Recent Results and New Puzzles from the Pierre Auger Observatory

The first extremely high energy event

EVIDENCE FOR A PRIMARY COSMIC-RAY PARTICLE WITH ENERGY $10^{20} \mathrm{eV}^{\dagger}$
John Linsley
Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received 10 January 1963)


```
% 1 KILOMETERS 2
```

FIG. 1. Plan of the Volcano Ranch array in February 1962. The circles represent $3.3-\mathrm{m}^{2}$ scintillation detectors. The numbers near the circles are the shower densities (particles $/ \mathrm{m}^{2}$) registered in this event, No $2-4834$. Point " A " is the estimated location of the shower core. The circular contours about that point aid in verifying the core location by inspection.

Ultra-high energy: $10^{20} \mathrm{eV}$

Need accelerator of size of Mecury's orbit to reach $10^{20} \mathrm{eV}$ with current technology

Large Hadron Collider (LHC), 27 km circumference, superconducting magnets

(M. Unger, 2006)

Acceleration time for LHC: 815 years

Source: diffuse shock acceleration?

Hillas 1984:

$$
\underbrace{E_{\max } \simeq 10^{18} \mathrm{eV} Z \beta\left(\frac{R}{\mathrm{kpc}}\right)\left(\frac{B}{\mu \mathrm{G}}\right)}
$$

Sources: exotic scenarios

X particles from:

- topological defects
- monopoles
- cosmic strings
- cosmic necklaces
-

$$
\frac{d N_{h}}{d x} \sim x^{-3 / 2}(1-x)^{2}
$$

$$
\begin{aligned}
& \text { QCD: ~ } E^{-1.5} \text { energy spectrum } \\
& \text { QCD+SUSY: } \sim E^{-1.9} \text { spectrum }
\end{aligned}
$$

Injected particles: Gamma-ray/nucleon ~ I.5-3

Fact sheet of some source scenarios

Process Distribution Injection flux

AGNs，GRBs，．．． （ $\bar{\alpha}$ ）

Young pulsars （ 动交）

X particles
（为动）
Z－bursts

Diffuse shock Cosmological acceleration

EM acceleration

Decay \＆particle cascade
Z^{0} decay \＆
particle cascade

Galaxy \＆halo
（a）Halo（SHDM）
（b）Cosmological
Cosmological \＆ clusters
Distribution

ν, γ－rays and p
P ．．．Fe
P ．．．Fe
Injection flux
mainly Fe
V, γ－rays and p

Greisen-Zatsepin-Kuzmin (GZK) suppression

(Cronin, TAUP 2003)

Energy loss distance E ds/dE

(Allard et al., 2005)

Gamma-rays even more suppressed

GZK suppression and magnetic field deflection

Extragalactic magnetic field deflection

Redshift	Lum.Distance
0.004	16 Mpc
0.01	40 Mpc
0.05	200 Mpc
0.1	415 Mpc

GZK horizon: energy-source relation

Expected anisotropy based on matter distribution

(Armengaud et al., 2006)

Exotic propagation scenarios

Violation of Lorentz invariance (space time fluctuations)

$$
4 E_{C M B} E_{\mathrm{th}}=\left(m_{p}+m_{\pi}\right)^{2}-m_{p}^{2}+\epsilon \frac{E_{\mathrm{th}}^{2+a}}{M_{P}^{a}}\left[1-\frac{m_{p}^{1+a}+m_{\pi}^{1+a}}{\left(m_{p}+m_{\pi}\right)^{1+a}}\right]
$$

(Coleman \& Glashow PRD59 1999, Jankiewicz et al., 2004)

Light supersymmetric baryons
Threshold for GZK process increased But: extensive air showers different
(Farrar et al., 1998)

Observations?

Situation before Auger Observatory: flux

Situation unclear

- Flux suppression, GZK effect?
- Energy of ankle
- Flux normalization

Energy reconstruction uncertainty:

AGASA ~18\%
HiRes $\sim 17 \%$

Events above $10^{20} \mathrm{eV}$: II (AGASA), 4 (HiRes)

Situation before Auger Observatory: composition

QGSJET 98/0I

Haverah Park
AGASA
HiRes
SIBYLL I.6 Fly's Eye
AGASA AI 00
AGASAAI

HiRes: 80\% p and 20\% Fe

Situation before Auger Observatory: composition

QGSJET 98/0I

Haverah Park
AGASA
HiRes
SIBYLL I.6 Fly's Eye
AGASA AI 00
AGASAAI

HiRes: 80\% p and 20\% Fe

Caveats:

- low statistics
- interaction model dependence
- muon and Xmax information consistent?

Situation before Auger Observatory: anisotropy

AGASA

$E>4 \times 10^{19} \mathrm{eV}, 5$ doublets, I triplet

HiRes

Monocular: 52 evts, stereo: 27 evts no small scale clustering found

Correlation with BI Lacs? Medium range $\sim 25^{\circ}$ correlation?
$\mathrm{E}>10^{18} \mathrm{eV}$, dipole anisotropy, excess from GC region (Excess in similar region also found in SUGAR)

Different measurement techniques

Southern Pierre Auger Observatory

Auger South on a cloudy day ...

One of 24 fluorescence telescopes

PMT camera with 440 pixels,

I.5º FoV per pixel, IO MHz

UV transmitting filter, corrector lens, safety curtain
3.4 m segmented mirror (aluminum alloy, glass)

Southern Pierre Auger Observatory

Integrated aperture used for data analysis

AGASA: $1600 \mathrm{~km}^{2}$ sryr HiRes I (mono) ~ $5000 \mathrm{~km}^{2}$ sr yr @ $10^{20} \mathrm{eV}$
"Last Friday, June 13th, at 13:00 hs, the "last" surface detector (the one with signatures from the whole Collaboration) was filled with water. It was put to work immediately afterwards."

Surface detector events

More than 650,000 events (T5 trigger, used in analysis)

$$
\text { Example: } \mathrm{E}>10^{20} \mathrm{eV}, \theta \approx 45^{\circ}
$$

Tank signal in units of the signal of a vertical muon

Other types of Auger events

Other types of Auger events

Event 200716104390 (11.6.2007)

Other types of Auger events

Event 200716104

Other types of Auger events

Event 3618809 (25 June 2007): 59 stations,

Golden hybrid events: many cross checks possible

Event 200716104390 (11.6.2007)

Independent profile reconstuctions

Cosmic Ray Flux

Energy calibration of surface detector

Fluorescence detector energy

$E_{\text {prim }}=f_{\text {corr }} \cdot \int \frac{\mathrm{d} E_{\text {ion }}}{\mathrm{dX}} \mathrm{d} X$
(Fluorescence yield uncertainty)

Systematic uncertainties of energy assignment

$\mathrm{f}=$ Etot/Eem

(T. Pierog et al., ICRC 2007)

fluorescence yield	14%
telescope calibration	10%
reconstruction	10%
aerosols	5%
humidity	5%
overall	22%

Auger surface detector energy spectrum

Data: I Jan 2004-28 Feb 2007, $5165 \mathrm{~km}^{2}$ sr yr

Auger surface detector energy spectrum

Data: I Jan 2004-28 Feb 2007, $5165 \mathrm{~km}^{2}$ sr yr

Update: spectrum published in PRL 2008

Phys. Rev. Lett. IOI (2008) 06IIOI

Equivalent c.m. energy $\sqrt{\mathrm{S}_{\mathrm{pp}}} \quad(\mathrm{GeV})$

Elemental Composition, Photons, Neutrinos

Composition: measurement of longitudinal profile

Field of view bias

Composition: mean depth of shower maximum

(Note: not consistent with muon data and current interaction models)

Composition: mean depth of shower maximum

(Note: not consistent with muon data and current interaction models)

Composition: mean depth of shower maximum

(Note: not consistent with muon data and current interaction models)

Limit on fraction of photons in UHECR flux

Many exotic source scenarios excluded

Auger, 95\% c.l.
Integral photon flux limit

Data: I Jan 2004-3I Dec 2006

Neutrino-induced shower sensitivity

Neutrino-induced shower sensitivity

Neutrino flux limit at ultra-high energy

Auger 2007:

Horizontal showers with surface detector (PRL IO0 (2008) 21 I IOI)

Arrival direction distribution

Galactic center point source search

Significance plots

Dark red: more events than expected Light red: fewer events than expected

Auger, ICRC 2007

No confirmation of previous indications for excess from GC region

AGASA: would have 16σ SUGAR: would have 306 in Auger

$$
10^{17}<\mathrm{E}<10^{18} \mathrm{eV}
$$

Possible correlation with nearby objects ?

- $12^{\text {th }}$ Veron-Cetty \& Veron catalogue of AGN
- Data set: Jan $I^{\text {st }}, 2004$ to May $27^{\text {th }}, 2006$, well-contained events
- Scan over angular distance, maximum redshift, energy threshold

Minimum: I2 out of 15 correlated with nearby AGNs (3.2 expected)

$$
\Delta \alpha=3.1^{\circ}, E_{\min }=5.6 \times 10^{19} \mathrm{eV}, z_{\max }=0.018(75 \mathrm{Mpc})
$$

Uncorrected chance probability: $P \sim 2 \times 10^{-6}$
Correction for trials needed!

Auger analysis: running prescription

Standard prescription: pre-define

- number of events or period of time
- data selection criteria and correlation parameters
- nominal chance probability threshold for publishing a claim
- perform test once if event number reached

Running prescription: test prescription for each new event (penalty factor for many tests has to be included)

		Threshold
N	$k_{\min }$	(percent)
4	4	0.19
6	5	0.32
8	6	0.40
10	7	0.44
12	8	0.47
13	8	0.55
15	9	0.58
16	9	0.67
18	10	0.70
20	11	0.71
21	11	0.75
23	12	0.77
24	12	0.81
26	13	0.82
27	13	0.86
29	14	0.87
30	14	0.91
31	14	0.99
33	15	1.00
34	15	1.05

May 27, 2006

Scierce

Anisotropy of utra-high energy cosmic rays

Auger: 27 events above $5.710^{19} \mathrm{eV}$, 20 correlated within 3.1°
Scan-corrected probability $\sim 10^{-5}$

Exposure of southern Auger Observatory

Hammer-Aitoff projection, Equatorial coordinates

uncorrelated events (7)
supergalactic plane

Exposure of southern Auger Observatory

Hammer-Aitoff projection, Equatorial coordinates

Exposure of southern Auger Observatory

Hammer-Aitoff projection, Equatorial coordinates

Astrophysical Interpretation

Comparison with GZK suppression models

Pure proton model

(Berezinsky et al.)

Mixed composition model (Allard et al., Hillas)

Particle physics with air showers

(a) Correlation with sources allow identification of particles
(b) Propagation leads to either light or heavy composition

Comparison of composition and flux features

Deviation from $E^{-2.6}$ flux

Mean mass number

Comparison of composition and flux features

Deviation from E-2.6 flux

Mean mass number

Comparison of composition and flux features

Deviation from E-2.6 flux

Mean mass number

Comparison of composition and flux features

Deviation from $E^{-2.6}$ flux

Mean mass number

GZK suppression and anisotropy

GZK horizon: energy-source relation

(Bergmann et al., PLB 2006)

Extragalactic magnetic field deflection

Redshift Lum.Distance
$0.004 \quad 16 \mathrm{Mpc}$
$0.01 \quad 40 \mathrm{Mpc}$
$0.05 \quad 200 \mathrm{Mpc}$
$0.1 \quad 415 \mathrm{Mpc}$

New Puzzles

Could it be that AGNs are indeed the sources?

Assumption: all AGNs of the VC catalogue have same injection power
Expectation: ~6 events from Virgo cluster, none observed (excluded at 99\% level for complete distribution)
(Gorbunov et al., arXiv:07I I. 4060 [astro-ph])

Possible interpretations:

- AGNs have different injection power (predicted by Biermann, Falcke et al.)
- Sub-class of AGNs are sources
- AGNs are not sources, sources are distributed similar to AGNs
- Anisotropy of distribution independent of source catalogue
- AGNs correlated with UHECRs are standard Seyfert galaxies, not very powerful

Why does HiRes not see a signal?

Blue: not correlated
Red: correlated
(HiRes Collab., astro-ph/0804.0382)

Does the correlation imply protons as UHECRs?

Deflection of protons if only regular field of spiral is used

1000 events with isotropic arrival distribution

Directions of 27 Auger events

Latest (preliminary) HiRes stereo data

HiRes: different method to determine Xmax from shower profiles,

Absolute numbers not comparable, relation to model predictions comparable

Auger: sys. uncertainty $\sim 15 \mathrm{~g} / \mathrm{cm}^{2}$

Only three sources and mid-mass primaries?

Wibig \& Wolfendale, astro-ph/07/2.3403

Source	Distance (Mpc)	Galaxy	IGM	Total	Median displacement observed	Z
CEN-A	5	0.7	1.1	1.3	10	7.7
Source B	20	0.46	2.2	2.2	6	2.7
Source C	33	0.48	2.8	2.8	10	3.6

But: no detailed simulation yet available

Comparison of longitudinal and lateral distributions

Auger data:

Event ID 2222701
$\theta=48^{\circ}, \mathrm{E}=\mathrm{I} .1 \times 10^{19} \mathrm{eV}$

Simulation:

CORSIKA, QGSJET II, proton primary

Systematic difference of lateral distributions found:
(a) Energy calibration problem?
(b) Muon deficit in simulation?

Systematic study of differences: muon excess?

Fluorescence detector
energy scale uncertainty

Change hadronic interaction models ?

(R. Ulrich et al., ISVHECRI 2008)

Change hadronic interaction models?

Conclusions and outlook

Excellent performance Southern Pierre Auger Observatory

First physics results

- Primary cosmic ray flux: suppression, most likely GZK effect
- Composition:
- hadronic mixed (<A effi $>\sim 4$... I0), correlated with flux
- low limits on photon fraction (~2\% @ 95\% c.l.)
- Ultra-high energy cosmic rays are not isotropically distributed
- Not yet consistent picture

Outlook:

- More statistics to come
- Enhancements of Southern Observatory to extend range to lower energy
- Design studies and R\&D for Northern Observatory

Detector location and layout

Surface detectors and trigger thresholds

- Water-Cherenkov tanks with one PMT only
- Use of existing I mi grid of roads
- Tank-to-tank commuication
full array
infill array (2000 km ${ }^{2}$)

Infill array of water Cherenkov detectors

Simulated acceptance

$433 \mathrm{~m} \quad 750 \mathrm{~m} \quad 1500 \mathrm{~m}$

Threshold for infill array $\sim 10^{17} \mathrm{eV}$

AMIGA:Auger Muons and Infill for the Ground Array

HEAT: High Elevation Auger Telescopes

- 3 "'standard" Auger telescopes tilted to cover 30-60 elevation
- Custom-made metal enclosures
- Also prototype study for northern Auger Observatory

