The Tevatron as a Probe of the Fundamental Particles and their Interactions in our Universe

Beate Heinemann

University of California at Berkeley and Lawrence Berkeley National Laboratory DESY Seminar, December 2008

The Standard Model Lagrangian

$$\mathcal{L} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + i \bar{\psi} D \psi$$

$$+ \psi_i \lambda_{ij} \psi_j h + \text{h.c.}$$

$$+ |D_{\mu}h|^2 - V(h)$$

$$+ \frac{1}{M} L_i \lambda^{\nu}_{ij} L_j h^2 \text{ or } L_i \lambda^{\nu}_{ij} N_j$$

$$v \text{ mass sector}$$

supersymmetry (many variants) extra spacetime dimensions compositeness strong electroweak symmetry breaking

something new?!

The Standard Model and it's Problems

- What is the origin of electroweak symmetry breaking?
 - Is there a Higgs boson?
 - And WHERE is it?
- What is the Dark Matter?
 - Is it produced it at colliders?
- Why is gravity so much weaker than the other forces?
- Where did all the anti-matter go?
- Do all forces unify at high energy?

- Tevatron is just touching the TeV scale:

- -Can partially address these questions
- -Can test theoretical and experimental tools
- LHC was build to fully explore the TeV scale

Problems: Dark Matter and Anti-Matter

Outline

Testing Particle Production

- Jets, W's and Z's, b-jets, top quarks
 - Builds the basis for searches for Higgs boson and new physics

Electroweak Symmetry Breaking

- W boson and top quark mass
- Higgs boson search

Beyond the Standard Model

- Supersymmetry and beyond
- Conclusions and Outlook

Luminosity and Cross Sections

At peak luminosity ~1 W boson per second produced!

A historic discourse ...

April 2002 (my DESY seminar):

~100 Z bosons ($Z \rightarrow \mu \mu$)

2008 (4.5 fb⁻¹): ~170,000 Z bosons

• Amazing how much Tevatron improved in the last 6 years Z's!

- But the early days (6 pb⁻¹) were also a lot of fun and we learned a lot! 7

Production of Particles

The Proton

- It's complicated:
 - Valence quarks
 - Gluons
 - Sea quarks
- Exact mixture depends on:
 - Q^2 : ~(M²+p_T²)
 - x_{Bi}: fractional momentum carried by parton

p

p

Hard scatter process:

$$\hat{s} = x_p \cdot x_{\bar{p}} \cdot s$$

- Cross section measured over 7 orders of magnitude
- Data well described by Standard Model prediction up to masses of 1.2 TeV

Jet Cross Section: More Differential

Tevatron parton kinematics

 10^{5}

10

 10^{6}

 10^{4}

 10^{3}

Х

 10^2

 10^{1}

 10^{0}

- High |y|: asymmetric collision
- Low |y|: symmetric collision
- Data precision better than pdf uncertainties
 - Data constrain the gluon density at high x

Z production

- High precision measurement challenges hard and soft QCD predictions
 - At low $p_T(Z)$: soft non-perturbative effects dominate
 - Important for W boson mass measurement
 - At high $p_T(Z)$: perturbative regime
 - Important for understanding background to new physics searches

W boson charge asymmetry

- High precision measurement
 - Constrains parton distribution functions: d/\bar{u}
 - Important for measurement of W boson mass

proton

antiproton

Number of bjets

15

Diboson Production: WZ,ZZ

- Diboson production
 - Sensitive to trilinear couplings among gauge bosons
 - Direct consequence of SU(2)xU(1) gauge group
- Recent highlights:
 - WZ:
 - 5.9σ observation
 - Cross section: 5.0^{+1.8}-1.6 pb

– ZZ:

- 5.7σ observations
- Cross section: 1.60±0.65 pb
- All diboson measurements in agreement with SM prediction

Evidence at 4.4 σ for WW+WZ \rightarrow Ivjj

- Very similar analysis to Higgs search (see later)
 - Also needs to find a peak on a huge (sculpted) background
 - Great that this has now succeeded
 - Cross section: 20.2 +/- 4.5 pb (in agreement with theory)
- Being done also for WZ/ZZ with $Z \rightarrow bb$
 - Evidence needs to be achieved before the Higgs since rate is 3 time higher

+ Data - Background

Diboson Signal

200

100

150

 $-\pm 1$ s.d. on Background

 χ^2 Prob = 0.45

250

Dijet Mass (GeV)

300

Top Quark Production

≥4Jets

0

1Jet

2Jets

3Jets

- Measured cross section consistent with theory
 - Precision ~8%

Top Quark: Kinematics+Properties

- Kinematic properties, couplings and charge consistent with Standard Model top production so far
 - Precision typically 10%

ν, **q**`

V-A

Spin=1/2

Spin=1/2

Single Top Production

- Evidence for single top established by CDF and DØ:
 - CDF: 2.2 ± 0.7 pb
 - DØ: 4.7 ± 1.3 pb
 - Theory: 2.86 ± 0.36 pb

- Very difficult analysis
 - Signal / background small and backgrounds uncertain
 - Important "practice" for Higgs boson: σ (single top) / σ (WH)~10

Electroweak Symmetry Breaking

The Electroweak Precision Data

Precision measurements of

- muon decay constant and $\boldsymbol{\alpha}$
- Z boson properties (LEP,SLD)
- W boson mass (LEP+Tevatron)
- Top quark mass (Tevatron)

W Boson Mass

Top Quark Mass

- Rather large pure samples available:
 - 166 events: S/B=4/1
- Perform simultaneous fit for
 - Top quark mass
 - Jet energy scale $(M_W = M_{jj})$
 - · dominant systematic uncertainty

Top Quark Mass Results

Prediction from LEP1, SLD, M_w , Γ_w : 178.9 ^{+11.7}_{-8.6} GeV/c²

$M_W,\,m_{top}\,and\,m_{Higgs}$

- Indirectly: m_H<154 GeV@95%CL</p>
- Directly (LEP): m_H>114 GeV@95%CL

(caveat: is the measured top mass the pole mass?) ²⁶

Higgs Production at the Tevatron

W+Higgs with H→bb

For m_H<135 GeV/c²:

− WH→Ivbb, ZH →Ilbb, ZH →vvbb

- Both collaborations have analyzed nearly 3 fb⁻¹ in for all three modes:
 - Analyses based on advanced analysis techniques
 - Neural Networks, Boosted Decision trees, etc.

$H \rightarrow WW^{(*)} \rightarrow I^+I^-vv$

- Main background:
 - WW production
- Higgs mass reconstruction impossible due to two neutrinos in final state
- Make use of spin correlations to suppress WW background:
 - Higgs has spin=0
 - leptons in H \rightarrow WW^(*) \rightarrow I⁺I⁻ $\nu\nu$ are collinear

10²

10

1

10⁻¹

0

Use advanced techniques (NN etc.) to gain further separation power

0000

$H \rightarrow WW^{(*)} \rightarrow I^+I^-vv$

- Neural Network separates signal from background rather well
 - Data well described in background dominated region
 - no sign of excess in the data
- Data used to set limits on Higgs bosor cross section

Higgs Cross Section Limit per Experiment

- Cross Section limits from each experiment
 - MH=115 GeV: σ_{limit} factor 4.2 (CDF)-5.3 (D0) above the SM
 - MH=165 GeV: σ_{limit} factor 1.8 (CDF)-1.7 (D0) above the SM
 - Note the 1σ downward fluctuation by D0 at 170 GeV

High Mass Higgs Combination

- Higgs excluded at 95% CL at 170 GeV
 - Still debates ongoing about the theoretical cross section value
 - Most likely theoretical cross section will increase
 - That would increase the exclusion range

Beyond the Standard Model

Problems of the Standard Model

- Large fine-tuning required:
 - $m_H < < m_{Pl}$
- Accounts for just 4% of the Universe
 - No dark matter candidate
 - Cosmological constant problem
- No prediction for
 - fundamental constants, unification of forces, number of generations, mass values and hierarchy of SM particles, anything to do with gravity

What's Nice about SUSY?

- Radiative corrections to Higgs acquire SUSY corrections:
 - No/little fine-tuning required
 - Particles masses must be near EWK scale
- Unification of forces possible
- Dark matter candidate exists:
 - lightest neutral gaugino
- Changes relationship between m_W, m_{top} and m_H:
 - Also consistent with precision measurements of M_w and m_{top}

Supersymmetry (SUSY)

- SM particles have supersymmetric partners:
 - Differ by 1/2 unit in spin
 - Sfermions (squarks, selectron, smuon, ...): spin 0
 - gauginos (chargino, neutralino, gluino,...): spin 1/2
- No SUSY particles found as yet:
 - SUSY must be broken: breaking mechanism determines phenomenology
 - More than 100 parameters even in "minimal" models!

Mass Spectrum and Unification

- Lightest SUSY particle (χ_1^0) is Dark Matter candidate (if stable)
- Models predict mass relations: M(g)≈3M(χ 1[±]) ≈6M(χ 1⁰)

37

Generic Squarks and Gluinos

Squark and Gluino production:

– Signature: jets and E_T^{miss}

- Strong interaction => large production cross section
 - for M(g̃) ≈ 300 GeV/c²:
 - 1000 event produced/ fb⁻¹
 - for M(\tilde{g}) ≈ 500 GeV/c²:
 - 1 event produced/ fb⁻¹

Squarks and Gluinos

- Squark and Gluino production:
 - Signature: jets and E_T^{miss}
 - At Tevatron no long cascades to leptons expected:
 - · Lepton veto applied
- Analysis optimized depending on mass hierarchy

Supersymmetry Parameter Space

NB: up to 10 GeV differences depending on treatment of theoretical cross section uncertainties

Trileptons: Another Look for SUSY

- Search for partners of W and Z boson
 - Decaying via leptons
 - Signal:
 - 3 leptons and missing $E_{\rm T}$

The Trilepton Data

- Also consistent with background expectations
 - M(chargino)>140 GeV/c² at 95% confidence level
 - rather model-dependent though

Exclusion of GUT scale parameters

- Nice interplay of hadron colliders and e⁺e⁻ colliders:
 - Similar sensitivity to same high level theory parameters via very different analyses
 - Tevatron is starting to probe beyond LEP in mSUGRA type models

Beyond SUSY

Confusion among Theorists?

[Hitoshi Murayama]⁴⁵

Solving the Hierarchy Problem with Extra Dimensions

- String theory:
 - There are more than 3 spatial dimensions
- Large Extra Dimensions (Arkhani-Hamed, Dimopoulos, Dvali)
 - Electroweak and strong interaction live in our dimensions
 - Gravity lives also in extra dimensions

$\mathbf{M}_{\mathsf{Pl}}^{2} \sim \mathbf{R}^{\mathsf{n}} \mathbf{M}_{\mathsf{Pl}(4+\mathsf{n})}^{(2+\mathsf{n})}$

- R=radius of extra dimensions
 - R=100 μm 1 fm for n=2-7

Other models: e.g. Randall-Sundrum

Possible Experimental Signatures

Dielectron and Diphoton Mass Spectra

CDF Run II Preliminary

- Data agree with background prediction
 - Slight excess in CDF ee spectrum at 240 GeV (prob.~0.6%)
 - 50 events on a background of 27
 - Not clear if observed by D0 also

High Mass ee and $\gamma\gamma$

- Anomalous in diphoton or dielectron mass spectrum predicted in
 - Resonance: Z' models (spin 1) and Randall-Sundrum Graviton (spin 2)
 - Hard tail: large ED model (ADD)

CDF Run II Preliminary

Conclusions and Outlook

Tevatron + experiments operating well

- Analyses based on up to 3 fb⁻¹
- Already >4.5 fb⁻¹ on tape
- Physics result cover broad range:
 - QCD thoroughly being tested:
 - works very well even in complicated final states!
 - Precision between 2 and 50%
 - Higgs boson constraints at 95% CL:
 - Indirect (m_W and m_{top}): m_H<154 GeV/c²
 - Direct searches: m_H ≠ 170 GeV/c²
 - Searches beyond the Standard Model
 - Many searches but no sign of new physics yet

• Valuable input for the LHC

- Testing background predictions for new physics searches
 - Higher order QCD calculations
 - MC programs
- Develop search strategies
 - Although may be lot easier at the LHC

Conclusions and Outlook

Tevatron + experiments operating well

- Analyses based on up to 3 fb⁻¹
- Already >4.5 fb⁻¹ on tape
- Physics result cover broad range:
 - **QCD** thoroughly being tested:
 - works very well even in complicated final states!
 - Precision between 2 and 50%
 - Higgs boson constraints at 95% CL:
 - Indirect (m_W and m_{top}): m_H<154 GeV/c²
 - Direct searches: m_H ≠ 170 GeV/c²
 - Searches beyond the Standard Model
 - Many searches but no sign of new physics yet

Valuable input for the LHC

- Testing background predictions for new physics searches
 - Higher order QCD calculations
 - MC programs
- Develop search strategies
 - Although may be lot easier at the LHC

Hopefully we are at the verge	of making a	striking discovery	
-------------------------------	-------------	--------------------	--

Process (mass)	<u>σ(Tevatron)</u> σ(LHC)
W [±] (80 GeV)	~10
tt (2x172 GeV)	~100
gg->H (120 GeV)	~40
χ ⁺ ₁ χ ⁰ ₂ (2x150 GeV)	~10
qq (2x400 GeV)	~1000
gg (2x400 GeV)	~20000
Z' (1 TeV)	~300

51

CDF Multi-Muon Study aka "Ghosts"

	Data	Background
N(extra μ)≥0	1.42 x 10 ⁶	1.13 x 10 ⁶
N(extra μ)≥1	1.41 x 10 ⁵	0.94 x 10 ⁵
N(extra μ)≥2	1.02 x 10 ⁴	0.39 x 10 ⁴

- Recent preprint (0810.5357) discusses excess of muons
 - Muons have anomalously high impact parameters:
 - Lifetime: τ≈20 ps
 - There are extras muons in these events
 - Considered backgrounds due to b-decays, punch-through, decay-in-flight
- Unclear if this is due to a signal or a miscalculated background
 - Would be interesting to see if HERA experiments see this
 - Warning: very difficult analysis (e.g. hadronic interactions, punchthrough,...)