Cryogenic Dark Matter Searches

Galaxy NGC 3349, HST

F. Pröbst MPI für Physik

Outline

•Direct detection

 Major direct searches with cryogenic detectors: results and performance critical factors

EDELWEISS,

- •CMDS
- •CRESST

Weakly interacting massive particles

WIMPS: massive particles (> GeV) with weak interaction and **stable**, thermally produced in the early universe and still there.

Favored candidate: neutralino, the lightest supersymmetric particle.

$$\chi = a \tilde{B} + b \tilde{W}^3 + c \tilde{H}_1 + d \tilde{H}_2$$

 χ phenomenologically similar to heavy majorana with weaker annihilation cross section which gives $\Omega \approx 0.1$ for a wide range of parameters and neutralino masses.

 $\sigma_{el} \Leftrightarrow \sigma_{\chi\chi}$ depends on composition Search Mass- _{el} plane as wide as possible

In general χ have spin and spin independent (coherent) interaction. Spin independent usually dominates due to A² factor

WIMPs are cold, slow and gravitationally bound to galaxy. Maxwellian velocity distribution in galactic rest frame $v_{rms} \approx 270$ km/s Velocity of sun in galaxy shifts velocitiy distribution seen on earch

How to detect WIMPs

Looking for annihilation products : \rightarrow in space : GLAST, AMS, ...

→on Earth : Amanda, Antares, Nestor, HESS, HEAT, SuperK, MAGIC... Elastic scattering of WIMPs on nuclei

Signal: low energy nuclear recoil (some 10 keV)

Recoil Spectra for various target nuclei

- Spectral shape depends on WIMP and target mass.
- Formfactor suppression of large energy transfers for heavy nuclei.
- Low thresholds required, especially for small WIMP masses and large A

Sensitivity - which σ can be excluded ?

If there is background:

Sensitivity is given by the smallest cross section producing a WIMP contribution which can not be hidden under the measured spectrum. No further improvement once background rate B is measured statistically significant

 $\sigma \propto B$

Without background: Linear improvement with exposure

 $\sigma \propto \frac{1}{Mt}$

Identification of WIMP signals

- Shape of recoil spectrum
- Correct scaling of rate and spectrum for different target nuclei
- Annual modulation
- Diurnal variation in directionality

Detector Requirements for Direct Detection

Challenges for direct searches:

- Very low event rate: < I count/week in a I kg detector (goal of phase-II (EDELWEISS,CDMS, CRESST) experiments <I count/year in a I kg detector)
- Nuclear recoil signals with KeV energies and featureless spectrum.
- Very low threshold, extremely low background detectors, efficient nuclear recoil discrimination

Most important signal region is just above threshold

- Need very good shielding from environmental electromagnetic, vibrational and acoustic noise sources.
- Need continuous control of stability of detector response and threshold to confirm that detector is really able to measure such low energies

The backgrounds we have to fight

Underground site to protect from cosmic muons

Natural radioactivity of surrounding rocks and materials:

- \rightarrow shield γ background with low background Pb and high purity Cu.
- \rightarrow surround shielding with gas tight radon box flushed with N₂
- \rightarrow clean room to protect from radioactive dust
- \rightarrow careful material selection.

Deep underground and very well shielded residual $\beta + \gamma$ background typically -100/kg/day.

→detectors with excellent nuclear recoil discrimination needed

Nuclear recoil backgrounds:

•Neutrons from spontaneous fission and α/n reactions in rock (LNGS ~ 1 /kg/day): \rightarrow moderate with 50 cm of PE

•Neutrons from muons in Pb/Cu shield (~0.02 /kg/day):

 \rightarrow need muon veto for reaching $\sigma_{_{\rm WIMP-nueleon}}$ ~10⁻⁸ pb

•Recoil nuclei from ²¹⁰Pb contaminations on external surfaces: \rightarrow discrimination of surface events (CDMS) or other tricks (CRESST)

Nuclear recoil discrimination strategies

Scintillation Detectors

Experiments: Nal: DAMA/LIBRA, UKDM-NaIAD .. Csl: KIMS

- •Well known and available technique
- ·lodine as heavy target nucleus A=127
- •Large crystals with very good radiopurity available
- •Poor spectral resolution
- •No β + γ discrimination on event by event basis

lodine recoils have quenching factor Q=12, 24 keV recoils e.g. appear at 2 keV

Recoil spectrum sqeezed by factor Q

 \rightarrow very low threshold needed

Signal/background improved by factor Q

DAMA/LIBRA

Roma/LNGS/Beijing collaboration

DAMA: - 100 kg Nal in Gran Sasso, 7 years of data

9.7 kg Nal crystals, 10 cm light guide,2 photomultipliers in coincidence, extremely low energy threshold 2 keV

In low background Cu/Pb/polyethylen Box inside radon-box

DAMA ended operation in July 2002

LIBRA:

Upgrade to ~250 kg detector. Running since March 2003. First data released spring 2008.

DAMA-Evidence

Phase and amplitude consistent with WIMP signature during more than 6 years wit 6.2 σ statistical significance.

WIMP mass (52±10) GeV, $\sigma = (7\pm 1)10^{-6}$ pb

Rather controversial, as a number of other experiments failed to see WIMPS at that level of cross sections

DAMA/LIBRA 2008 Data

Modulation signal in 3 energy ranges

- •Presence of oscillation now at 8.2 σ C.L.
- Careful study of systemactic effects and possible side reactions fails explain signal modulation
- •Renewal of claim that DM has been detected

EDELWEISS

Collaboration: CEA-Saclay, CSNSM Orsay, CRTBT Grenoble, IAP Paris, IPN Lyon , FZ/Uni Karlsruhe, JINR Dubna (total ≈ 50 people) Modane Underground Laboratory (Fréjus,France): 4800 mwe

EDELWEISS-1 I Kg stage

Low background dilution cryostat

Roman lead shields

3x320 g detectors

~1996 to March 2004

EDELWEISS-II

30 kg stage

- Large volume ~50 l, reverse cryostat
- up to 110 detectors
- •Installation 2005-2006
- •Commissioning runs in 2006-2007.
- •Results not γet available

EDELWEISS Ge Ionization-Heat detectors

- Heat signal: NTD-Ge thermistor @ 17 mK
- Ionisation signal: @ few V/cm
- Signal ratio gives event by event recoil discrimination.
- Central/guard charge signal allows fiducial volume cut

EDELWEISS-I Discrimination Performance

⁶⁰Co calibration

²⁵²Cf calibration

Excellent gamma-n separation in calibration run.
Rejection > 99.9% for recoil energies, > 15keV

EDELWEISS-I Data

V.Sanglard et al, Phys.Rev.D 71(2005) 122002

40 events in recoil band above 15 keV in 62 kg-days of combined data
Very likely due to incomplete charge collection for electrons interacting at

crystal surface.

EDELWEISS-I Final Result

- EDELWEISS-I ended March 2004 for upgrade to phase-II
- Complete data set ~ 62 kg days
- No further improvement to previous limit (11.7 kg days) due to background.
- Sensitivity limited by leakage of surface events into nuclear recoil band. Main limitation of technique.
- DAMA positive evidence excluded in case of spin independent interaction

Sanglard et al, Phys.Rev.D 71(2005) 122002

EDELWEISS: Surface event identification with NbSi films

Allows detection of nonthermal high frequency phonons detection

Discrimination with athermal signal ratio
 Technique for EDELWEISS-II ?

400 g Ge-NbSi detectors: First data

Surface event rejection works, resolutions still needs tuning

Ge Detectors with Interdigitized Electrodes

200 g Ge disk with annular Al electrodes with hydrogenated amorphous Ge layer for improved charge collection 7 measurement channels, 6 charge (a,b,c,d + 2 guard) + heat channel

ID Electrodes: Operating principle

Bulk events: $Q_c = -Qa$ $Q_b = Q_d = 0$

Surface events top surface: $Q_a \neq 0 \& Q_b \neq 0$ $Q_c = Q_d = 0$

bottom surface: $Q_a = Q_b = 0$ $Q_c \neq 0 \& Q_d \neq 0$

EDELWEISS-II: Status of ID Detectors

First detector (200g) with interleaved electrodes in LSM

CDMS

Brown University Case Western Reserve University University of California, Berkeley University of Colorado at Denver FNAL, LBL Santa Clara University

Stanford University University of California, Santa Barbara University of Florida University of Minnesota

CDMS at SUF shallow site (17 mwe): ended in 2002. CDMS-II at SOUDAN mine:

- Setting up in mine at ~2000
- First data taking period Oct. 03 to Jan. 04, 1 tower run, ~1 Kg (Phys. Rev. Lett. 93 (2004) 211201
- Second data taking period March to August 2004, 2 tower run, ~2 kg (Phys. Rev. Lett. 96 (2006), 011302)
- Since Oct. 2006, 5 tower run, ~ 5Kg
- Oct. 2006 to July 2007 data released in 2008 (astro-ph/08023530)

CDMS ZIP Ionization & Phonon Detectors

Fast athermal phonon detection

- Superconducting thin films of W with Alquasiparticle traps, in four quadrants for position resolution
- Phonon pulse shape allows for rejection of surface recoils (with suppressed charge)
- Central charge electrode+guard ring on back side

250 g Ge ZIPS, 100g Si ZIPS

CDMS ZIP detectors

¹³³Ba γ + ²⁵²Cf neutron calibration

• Excellent n/γ separation in calibration data

Incomplete charge collection for surface electrons mimics nuclear recoils

ZIP detectors timing cut

- Phonon rise time and charge to phonon delay allows rejection of surface events
- Definition of cuts with high statistic ¹³³Ba gamma and ²⁵²Cf neutron calibrations

CDMS ZIP detectors: physics run 2004

CDMS-II run March to August 2004, PRL 96 (2006) 11302

- •Ge data: I event survived surface cut
- •Si data: 0 events in signal region after surface electron cut
- •Cuts removes ~65% of live time

2003+2004 Ge data sets: 2 events in nuclear reocoil band in 53 kg d,

CDMS: Two 5 tower runs in 2006/2007

Nuclear recoil signal region

after all cuts but timing cut also with timing cut

Data sample: 397.8 kg-days (cuts remove ~70%)

I21.3 kg-days after cuts. No event in nuclear recoil region above 10 keV. Cuts were tuned for 0.5 expected.

CDMS 2008 limit

Collaboration:

MPI für Physik

University of Oxford

TU München

Universität Tübingen

Laboratori Nazionali del Gran Sasso

CRESST

Run Summary:

CRESST-I ended in March 2001

- ==> move to hall A
- Series of tests of new phonon/light detectors in 2003
- Short physics run with two 300g phonon/light detectors =>2004 results
- •Upgrade of setup for CRESST-II 2004 to 2006
- Commissioning run in 2007 with 3 detector modules => 2007 results
- Run with 17 detector modules has started recently

CRESST Cryostat

- Only selected low background materials with minimized exposure to cosmic rays activation
- 20 cm Pb +15 cm Cu shield
- Cold Pb shields to block line of sight to detectors
- No cryogenic liquids inside shielding
- Gas tight radon box around shield
- Cold box volume -30 l, large enough for CRESST-II detectors

CRESST-I Setup_

•Free standing Faraday cage, lower level is clean room

•Cryostat with efficient vibration insulation in Faraday cage

•Cryostat service from first floor, outside clean room

CRESST type Detectors

SQUID based read out circuit Width of transition: ~ImK, keV signals: few μ K Longterm stablity: ~ μ K

Advantages of technique:

- measures deposited energy independent of interaction type
- Very low energy threshold
- Excellent energy resolution
- Many materials

CRESST-II Detector Concept

Discrimination of nuclear recoils from radioactive $\beta + \gamma$ backgrounds by simultaneous measurement of phonons and scintillation light

300 g CRESST-II Detector Module

The phonon detector: 300 gcylindrical CaWO₄ crystal. Evaporated tungsten thermometer with attached heater.

The light detector:

Ø=40 mm silicon on sapphire wafer. Tungsten thermometer with attached aluminum phonon collectors and thermal link. Part of thermal link used as heater

CRESST-II: up to 33 detector modules

Proof of principle

Irradiation with γ and e^-

Irradiation with e^{-} , γ and n

•No degratation of light yield for e⁻ surface events. Main advantage of technique •Efficient discrimination of e- and γ background above 15 keV

Recoil spectrum in CaWO₄ expected from unshielded neutrons at Gran Sasso

Discriminate neutron background from WIMP singnal ??

Quenching Factor Measurements

Time of flight mass sepctrometer

- CaWO₄ scintillator crystal irradiated with singly ionized single atoms
- Photon counting in narrow time window from arrivel time
- Almost background free method
- Nucleus (energy) dependent measurements.

Quenching factor vs. atomic mass

Light yield of γ -interaction with energy E

Light yield of n-recoil interaction with energy E

W recoils have significantly lower light yield

Possible to distinguish WIMP-W recoils from neutron-O recoils

First physics run (run28) in CRESST-1 setup

Stable response over the whole measuring period of 40 days

Very good energy resolution: γ : 1.0 keV @ 46.5 keV α : 6.7 keV @ 2.3 MeV

Run28: Low Energy Event Distribution

10.72 kg-days, without neutron shield

Upper limit for spin independent WIMP nucleon cross section

Result from 2 month run with 2 CRESST-II prototype detectors still without neutron shield

Detector Performance in wide energy range

Excellent linearity and energy resolution in whole energy range \triangleright Perfect discrimination of β + γ from α 's Identification of alpha

Enormous dynamic

range

emitters

WIMPS

Identification of α -Emitters

► Reasonably low alpha rates:

~ 2mBq/kg total

All peaks of U/Th chains identified

Rare earth rate consistent with ICPMS

Same light for extern and intern ²¹⁰Po \rightarrow no surface degradation

α -decay of "stable" ¹⁸⁰W

Half-life for the α -decay of ¹⁸⁰W

Phys. Rev. C 70 (2004) 64606

Half life: $T_{1/2} = (1.8 \pm 0.2) \times 10^{18}$ years Energy: $Q = (2516.4 \pm 1.1 \text{ (stat.)} \pm 1.2 \text{ (sys.)})$ keV

First unambiguous detection

Upgrade for CRESST-II

- •New read out and biasing electronics: 66 SQUIDs for 33 detector modules
- •Wiring for 66 channels
- •Detector integration in cold box
- •New DAQ
- •Neutron shield: 50 cm polyethylen
- •Muon veto: 20 plastic scintillator pannels

outside Cu/Pb shield and radon box. Analog fiber transmission through Faraday

cage

9 Detector Modules mounted for commissioning run (Oct. 2006)

Coldbox closed

Half Cu/Pb schield closed

Commissioning run

- Oct. 2006 to Nov. 2007
- ·Cooling problems of inner tower

•7 Phonon channels O.K delivering sub keV energy resolution. Due to cooling and SQUID problems only 2 complete modules were working. The light detector of a third one suffered from em interferences.

•Despite some residual problems with em interferences in light channels 50 kgdays of dark matter data were taken towards the end of the run.

Data from commissioning run

•3 Tungsten recoils in 10 to 40 keV range in 50 kg-days

•Neutron background strongly reduced. Some weak parts of neutron shielding identified and patched towards the end of the run. Not enough statistics afterwards to see whether it helped.

•Still wider β/γ band compared to previous run due to residual electronic interference in light detectors.

Spin independent exclusion limits

CRESST: New Run31 just started

IT detector modules mounted (total ~5 kg) in May 2008, some with design modifications to explore origin of residual background. Presently setting up the detectors.

Design modification of detectors include:

- Improved perfection of covrage of all internal surfaces with scintillating material to further optimize rejection of ²⁰⁴Pb recoils.
- --New method of sensor fabrication to improve light yield by -50 %

--New material: ZnWO4, lower radiactive background, more light

Commercial digital SQUID control electronics replaced by quiet custom design to minimize potential sources of em interference disturbing the light detectors

Conclusions

•Present experiments (I kg scale) reach now a sensitivity -4.6x10-8 pb for spin independent independent interaction; now CDMS-II and XENONIO, soon CRESST-II and EDELWEISS-II.

•In 2008 to 2010 several existing experiments will reach 10^{-8} pb testing a significant range of SUSY parameter space

•For covering most of supersymmetric parameter space a sensitivity of 10^{-10} pb is needed, requireing 100 kg to 1 tonne detector mass scale:

Super CDMS, EURECA, XENONIOO, WARP, ArDM, ...

Multiple technologies are necessary for a convincing discovery

The End