

IceTop PeV Cosmic Rays at the South Pole

Stefan Klepser

DESY, Zeuthen, Humboldt-Universität zu Berlin

May 2008

Outline

- Prelude: Cosmic Ray Physics
- Extensive Air Showers
- IceTop and IceCube

• Air Shower Reconstruction

• Energy Assignment & Spectrum Deconvolution

Cosmic Rays

Galactic Cosmic Rays in Real Life

- Part of Natural Radiation (13%)
- Kept ¹⁴C fraction on Earth constant (until the 1950s...)
- Impact on electronic devices, increases with decreasing transistor size
- May be the trigger of lightnings
- Impact on climate change through cloud formation under discussion
- Put down Killer-Black-Hole objections against LHC

lceCube

Galactic Sources of CRs

- ~85% of visible matter is bound to stars
- Stars are most brutal when they die
- \rightarrow CR believed to be from Supernovae and their remnants (SNR)

some 100 yr Shock front at ~0.1 c

- → Successive Acceleration
- \rightarrow Fermi acceleration
- $\rightarrow dI/dE \sim E^{-2.3}$
- → Absorption, Interaction
- $\rightarrow dI/dE \sim E^{-2.7}$

Minor additional components from microquasars or other objects possible, but not needed.

The Knee - Upper End of Galactic CRs?

A simple knee model (leaky box):

Magnetic Fields O(µG) capture particles below knee energy

$$\rightarrow$$
 Rigidity-dependent knee?

$$\rho = \rho/ZeB = R/cB$$

$$R_{Knee} = pc/Ze = const.$$

$$\rightarrow \mathsf{E}_{\mathsf{Knee}}(\mathsf{Z}) = \mathsf{Z} \cdot \mathsf{E}_{\mathsf{Knee}}(\mathsf{p})$$

- **Diffusion Equations** (leaky box 2.0)
 - Cosmic Rays = relativistic gas
 - Propagation equation describes spallation, decay, leakage, etc.
 - Also leads to Z-dependent knee

• Upper Acceleration Limit of Galactic Sources?

- Local magnetic fields of SNR capture accelerated particles
- $\rightarrow E_{knee} = local escape energy$
- \rightarrow Z-dependent knee

Exotic Knee Models

 Knee = Effect of unexpected phenomena in the air shower production?

• Examples:

- Enhanced multi-hadron production
- Production of undetected exotic particles
- \rightarrow Undetected energy loss
- \rightarrow Wrong energy assignment
- Production rates scale with A
 - \rightarrow A-dependent knee position!

 $\Delta E!$

Present Data

- Published spectra indicate or support Z-dependent knee
- Still: Large systematic uncertainties
- Indications of increasing mean mass from most other experiments

Capturing PeV Cosmic Rays: Extensive Air Showers

Extensive Air Showers

Shower Development for Different Nuclei

Differences between Experiments

• **Size** (→ energy regime)

• Altitude

 $(\rightarrow$ shower stage, i.e. muon ratio, model dependency)

• Detector Type

- Scintillator
- Cherenkov tanks
- Cherenkov telescope
- Muon detectors

Measured shower component(s)

- e/m
- muon (high or low energy, high or low transverse momentum)
- Analysis Techniques

\rightarrow Large systematics need orthogonal approaches!

Some Experiments I KASCADE-Grande

Multi-Component Detector:

- scintillators (137m grid size)
- some muon detectors
- one hadron calorimeter
- \rightarrow high sophistication

Some Experiments II Tibet-III

- Scintillator array
- Very dense (7.5 m grid size)
- Very high (4300 m)
 - \rightarrow e/m dominated showers
 - \rightarrow Low model dependency
- Surface-Only
 - \rightarrow No muon measurement
 - \rightarrow Composition hardly accessible
- Upgrade expected soon

Stefan Klepser: IceTop - PeV Cosmic Rays at the South Pole

down to ~ 100 TeV !

Some Experiments III TUNKA (near Lake Baikal)

- Cherenkov Detectors (85 m grid size)
 - measuring e/m component in the air
- Medium Altitude (675m)
- Mean mass evolution from depth of shower maximum
 - \rightarrow complementary approach

• Tunka-133 is being built

lceTop/lceCube

University of Oxford

University Utrecht

Univ. Lausanne

Bartol Research Inst., Delaware

- Anchorage University
- Pennsylvania State University
- UC Berkeley
- UC Irvine
- Clark-Atlanta University
- Univ. of Maryland
- University of Wisconsin-Madison
 University of Wisconsin-RiverFalls
- LBNL, Berkeley
- University of Kansas
- Southern Univ., Baton Rouge
- Georgia IOT
- University of Alabama

IceCube Collaboration Cosmic Ray Working Group

lceTop/lceCube

IceTop Strategies to Unravel CR Composition

Ν

- Coincident Analysis, measuring e/m vs. high energy (early interaction) muons
- Single (low energy) muon counting at high radii
 - IceTop-only analysis, measuring e/m component vs. zenith angle

X / g cm⁻² Ν X / g cm⁻² Ν X / g cm⁻²

IceTop Detector Array 2007

(setup of present analysis)

IceTop Signal Recording

Each event = set of (\vec{x}, q, t) **Reconstruction = making physical quantities out of this** Wanted variables: Shower Direction: θ, φ • Shower Centre (in the array plane): x_c, y_c Primary Energy: E_{0} • (Shower Age: a, not needed here)

IceTop Shower Reconstruction

Pulse Height Probability Density Function

Expectation Value: Lateral Distribution Function

$$S(R) = S_{R_0} \left(\frac{R}{R_0}\right)^{-\kappa \log_{10}}$$

- Charge expectation in dependence of distance to shower axis
- Made at DESY (as everything that follows)

• Fluctuations from that:

• Parametrised in dependence on S

arXiv:0711.0353

Stefan Klepser: IceTop - PeV Cosmic Rays at the South Pole

 $\frac{R}{R_0}$

Energy Estimator

- Analytical function for event-by-event energy estimator
- shower size almost proportional to energy
- assuming primaries were protons

 $R_0 = 100m$ because of numerical stability (mean $log_{10}R_{signal}$ for all events ≈ 2)

Stefan Klepser: IceTop - PeV Cosmic Rays at the South Pole

28/42

Resolution & Efficiency

Stefan Klepser: IceTop - PeV Cosmic Rays at the South numbers for the 0°-30° zenith range only!

First Energy Spectrum Analysis

Uncorrected Energy Distribution

Problem (for IceTop-only Analysis): Composition Dependency

Composition dependent!

Unfolding

- Inverting effects of response matrix
- Trying two different unfolding algorithms (Gold and Bayesian after D'Agostini)

Unfolding under Pure Proton and Iron Assumptions

Unfolding under Mixed Composition Assumptions

Quantitative Evaluation

- Defined 3 Likelihoods to check agreement of
 - Knee Fit variables
 - All bins
 - Integral over Spectra
 - Sensitivity to CR composition!
 - Clear preference of mixed composition models

	1	1		
	only protons	poly-gonato	two-components	only iron
(a) fit param	neter compatib	oility		
$I_{ m PeV,lg}$	3.34(12)	4.05(10)	4.26(11)	8.8(5)
χ^2/ndf	10.0/2	6.9/2	8.4/2	257/2
prob.	$6.7 \cdot 10^{-3}$	$3.2 \cdot 10^{-2}$	$1.53 \cdot 10^{-3}$	$6.9 \cdot 10^{-11}$
24	2.07(9)	2.110(14)	2 190(14)	2.904(10)
$=\gamma_2$	3.07(2)	0.61/9	3.120(14) 1.95/9	3.294(19)
χ / Hat	5.9/2 0.145	0.01/2	1.25/2	4.1/2
prob.	0.145	0.74	0.54	0.126
	GOOD	GOOE		NO GOO
llh. ratio	0.04	1.0	0.35	$3.7 \cdot 10^{-10}$
(b) single bi	n compatibili	y		
prob.	$4.5 \cdot 10^{-11}$	$1.06 \cdot 10^{-3}$	$1.13 \cdot 10^{-3}$	$2.3 \cdot 10^{-17}$
llh. ratio	$4.0\cdot 10^{-8}$	0.94	1.0	$2.0\cdot 10^{-14}$
(c) integral of	compatibility			
() 0	× .			
χ^2/ndf	20.0/2	1.9/2	1.7/2	42.4/2
prob.	$4.6 \cdot 10^{-5}$	$4.0 \cdot 10^{-1}$	$4.2 \cdot 10^{-1}$	$6.2 \cdot 10^{-10}$
llh. ratio	$1.1 \cdot 10^{-4}$	0.95	1.0	$1.5\cdot 10^{-9}$

Likelihood Ratios

Systematics

		$\log_{10} E$	$\log_{10}(dI/d\log_{10}E)$	E						
1	threshold	0.007	-	1.6%	tech	nical si	imulati	on issue	es that	
\supset	snow, $\Omega 0$	0.009	—	2.1%	miał	t impr	ove so	on		
	snow, $\Omega 1$	0.014	_	3.2%		· · · · · · · ·		•		
	snow, $\Omega 2$	0.017	_	3.9%						
	saturation, $E < 30 \mathrm{PeV}$	_	_	-						
	saturation, $E=100{\rm PeV}$	0.02	_	4.6%						
	atmosphere	0.014	—	3.2%						
	instability	0.017	_	3.9%						
L	interaction model	0.004	_	0.92%						
	calibration	0.03	_	6.9%	calib	ration				
	unfolding	—	0.014	1.90%						
L	response matrix, $\Omega 0$	0.0015	0.007	1.01%						
ſ	response matrix, $\Omega 1$	0.003	0.011	1.6%						
	response matrix, $\Omega 2$	0.004	0.015	2.2%						
						flux	E < 3	$30\mathrm{PeV}$	E = 1	$00\mathrm{PeV}$
Ì				zenit	h bin	$\sigma_{\mathrm{lg}I}$	$\sigma_{\mathrm{lg}E}$	σ_E .	$\tau_{\rm lg}$	σ_E
Ţ				Ω_0		0.016	0.039	9.9%	0.044	10.3%
				Ω_1	_	0918	0.041	9.7%	0.045	10.7%
				0		0.001	0.040	10.007	0.040	11 0 07
				Ω_2		0.021	0.042	10.0~%	0.046	11.0%

Preliminary Energy Spectrum

(Polygonato composition assumption)

Preliminary Spectral Features

(Polygonato composition assumption)

$$E_{knee} = 3.1 \pm 0.3$$
 (stat.) ± 0.3 (sys.) PeV

$$\gamma_1 = 2.71 \pm 0.07$$
 (stat.)

 $\gamma_2 = 3.110 \pm 0.014$ (stat.) ± 0.08 (sys.)

	$E_{ m knee}$	$-\gamma_1$	$-\gamma_2$
KASCADE	4.0(8) - 5.7(1.6)	2.70(6)	3.10(7) - 3.14(6)
TIBET	3.8(1) - 4.0(1)	2.65(1) - 2.67(1)	3.08(5) - 3.12(1)
TUNKA		2.71(5)	3.22(5)
this work	3.1(4)	2.71(7)	3.11(8)

Outlook

Summary

IceTop Construction is half completed

Shower Reconstruction, IceTop-Only analysis works

well

 Requiring an isotropic flux can give a handle on composition, using deconvolution methods

Work now focuses on coincident analyses

Hajo Drescher, Frankfurt U.

IceTop Tank Response

Tank response depends on particle type and energy

 \rightarrow Average tank responses S_j(E) for all particles types j abundant in air showers were parametrised

Stefan Klepser: IceTop - PeV Cosmic Rays at the South Pole

Longitudinal Development

Backup: Fits on Raw Spectrum, Folded Raw Spectra

Table 6.3: Parameters of the raw spectra (see eq. 6.1). $I_{\text{PeV,lg}}$ is given in terms of $10^{-6} \text{ m}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$, E_{knee} in PeV.

zenith range	$I_{ m PeV,lg}$	$-\gamma_1$	$-\gamma_2$	$E_{\rm knee}$	ε	χ^2/ndf
$0^{\circ} - 30^{\circ}$	3.24(7)	2.68(9)	2.98(2)	2.0(5)	3.2(1.5)	30.1/34
30° – 40°	3.19(3)	_	3.079(14)	_	_	40.9/30
$40^\circ-46^\circ$	3.24(12)	_	3.13(3)	_	_	27.3/25

Backup: Threshold Definition

 Done for each Zenith bin

• Paculter

zenith range	raw	unfolded
0° $ 30^\circ$	-0.05	0.10
$30^{\circ} - 40^{\circ}$	0.30	0.50
$40^\circ-46^\circ$	0.55	0.75

for unfolded spectra: 2 x width of response matrix

Backup: Fit Function & Parameters

$$\frac{dI}{d\log_{10}E} = I_{\rm PeV,lg} \cdot \left(\frac{E}{1\,{\rm PeV}}\right)^{\gamma_1+1} \cdot \left(1 + \left(\frac{E}{E_{\rm knee}}\right)^{\varepsilon}\right)^{(\gamma_2-\gamma_1)/\varepsilon}$$

Table 8.4: Knee fit parameters of all 12 unfolded spectra, as defined in eq. 6.1. $I_{\rm PeV,lg}$ is given in terms of $10^{-6} \,\mathrm{m^{-2} \, s^{-1} \, sr^{-1}}$, $E_{\rm knee}$ in PeV.

model	θ bin	$I_{ m PeV,lg}$	$-\gamma_1$	$-\gamma_2$	$E_{\rm knee}$	ε	χ^2/ndf
	Ω_0	3.61(10)	2.66(8)	3.05(2)	2.8(3)	5.8(3.4)	14.2/14
only protons	Ω_1	3.23(5)	_	3.08(3)	_	_	11.6/12
	Ω_2	3.3(2)	_	3.17(6)	_	_	5.7/9
	Ω_0	4.21(9)	2.71(7)	3.12(3)	3.1(3)	4.7(2.7)	9.5/13
poly-gonato	Ω_1	3.92(7)	_	3.10(2)		_	14.2/12
	Ω_2	4.2(2)	_	3.13(4)	_	_	5.2/9
	Ω_0	4.43(9)	2.75(6)	3.12(3)	3.1(3)	5.4(3.3)	9.7/13
two-comp.	Ω_1	4.15(5)	_	3.11(2)	_	_	16.2/12
	Ω_2	4.6(2)	_	3.16(4)	_	_	5.4/9
only iron	Ω_0	8.39(4)	3.074(9)	3.29(2)	3.7(3)	2.7(7.0)	11.7/13
	Ω_1	9.91(9)	_	3.28(2)	_	_	21.7/13
-	Ω_2	14.2(7)	_	3.37(4)	—	_	6.3/9