        | 0.006 0.                                |                                               | · · · · · · , ·                                                                              |                                                 | 10                                         |
| $A_{\rm CH}$                                                                                                         | 0.004 0.                                |                                               | $e^{0} \rightarrow e^{\pm} \mu^{\mp}$                                                        | 1 ×                                             | $10^{-8}$                                  |
| $\mathcal{B}(B_s \to \mu^+ \mu^-)$                                                                                   | - < 8 × 0.08 0.                         |                                               | $\mu^+ \to \pi^+ e^\pm \mu^\mp$                                                              |                                                 | $10^{-8}$                                  |
| $ V_{td}/V_{ts} $                                                                                                    | 0.08 0.<br>38% 7                        |                                               | $\mu^0 \to \pi^0 e^{\pm} \mu^{\mp}$                                                          |                                                 | 10-8                                       |
| $\mathcal{B}(B_{\star} \to \gamma \gamma)$                                                                           | 16°                                     |                                               | $\mu^{0}  ightarrow \eta e^{\pm} \mu^{\mp} \ \mu^{0}  ightarrow K_{s}^{0} e^{\pm} \mu^{\mp}$ |                                                 | $10^{-8}$<br>$10^{-8}$                     |
|                                                                                                                      | TO                                      |                                               | $r^{\circ} \rightarrow K_{s}^{\circ}e^{+}\mu^{+}$                                            | $3 \times$                                      | 10 0                                       |
| $\mathcal{B}(B_s \to \gamma \gamma)$<br>$eta_s 	ext{ from } J/\psi \phi$<br>$eta_s 	ext{ from } B_s \to K^0 ar{K}^0$ | 24° 1                                   |                                               |                                                                                              |                                                 |                                            |



#### The Physics Case in 1 Page

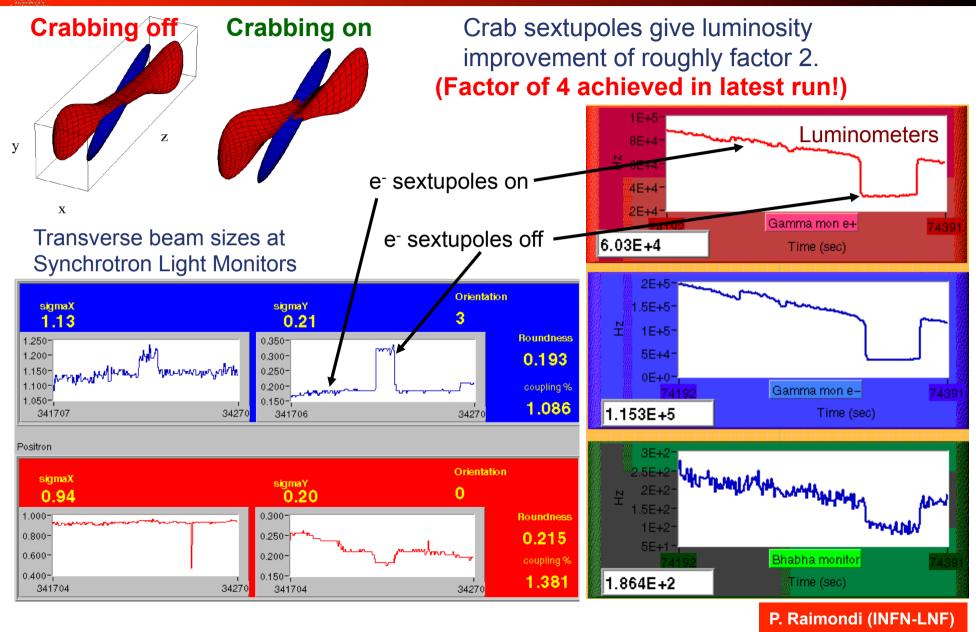




- Each mode is a golden signature of new physics.
  - A priori we need to measure them all!

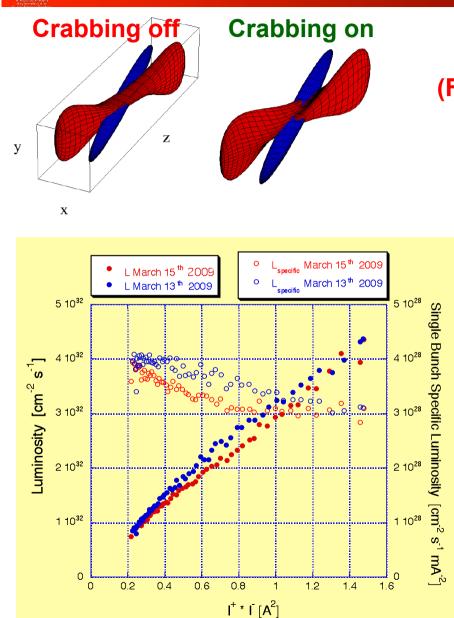
|                                           | $H^+$          | MFV          | Non-MFV      | NP           | Right-handed | LTH          | SUSY  |
|-------------------------------------------|----------------|--------------|--------------|--------------|--------------|--------------|-------|
|                                           | high $	an eta$ |              |              | Z-penguins   | currents     |              |       |
| $\mathcal{B}(B \to X_s \gamma)$           |                | $\mathbf{L}$ | Μ            |              | Μ            |              |       |
| $\mathcal{A}_{CP}(B \to X_s \gamma)$      |                |              | $\mathbf{L}$ |              | Μ            |              |       |
| $\mathcal{B}(B \to \tau \nu)$             | L-CKM          |              |              |              |              |              |       |
| $\mathcal{B}(B \to X_s \ell \ell)$        |                |              | Μ            | Μ            | Μ            |              |       |
| $\mathcal{B}(B \to K \nu \overline{\nu})$ |                |              | Μ            | $\mathbf{L}$ |              |              |       |
| $S_{K_S \pi^0 \gamma}$                    |                |              |              |              | $\mathbf{L}$ |              |       |
| The angle $\beta$ ( $\Delta S$ )          |                |              | L-CKM        |              | $\mathbf{L}$ |              |       |
| $\tau  ightarrow \mu \gamma$              |                |              |              |              |              |              | L     |
| $	au  ightarrow \mu \mu \mu$              |                |              |              |              |              | $\mathbf{L}$ |       |
| +                                         | charm          | ן + נ        | spectr       | oscop        | y (DM /L     | ₋igh         | nt Hi |

 When finished, the physics white paper will have a more complete matrix than the one shown here.

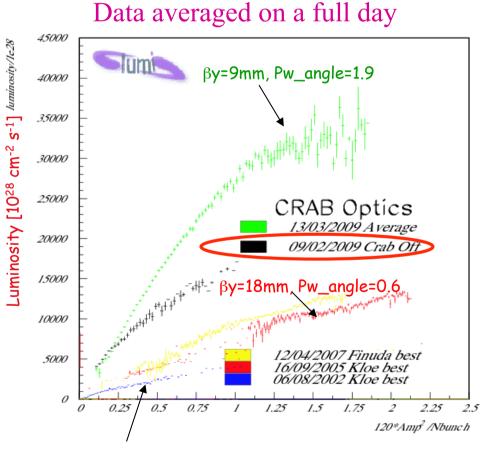



# **Accelerator Aspects**

How can we obtain a data sample of 75ab<sup>-1</sup>?




#### Crab waist tests at $DA\Phi NE$



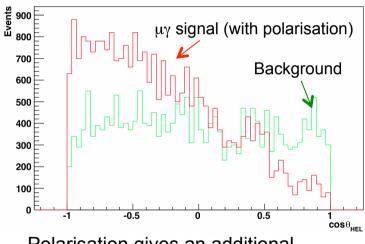



### Crab waist tests at $DA\Phi NE$



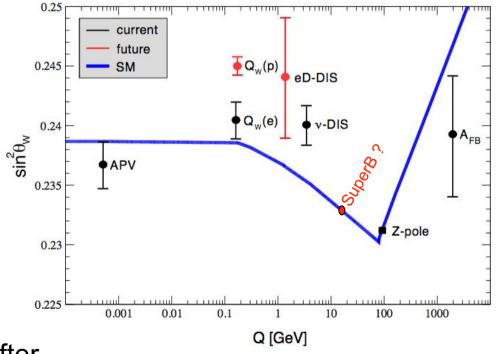
Crab sextupoles give luminosity improvement of roughly factor 2. (Factor of 4 achieved in latest run!)




βy=25mm, Pw\_angle=0.3

May 2010




## Polarisation

- A unique feature of SuperB is a polarised e<sup>-</sup> beam.
  - 80% polarisation from the outset.
  - Crucial to deliver on physics: Lower background for LFV measurements,  $\tau$  EDM and g-2, and precision sin<sup>2</sup> $\theta_{W}$ .



Polarisation gives an additional discriminating variable to  $\tau$  LFV searches that can be used to suppress background..

Use solenoids before and after
 IP to longitudinally polarise the electron beam.



With Polarised e<sup>-</sup> beam, SuperB can measure  $sin^2\theta_W$  as accurately as LEP.

#### SuperB→Results of two year work. Parameters as at 18/3/2010

|                                        |                                                | Base Line |          | Low Emittance |          | High Current              |          | Tau/Charm (prelim.) |               |
|----------------------------------------|------------------------------------------------|-----------|----------|---------------|----------|---------------------------|----------|---------------------|---------------|
| Parameter                              | Units                                          | HER (e+)  | LER (e-) | HER (e+)      | LER (e-) | HER (e+)                  | LER (e-) | HER (e+)            | LER (e-)      |
| LUMINOSITY                             | <b>cm</b> <sup>-2</sup> <b>s</b> <sup>-1</sup> | 1.00E+36  |          | 1.00E+36      |          | 1.00E+36                  |          | 1.00E+35            |               |
| Energy                                 | GeV                                            | 6.7       | 4.18     |               |          | 6.7                       |          |                     | 1.61          |
| Circumference                          | m                                              | 1258.4    |          | 1258.4        |          | 1258.4                    |          | 4258.4              |               |
| X-Angle (full)                         | mrad                                           | 66        |          |               | 6        | 6                         |          | 66                  |               |
| Piwinski angle                         | rad                                            | 22.88     | 18.60    | 32.36         | 26.30    | 14.43                     | 11.74    | 8.80                | 7.15          |
| β <sub>x</sub> @ IP                    | cm                                             | 2.6       | 3.2      | 2.6           | 3.2      | 5.06                      | 6.22     | 6.76                | 8.32          |
| β <sub>v</sub> @ IP                    | cm                                             | 0.0253    | 0.0205   |               | 0.0145   |                           | 0.0237   | 0.0658              | 0.0533        |
| Coupling (full current)                | %                                              | 0.25      | 0.25     |               | 0.25     |                           | 0.5      |                     | 0.25          |
| e <sub>x</sub> (without IBS)           | nm                                             | 1.97      | 1.82     | 1.00          | 0.91     | 1.97                      | 1.82     | 1.97                | 1.82          |
| e <sub>x</sub> (with IBS)              | nm                                             | 2.00      | 2.46     |               | 1.23     | 2.00                      | 2.46     |                     | 6.4           |
| <b>е</b> у                             | pm                                             | 5         | 6.15     | 2.5           | 3.075    | 10                        | 12.3     | 13                  | 16            |
| σ <sub>x</sub> @ IP                    | μm                                             | 7.211     | 8.672    | 5.699         | 8.274    | 10.060                    | 12.370   | 18.749              | 23.076        |
| σ <sub>y</sub> @ IP                    | μm                                             | 0.036     | 0.036    | 0.021         | 0.021    | 0.054                     | 0.054    | 0.092               | 0.092         |
| Σ <sub>x</sub>                         | μm                                             | 11.433    |          | 8.085         |          | 15.944                    |          | 29.732              |               |
| Σ <sub>y</sub>                         | μm                                             | 0.050     |          | 0.030         |          | 0.076                     |          | 0.131               |               |
| σ∟ (0 current)                         | mm                                             | 4.69      | 4.29     | 4.73          | 4.34     | 4.03                      | 3.65     | 4.75                | 4.36          |
| σ∟ (full current)                      | mm                                             | 5         | 5        | _             | 5        |                           |          |                     | 5             |
| Beam current                           | mA                                             | 1892      | 2447     | 1460          | 1888     | 3094                      | 4000     | 1365                | 1766          |
| Buckets distance                       | #                                              | 2         |          | 2             |          |                           |          | 1                   |               |
| lon gap                                | %                                              | 2         |          | 2             |          | 2                         |          | 2                   |               |
| RF frequency                           | Hz                                             | 4.76E     |          | 4.76E+08      |          | 4.76E+08                  |          | 4.76E+08            |               |
| Harmonic number                        |                                                | 1998      |          | 1998          |          | 1998                      |          | 1998                |               |
| Number of bunches                      |                                                | 97        |          | 978           |          | 1956<br>4.15E+10 5.36E+10 |          | 1956                |               |
| N. Particle/bunch                      |                                                |           |          |               |          |                           |          |                     |               |
| Tune shift x                           |                                                | 0.0021    | 0.0033   |               | 0.0025   |                           | 0.0067   |                     | 0.0080        |
| Tune shift y                           | moor                                           | 0.0970    | 20.3     |               | 20.3     |                           | 20.3     |                     | 40.6          |
| Long. damping time<br>Energy Loss/turn | msec<br>MeV                                    | 2.11      | 0.865    |               | 0.865    |                           | 0.865    |                     | 40.6<br>0.166 |
| σ <sub>E</sub> (full current)          | dE/E                                           | 6.43E-04  | 7.34E-04 |               |          |                           |          |                     |               |
| CM o <sub>E</sub>                      | dE/E                                           | 5.00E-04  |          | 5.00E-04      |          | 5.00E-04                  |          | 5.26E-04            |               |
| Total lifetime                         | min                                            | 4.23 4.48 |          |               |          | 7.08 7.73                 |          |                     |               |
| Total RF Power                         | MW                                             | 17.       |          |               | .72      | 30.                       |          | 3.1                 |               |
|                                        |                                                |           |          |               |          |                           |          |                     | -             |

Different solutions to reach 10<sup>36</sup>

Baseline + other 2 options: •Lower y-emittance •Higher currents (twice bunches)

+ Solution for running at the Tau/ charm threshold:  $\mathcal{L} = 10^{35}$ 

#### SuperB→Results of two year work. Parameters as at 18/3/2010

|                                     |                                  | Base Line |          | Low Emittance |          | High Current |          | Tau/Charm (prelim.) |          |              |
|-------------------------------------|----------------------------------|-----------|----------|---------------|----------|--------------|----------|---------------------|----------|--------------|
| Parameter                           | Units                            | HER (e+)  | LER (e-) | HER (e+)      | LER (e-) | HER (e+)     | LER (e-) | HER (e+)            | LER (e-) |              |
| LUMINOSITY                          | cm <sup>-2</sup> s <sup>-1</sup> | 1.00E     | +36      | 1.00E         | E+36     | 1.00         | E+36     | 1.00E               | +35      | D            |
| Energy                              | GeV                              | 6.7       | 4.18     | 6.7           | 4.18     | 6.7          | 4.18     | 2.58                | 1.61     | -            |
| Circumference                       | m                                | 1258      | .4       | 125           | 8.4      | 125          | 8.4      | 4258                | 4        |              |
| X-Angle (full)                      | mrad                             | 66        | ノ        | 66            | 6        | 6            |          | 66                  |          |              |
| Piwinski angle                      | rad                              | 22.88     | 18.60    | 32.36         | 26.30    | 14.43        | 11.74    | 8.80                | 7.15     |              |
| β <sub>x</sub> @ IP                 | cm                               | 2.6       | 3.2      | 2.6           | 3.2      | 5.06         | 6.22     | 6.76                | 8.32     |              |
| β <sub>γ</sub> @ IP                 | cm                               | 0.0253    | 0.0205   |               | 0.0145   |              | 0.0237   | 0.0658              | 0.0533   |              |
| Coupling (full current)             | %                                | 0.25      | 0.25     | 0.25          | 0.25     | 0.5          | 0.5      | 0.25                | 0.25     | - 0'         |
| e <sub>x</sub> (without IBS)        | nm                               | 1.97      | 1.82     | 1.00          | 0.91     | 1.97         | 1.82     | 1.97                | 1.82     |              |
| e <sub>x</sub> (with IBS)           | nm                               | 2.00      | 2.46     | 1.00          | 1.23     |              | 2.46     | 5.20                | 6.4      |              |
| ε <sub>y</sub>                      | pm                               | 5         | 6.15     | 2.5           | 3.075    | 10           | 12.3     | 13                  | 16       | - • <b>ŀ</b> |
| σ <sub>x</sub> @ IP                 | μm                               | 7.211     | 8.672    | 5.099         | 8.274    | 10.060       | 12.370   | 18.749              | 23.076   |              |
| σ <sub>y</sub> @ IP                 | μm                               | 0.036     | 0.036    | 0.021         | 0.021    | 0.054        | 0.054    | 0.092               | 0.092    |              |
| Σx                                  | μm                               | 11.43     | 33       | 8.0           | 85       | 15.9         | 944      | 29.73               | 32       |              |
| Σ <sub>y</sub>                      | μm                               | 0.05      | 0        | 0.0           | 30       | 0.0          | 76       | 0.13                | 11       |              |
| σ∟ (0 current)                      | mm                               | 4.69      | 4.29     | 4.73          | 4.34     | 4.03         | 3.65     | 4.75                | 4.36     |              |
| σ <sub>L</sub> (full current)       | mm                               | 5         | 5        | 5             | 5        | 4.4          | 4.4      | 5                   | 5        |              |
| Beam current                        | mA                               | 1892      | 2447     | 1460          | 1888     | 3094         | 4000     | 1365                | 1766     |              |
| Buckets distance                    | #                                | 2         |          | 2             |          |              |          | 1                   |          | l r          |
| lon gap                             | %                                | 2         |          | 2             |          | 2            |          | 2                   |          |              |
| RF frequency                        | Hz                               | 4.76E     | +08      | 4.76E         | +08      | 4.76         | +08      | 4.76E               | +08      | C            |
| Harmonic number                     |                                  |           |          |               | _        |              |          | _                   |          |              |
| Number of bunches                   |                                  | Th        |          | Sun           | ۵rK      | <b>FK</b>    | Rn       | nach                | nina     | ב            |
| N. Particle/bunch                   | The SuperKEKB machine            |           |          |               |          |              |          |                     |          |              |
| Tune shift x                        |                                  |           |          |               |          |              |          |                     |          |              |
| Tune shift y                        | design now looks very similar    |           |          |               |          |              |          |                     |          |              |
| Long. damping time                  |                                  |           |          |               |          |              |          |                     |          |              |
| Energy Loss/turn                    |                                  |           |          |               |          |              |          |                     |          |              |
| σ <sub>E</sub> (full current)       | this design.                     |           |          |               |          |              |          |                     |          |              |
| CM σ <sub>E</sub><br>Total lifetime |                                  |           |          |               |          |              |          |                     |          |              |
|                                     | min                              |           |          |               |          |              |          | -                   |          |              |
| Total RF Power                      | MW 17.08 12.72 30.48 3.11        |           |          |               |          |              |          |                     |          |              |

Different solutions to reach **10**<sup>36</sup>

Baseline + other 2 options: •Lower y-emittance •Higher currents (twice bunches)

+ Solution for running at the Tau/ charm

to

nold:  $f = 10^{35}$ 

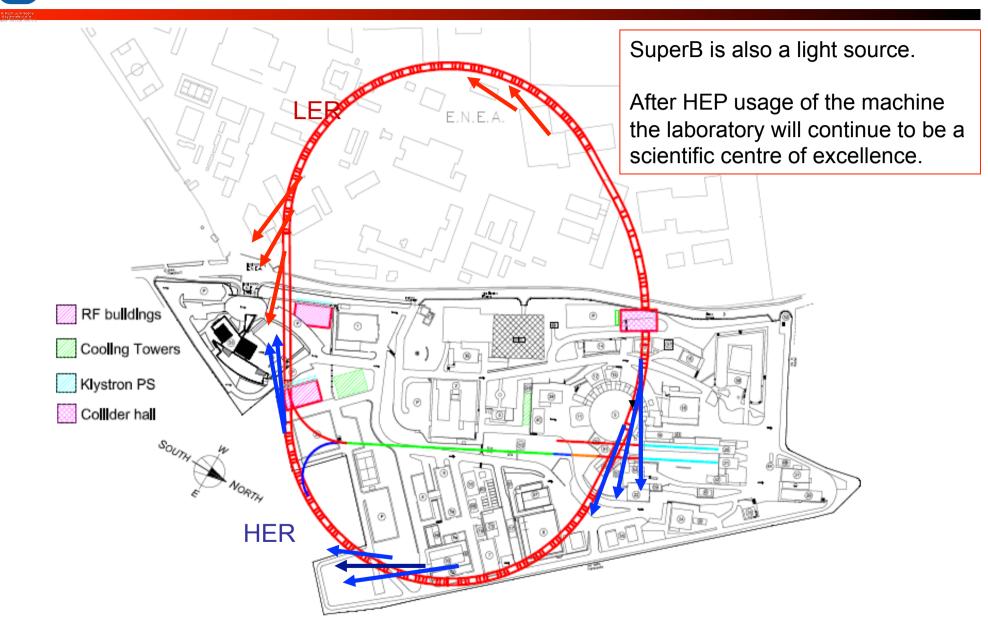


# SITES



 Identified two suitable sites for the SuperB project.

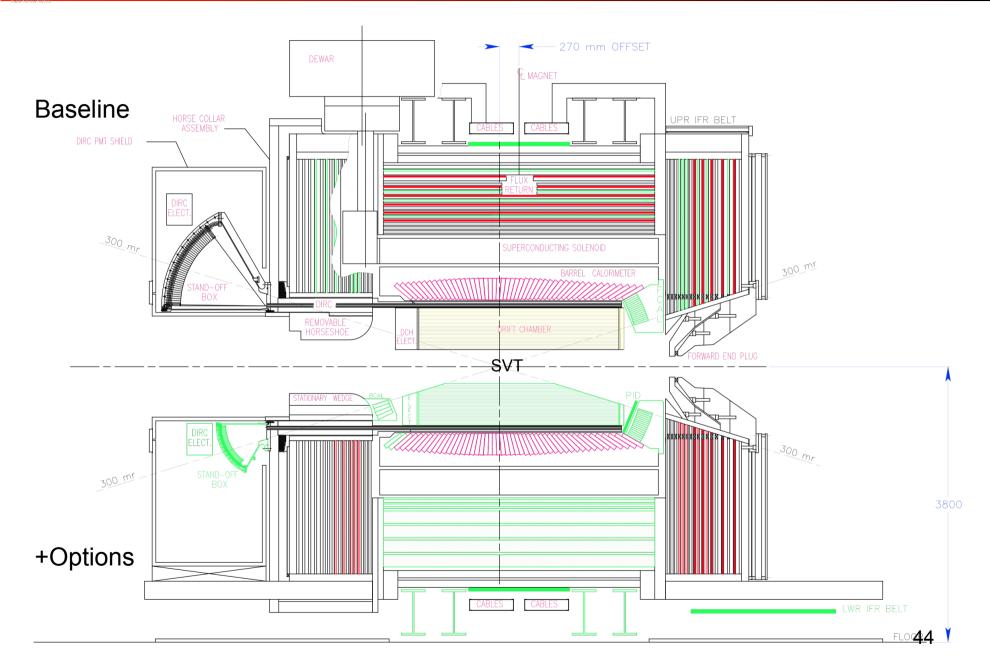
Conceptual design works in both places.


Both sites are geologically stable.

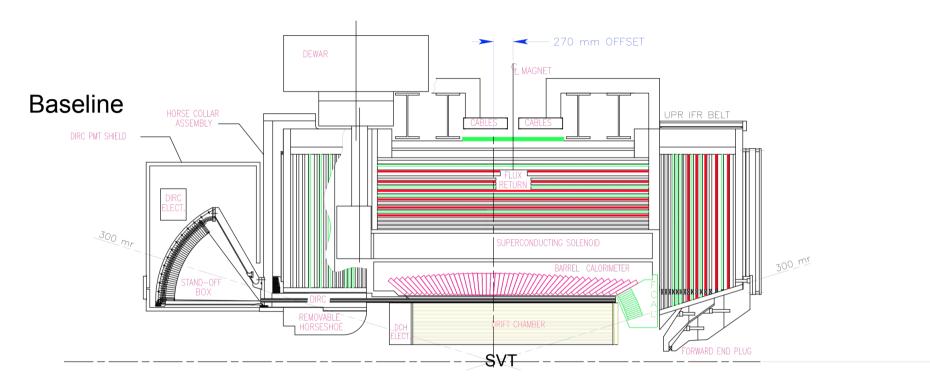
 Will make site decision soon after project approval.

00

0


### Frascati Site: Potential HER Synch Radiation Beam Lines






# **Detector Design**

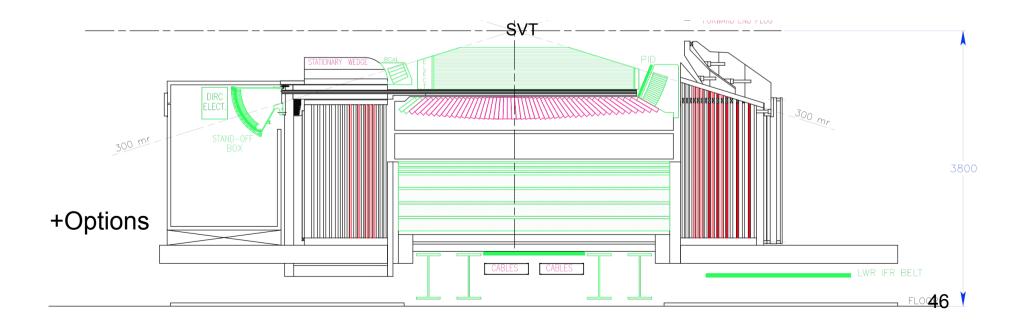






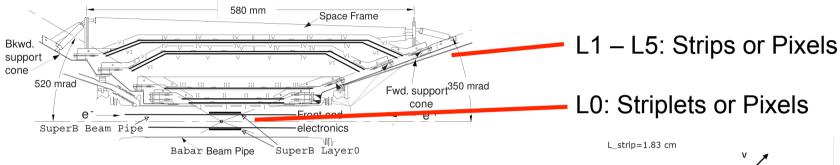


Some parts of BaBar will be re-used:


- DIRC Quartz Bars
- Calorimeter Barrel (crystals + mechanical support)
- Superconducting Solenoid
- Absorber material from IFR

This will lead to significant cost saving in building the detector.




Options include:

- Several possible pixel technologies for the SVT (incl. an all pixel option).
- Forward PID.
- Backward calorimetry (primarily as a veto).
- •+ a number of other variants on baseline technology choices.



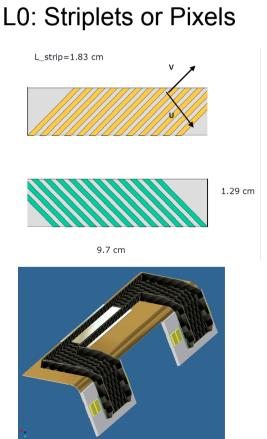


## SVT



P side

N side

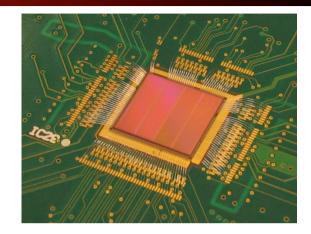

L0: Problem dominated by occupancy/flux:

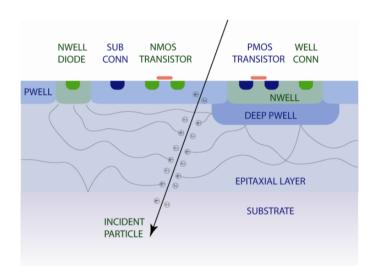
r = 1.6cm (striplets), with a length of 10cm

Designed for rate of 100MHz/cm<sup>2</sup>.

Alternative solutions: INMAPS / DNW MAPS / Hybrid Pixels.

INMAPS are an option for outer layers.



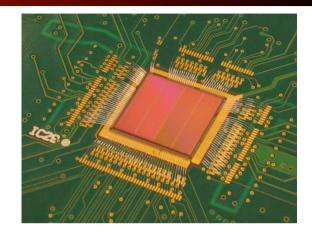



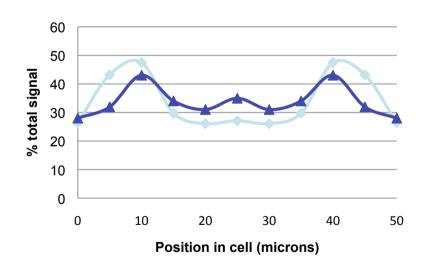

# All Pixel SVT Concept



- Use INMAPS chips for a 5 layer all pixel vertex detector.
  - Adapt well understood leading STFC funded design to use with SuperB.
  - Common infrastructure for subsystem.
  - Physics studies required to understand performance (in progress) as part of detector optimisation.
  - UK has world leading expertise in this area.
  - Building on expertise and developments from SPiDeR and CALICE, LCFI ...
  - Concept well received by SuperB.



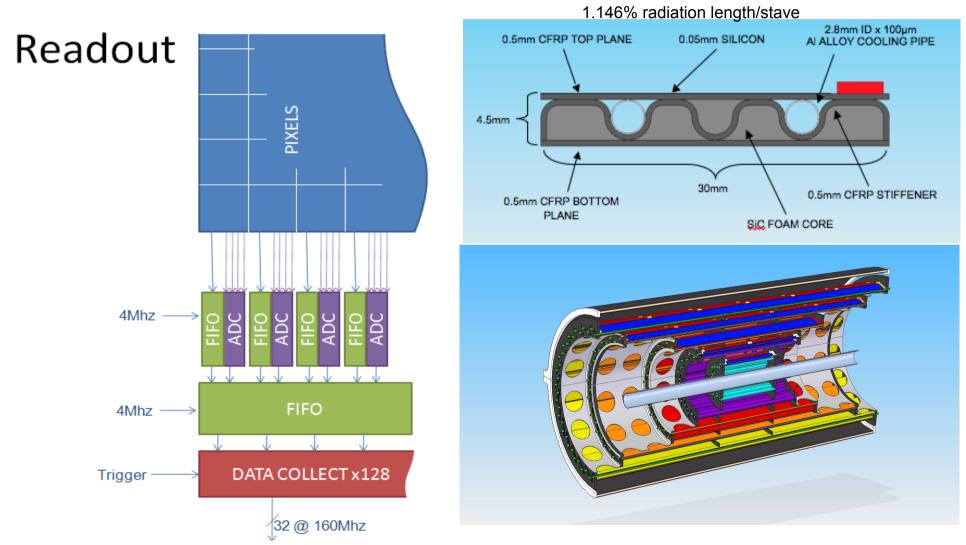



# All Pixel SVT Concept



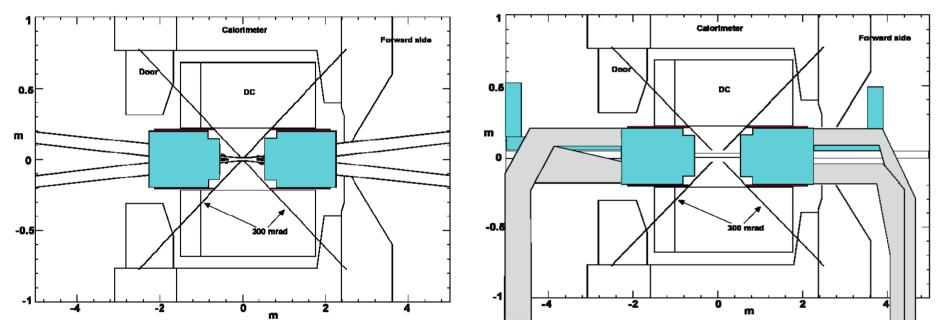
- Use INMAPS chips for a 5 layer all pixel vertex detector.
  - Adapt well understood leading STFC funded design to use with SuperB.
  - Common infrastructure for subsystem.
  - Physics studies required to understand performance (in progress) as part of detector optimisation.
  - UK has world leading expertise in this area.
  - Building on expertise and developments from SPiDeR and CALICE, LCFI ...
  - Concept well received by SuperB.







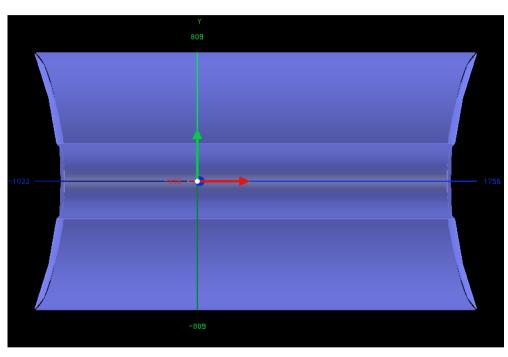

### All Pixel SVT Concept


• 400Mpix CMOS Detector with stave approach:

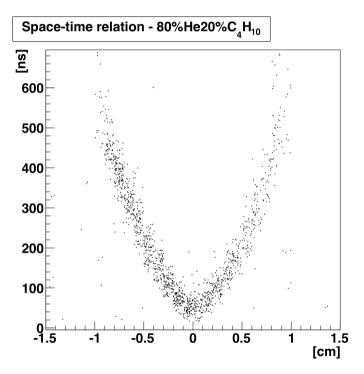




## **Interaction Region Layout**


- Aim:
  - Access SVT/permanent magnets in the IR within a few days.
  - Central cryostat/magnet SVT supported off of the same object.
  - Modifications/repairs on the innermost detector/accelerator components will be relatively quick to perform.






# DCH

 Optimizing this subsystem from scratch: Disk/stepped endplates / cell size and geometry / gas mixture etc.



- Baseline shown (disk endplates).
- 10,000 cells.
- 3.5% av. occupancy (5% inner layers).
- Carbon Fibre endplates.




Studying response time vs. spatial resolution for various gas mixtures.



# PID

- Build on the DIRC concept: reuse the bars of fused silica that form the barrel of the DIRC.
- Instead of a water SOB, use a fused silica focussing block:
- (b) FBLOCK.

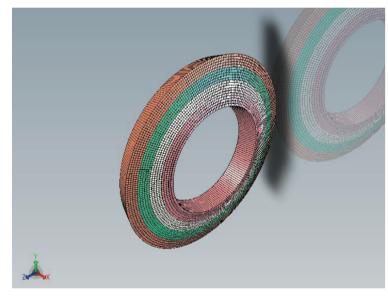


Example single photon response for a H-9500 MaPMT.

Many advantages over water based SOB design:

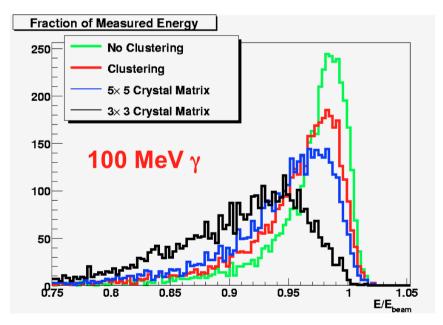
- Less sensitive to backgrounds: esp. neutrons.
- Can use timing to measure chromatic dispersion and improve performance.
- Modular.
- Less MaPMTs required for readout.
- No risk of water leaks into detector.
- Lower maintenance operation.




Aerogel forward PID option could give additional performance benefits.
Need to optimize vs.

calorimeter performance.




# EMC

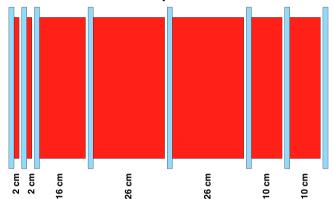
- BaBar's EMC barrel (with modern readout) is good enough for SuperB.
- Forward Calorimeter: LYSO based end cap.
- Backward Calorimeter: scintillator option under study.



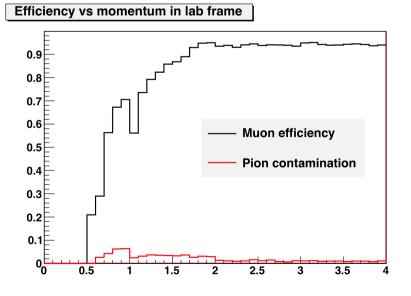
- 4 Layers of 5 crystals.
- 4500 Crystals in total.
- 2.5cm<sup>2</sup> back face (tapers to front)
- PID diodes and APDs under study for signal readout.

 Optimizing understanding/performance of the calorimeter using simulation and a series of test beams.




•Clustering uses  $\gamma > 1$  MeV.

May 2010




# IFR

- Baseline: Scintillating WLS fibre based system.
  - RPC/LST technology used on BaBar not suitable for rates at SuperB.
- Detector is a sandwich of scintillator and iron (similar to BaBar).
- BaBar's 5 X/X0 non optimal for µ ID; so SuperB will have more material.



• Initial studies indicative of good performance achievable at SuperB.



Improvements in IFR detection capability will impact widely upon the physics programme:

- Decays with K<sub>L</sub>
- LFV studies with  $\mu$  final states
- LU tests.



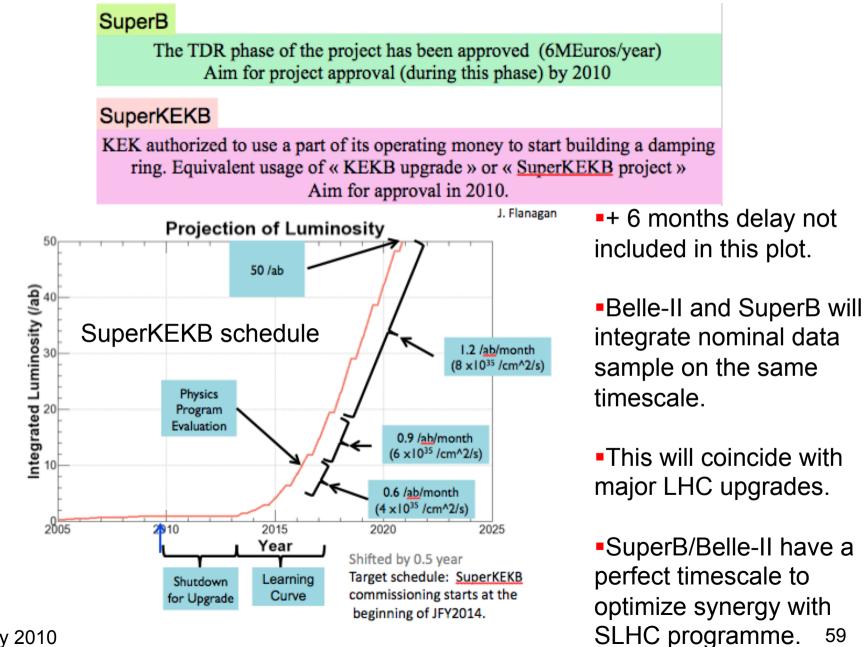
- 2007: Conceptual Design Report
- 2009: Physics Workshop Proceedings
- 2010 (soon): White papers on Det/Acc/Phys.
- Current state of all aspects of the project.
  - Accelerator concept has been in good shape for a long time now.
  - Detector concept is well understood.
  - Physics interplay and sensitivity studies using SuperB Monte Carlo are continually being updated.
  - Expect funding decision soon (this year).
- Meanwhile:
  - Formalising R&D on TDR with MOUs.
  - Expect TDR by the end of the year.



- 2007: Conceptual Design Report
- 2009: Physics Workshop Proceedings
- 2010 (soon): White papers on Det/Acc/Phys ۲
- Current state of all aspects of the lacksquare
  - Accelerator concept has been now.
  - Detector concept
- Still Plenty of room for new Still Plenty ators to area Physics into res using SuperB Monte Carlo

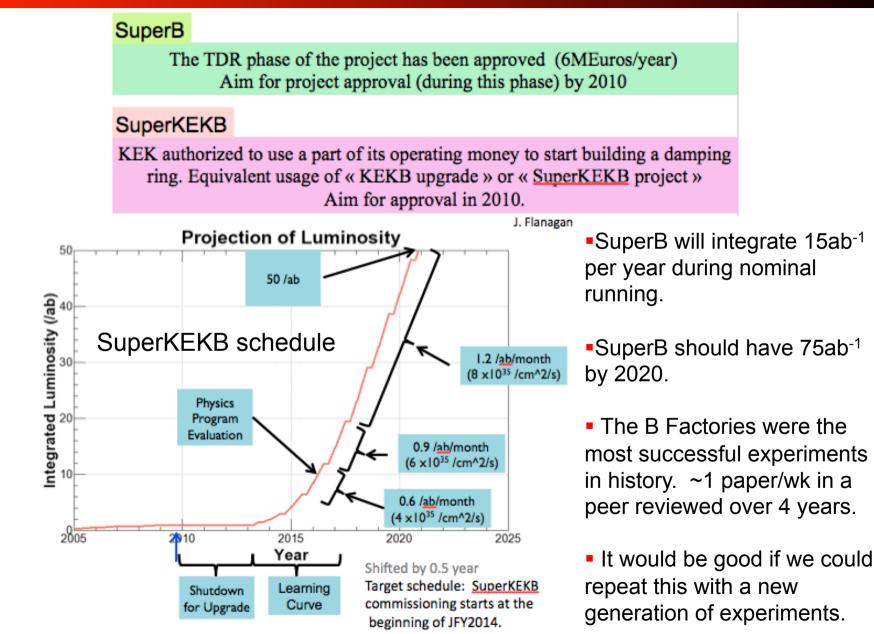
- Me •
  - ansing R&D on TDR with MOUs.
  - Expect TDR by the end of the year.

time


# A few words concerning SuperB & Belle-II

- Similar concept: Belle-II has:
  - Target data sample:  $50ab^{-1}$ . ( $\mathcal{L} \sim 0.8 \times 10^{36}$ )
  - No polarisation: Limits physics case in some areas.
  - No plan (yet) to run at  $\tau$ /charm threshold.
  - Now converging on the "Italian Scheme" for the accelerator.
    - Community agrees that this is the way to build the machine!

| Experiment:                 | SuperB             | Belle-II           |  |  |
|-----------------------------|--------------------|--------------------|--|--|
| E <sub>HER/LER</sub>        | 6.7 / 4.18 GeV     | 7 / 4 GeV          |  |  |
| I <sub>HER/LER</sub>        | < 3.5 A (both)     | 2.6 / 3.6 A        |  |  |
| ε <sub>x</sub>              | 2.8 / 1.6 nm       | 3.2 / 1.7 nm       |  |  |
| ε <sub>y</sub><br>L         | 7 / 4 pm           | 13 / 8.4 pm        |  |  |
| Ĺ                           | 75ab <sup>-1</sup> | 50ab <sup>-1</sup> |  |  |
| e <sup>-</sup> Polarisation | 80%                | none               |  |  |
| run at ψ(3770)              | yes                | no                 |  |  |


N.B. Some parameters for the experiments may change. The Belle-II accelerator concept is in the process of being re-worked from a high current to a low emmitance (Italian) one, so the total cost of both projects will be the about the same.

#### A few words concerning SuperB & Belle-II SuperE



59

# A few words concerning SuperB & Belle-II





# Summary

Hindsight always gives us 20:20 vision.

Until we have understood new physics, we are left trying to piece together the jigsaw puzzle of a high energy world where the possibilities are limited only by (a theorists) imagination.



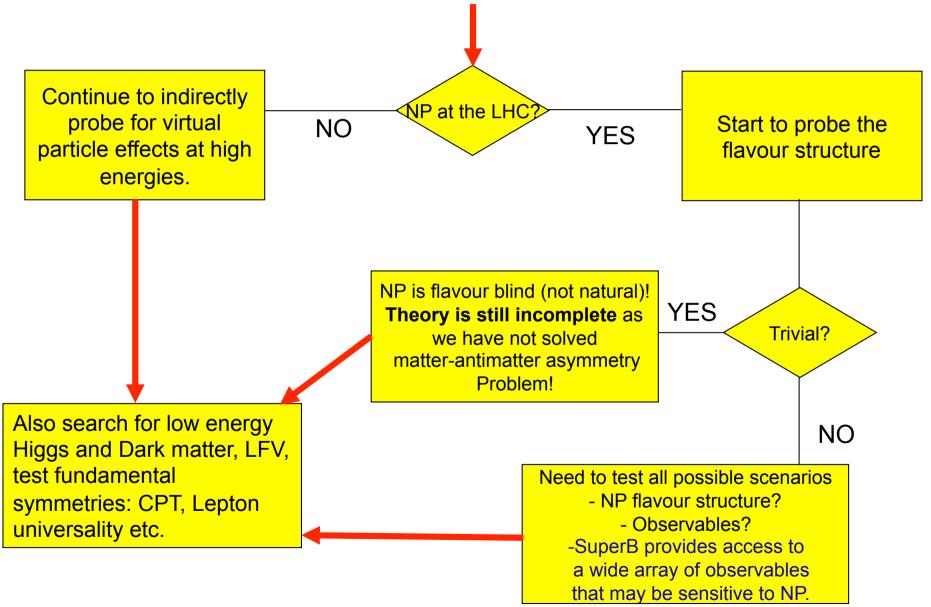
# Summary

- Want to elucidate new physics in as many ways as possible. Currently we:
  - Don't know the fine detail of New Physics.
  - Don't know the relevant New Physics energy scale (yet).
    - The LHC may, or may not elucidate this issue.
  - Don't know if the New Physics flavour sector is trivial or complicated:
    - Prior experience suggests it will be complicated.
  - But we do know that there are many models: 2HDM (type-n), MSSM, NMSSM, ...
    - Many *assume* flavour couplings are zero.



# Summary

- The LHC won't be able to solve the SUSY flavour problem.
  - LHCb may help in a few specific channels: e.g. K\*ll,  $B_S$  decays.
  - ATLAS/CMS may help with some ultra-rare B decays.
  - Some New Physics sensitive observables are accessible through studies at dedicated flavour experiments.
- A large number of observables are only measureable competitively at a Super Flavour Factory.
  - Need this to unravel the nature of new physics.




# **Extra Material**



| THE 2009 STATUS REPORT                                        |                             |                             |                           |                                 |                                     |  |  |
|---------------------------------------------------------------|-----------------------------|-----------------------------|---------------------------|---------------------------------|-------------------------------------|--|--|
| Hadronic<br>matrix<br>element                                 | Lattice<br>error in<br>2006 | Lattice<br>error in<br>2009 | 6 TFlop<br>Year<br>[2009] | 60 TFlop<br>Year<br>[2011 LHCb] | 1-10 PFlop<br>Year<br>[2015 SuperB] |  |  |
| $f_{+}^{K\pi}(0)$                                             | 0.9%                        | 0.5%                        | 0.7%                      | 0.4%                            | < 0.1%                              |  |  |
| Âκ                                                            | 11%                         | 5%                          | 5%                        | 3%                              | 1%                                  |  |  |
| f <sub>B</sub>                                                | 14%                         | 5%                          | 3.5 - 4.5%                | 2.5 - 4.0%                      | 1-1.5%                              |  |  |
| $f^{}_{Bs}B^{1/2}_{Bs}$                                       | 13%                         | 5%                          | 4 - 5%                    | 3 - 4%                          | 1-1.5%                              |  |  |
| ξ                                                             | 5%                          | 2%                          | 3%                        | 1.5 - 2 %                       | 0.5 – 0.8 %                         |  |  |
| B→D/<br>D¢h/                                                  | 4%                          | 2%                          | 2%                        | 1.2%                            | 0.5%                                |  |  |
| $\begin{array}{c} PBhv\\ I_+,\ldots\\ TR \to K^*/\end{array}$ | 11%                         | 11%                         | 5.5 - 6.5%                | 4 - 5%                          | 2-3%                                |  |  |
| $T_1^{D-1p}$                                                  | 13%                         | 13%                         |                           |                                 | 3-4%                                |  |  |
| The expected accuracy has been reached! (except for Vub)      |                             |                             |                           |                                 |                                     |  |  |

# Particle Physics Landscape circa 2015

