
ZEUS F_L measurement

Shima Shimizu (University of Tokyo) on behalf of the ZEUS collaboration

Deep Inelastic Scattering

• DIS kinematics can be described by

$$Q^{2} = -q^{2} = -(k - k')^{2}$$
 $x = \frac{Q^{2}}{2p \cdot q}$ $y = \frac{p \cdot q}{p \cdot k}$

 Q^2 : Virtuality \rightarrow probing power

x : Bjorken scaling variable

→ momentum fraction of struck quark

y: Inelasticity

$$Q^2 = sxy$$
 \sqrt{s} = Beam centre of mass energy

• DIS cross section can be written with structure functions: F₂, F_L

$$\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2}{Q^4} (1 + (1 - y)^2) \left[F_2(x, Q^2) - \frac{y^2}{Y_+} F_L(x, Q^2) \right] \qquad \text{(ignoring xF}_3)$$

$$\text{cross section with point-like proton} \quad Y_{\pm} = 1 \pm (1 - y^2)$$

SFs reflect momentum distribution of partons in the proton

Structure functions; F₂, F_L

 $F_2 \longrightarrow Total number of quarks$

$$\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2}{Q^4}Y_{+} \left[F_2(x,Q^2) - \frac{y^2}{Y_{+}} F_L(x,Q^2) \right]$$

→ Also indirectly sensitive to gluon distribution.

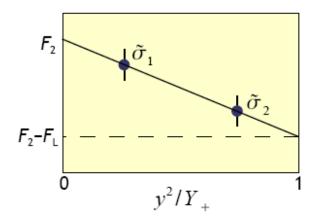
$$F_2 = \sum A_q x(q + \overline{q})$$
 $\frac{\partial F_2}{\partial \ln Q^2} \propto xg$

 $F_L \longrightarrow$ Direct sensitivity to gluon dynamics.

- F_L proportional to longitudinal photon interacting with proton.
- In nQPM (Callan-Gross relation, assumes spin ½ quarks) $F_L = 0$
- gluon emission in the proton $\rightarrow F_L \neq 0$

i.e. F_L directly reflects gluon dynamics in the proton.

at LO
$$F_L = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \left[\frac{16}{3} F_2 + 8 \sum_q e_q^2 \left(1 - \frac{x}{z} \right) z g(z) \right]$$

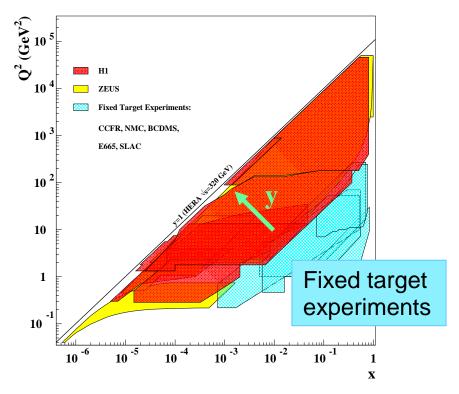

Measurement of F_L is important for understanding of proton structure and QCD.

Measurement of F_L

What we measure is reduced cross section

$$\widetilde{\sigma} = \frac{Q^2 Y_+}{2\pi\alpha^2} \frac{d\sigma^2}{dx dQ^2} = F_2(x, Q^2) - \underbrace{y^2}_{Y_+} F_L(x, Q^2)$$

- F_L contribution is sizable only at high-y
 - \rightarrow Measurement at the region with **highest possible y** will show F_L contribution.
- For direct extraction of F₁.


Difference of DIS cross sections at the same (x, Q^2) but the different y

$$y = \frac{Q^2}{sx}$$

→ different beam energy

F_L at HERA

- HERA: e-p collider
 - Crucial for low-x physics
 - gluon and Sea quarks
- F_L@HERA: gluon dominant
 - → dynamics of gluon

• Data were taken with the lower proton beam energy than nominal $(E_p = 920 \text{GeV})$.

$$- E_p = 460 \text{GeV} : 14 \text{pb}^{-1}$$
 (2007/March – May)

$$- E_p = 575 \text{GeV}: 8 \text{pb}^{-1}$$
 (2007/June)

DIS to be measured for F_T

DIS events: identified by scattered electron

High-y

$$y_{\text{meas.}} = 1 - \frac{E'_e}{2E_e} (1 - \cos \theta_e)$$
 \rightarrow low energy electron

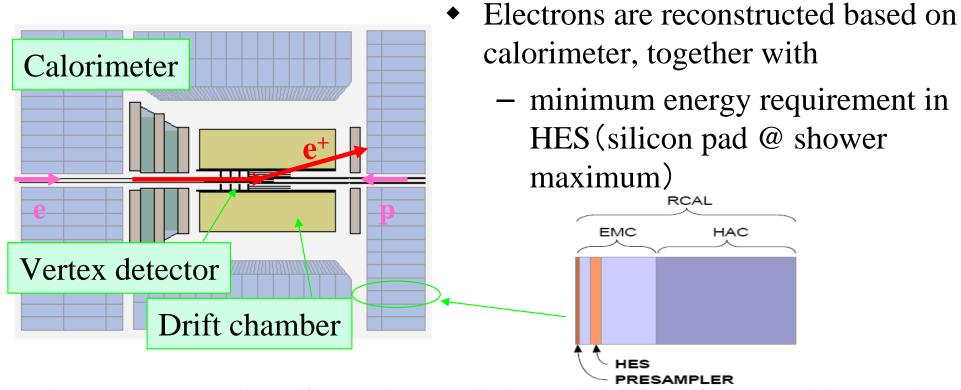
• Measurement at low-Q²

$$Q_{\text{meas.}}^2 = 2E_e E_e' (1 + \cos \theta_e)$$

→ low scattering angle

Important keys:

- Electron reconstruction should be well understood.
- Good control of photoproduction background is required.

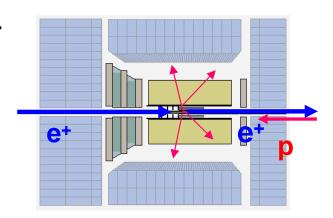

What we need;

- Unbiased trigger
 - ZEUS has E-pz filter

DIS events:
$$\Sigma (E-p_z) \sim 2E_{ebeam}$$

- Electron finding with high efficiency
- Good rejection and understanding of photoproduction background

Electron reconstruction in ZEUS


- Electron energy is calibrated on cell-by-cell basis using Double Angle method and cross-checked with;
 - $J/\psi \rightarrow e+e-$
 - QED compton
 - DIS
 - \rightarrow Ee scale uncertainty: $\pm 2\%$ @Ee=5GeV $\rightarrow \pm 1\%$ @Ee=15GeV

Background

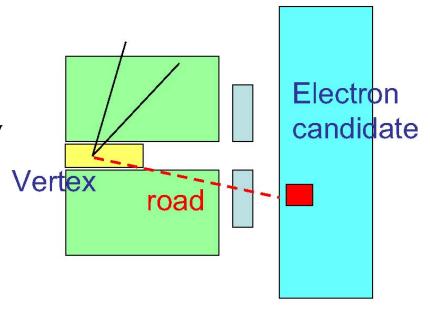
Main background: Photoproduction (PHP) events.

- Electron goes through beampipe but hadron is misidentified as electron.
 - → Event mis-reconstructed as DIS.

Severe in high-y region (=low E_e).

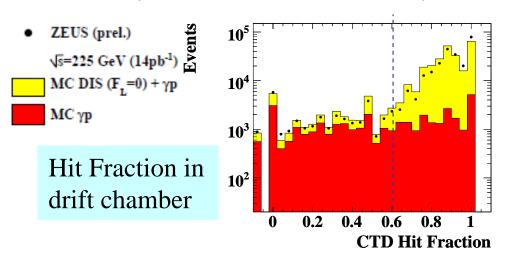
- π^{\pm} \leftarrow rejected by shower shape study. $\pi^{0} \rightarrow 2\gamma$ \leftarrow rejected by track requirement.
- Even after rejection, some PHP events remain. Need to be understood.
 - Compare PHP MC to PHP data sample. Two samples selected:
 Tagged and enriched samples → See later.

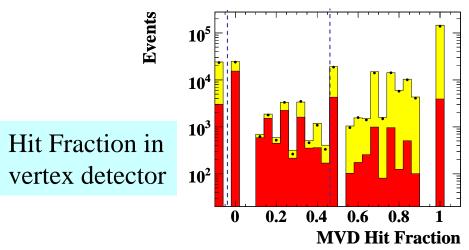
γ rejection: Backward tracking


$$\pi^0 \rightarrow 2\gamma$$

- Track requirement is the only way to reject photons from π^0 .
- Track reconstruction is difficult at low angle.
 - ZEUS: $\theta_{\rm e}$ < ~154° is the safe region
- New tool is developed for backward region.

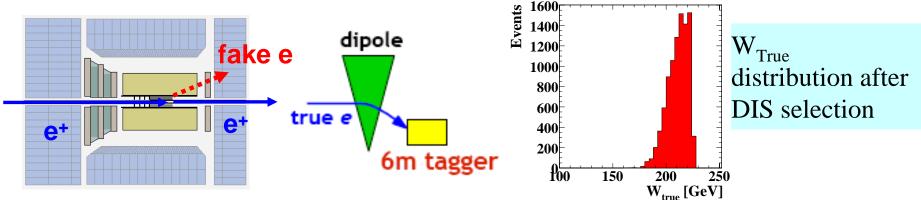
Idea: Create a road from

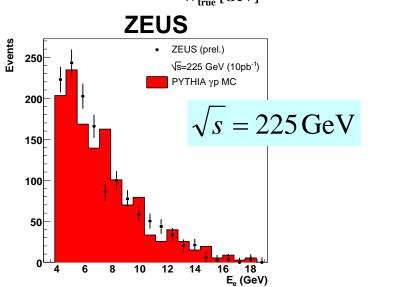

- e-candidate → energy and position
- charge: known from the beam polarity
- event vertex: precisely measured from hadronic activity


and perform hit finding around the road.

Hit Finding

- The result of hit finding is evaluated by Hit Fraction.
 - Hit Fraction = [N of found hits] / [N of expected hits]
- They are well described by MC.




- Requirement of certain values of Hit Fraction.
 - Good efficiency for DIS. (>~90%).
 - Good rejection power for PHP events.
 - Similar as track at $\theta_{\rm e}$ < 154°.
 - Large applicable region: Down to $\theta_{\rm e}$ < 168°

PHP events tagged by 6m Tagger

- 6m tagger located downstream of electron beam.
- Direct detection of PHP electrons with good acceptance for limited W range.
 - ~25% of W range of PHP distribution.

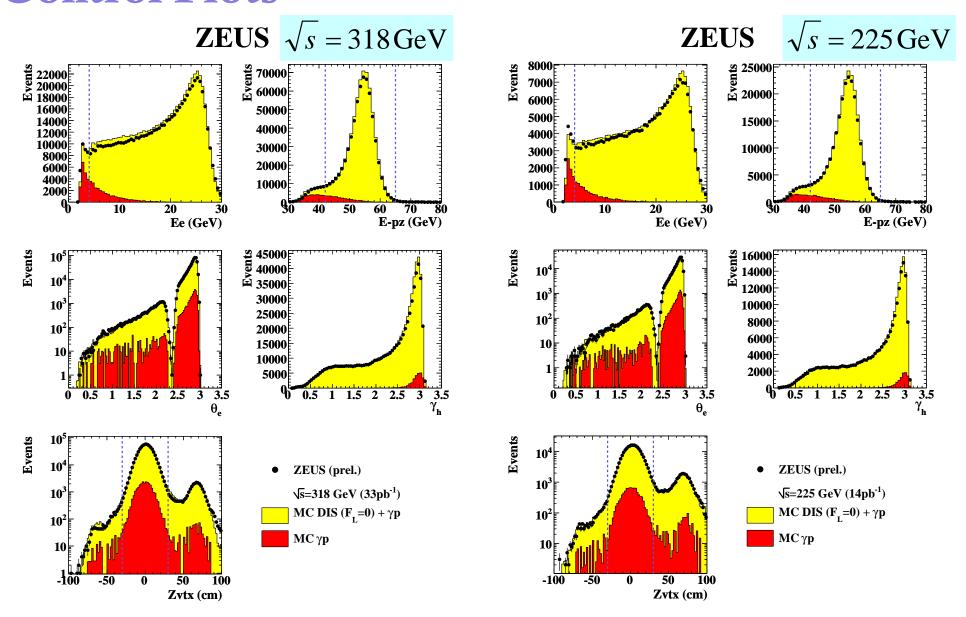
- 6m tagged events: Energy of fake electron is well described by MC.
- Overall normalization factor is extracted for each beam energy.

Understanding of PHP events

- Fraction of each sub-process in PHP MC is reweighted based on ZEUS σ_{tot} measurement.
- Overall normalization factor is extracted by 6m-tagged events.
 - Cross check is done with PHP enriched sample:
 - medium probablity electron candidate
 - low E-pz
 - → Obtained factor is in good agreement with 6m tagger analysis.
- Detailed understanding of fake-e from π^{\pm} still to be done.
 - Loose criteria on shower shape is applied.
 - Keep good efficiency for DIS.
 - π^0 is already well rejected by tracking.
 - → To be conservative on PHP normalization uncertainty.
 - \pm ~15% systematic uncertainty.

Sample & Event Selection

• Sample

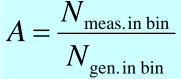

-
$$E_p = 920 \text{ GeV } (\sqrt{s} = 318 \text{ GeV})$$
 : 2006 e+ data 32.8 pb⁻¹
- $E_p = 460 \text{ GeV } (\sqrt{s} = 225 \text{ GeV})$: 2007 e+ data 14.0 pb⁻¹

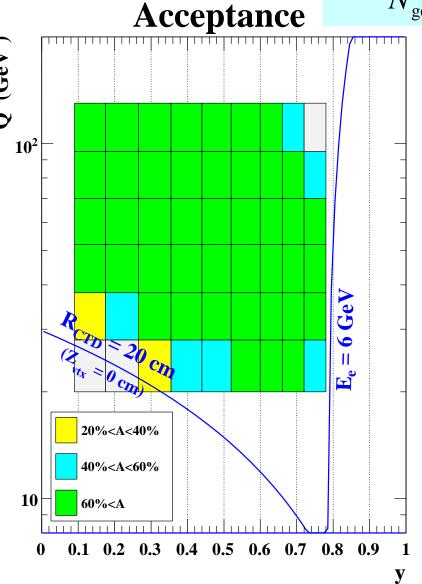
Event Selection

The same event selection is applied for both samples.

- Electron candidate with
 - Energy > 4 GeV
 - Radius on end-plate of the drift chamber > 20cm (θ_e <~168°)
 - Enough hits at hit finding
- $-42 \text{ GeV} < \Sigma \text{ (E-pz)} < 65 \text{ GeV}$
- Well reconstructed vertex with $|Z_{vtx}| < 30$ cm

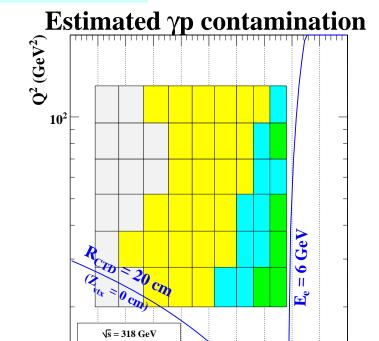
Control Plots

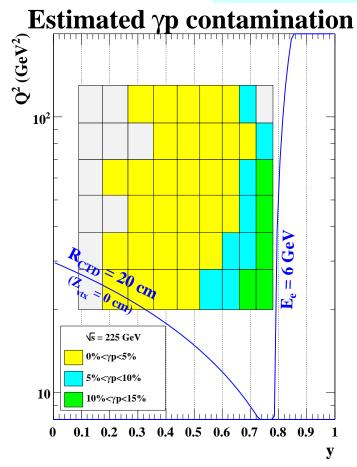



MC description is reasonable but not perfect.

• DIS MC does not have F_L.

Cross section measurement


- Kinematic reconstruction is done by Ee, θ_e. (Electron method)
 Good resolution at high-y region.
- Bins are defined in (y,Q^2) plane.
 - Based on resolution.
 - $-E_e > 6 \text{ GeV}$
- The same binning is used for the two samples.
- Most of bins have acceptance above 60%.
 - → Good acceptance.

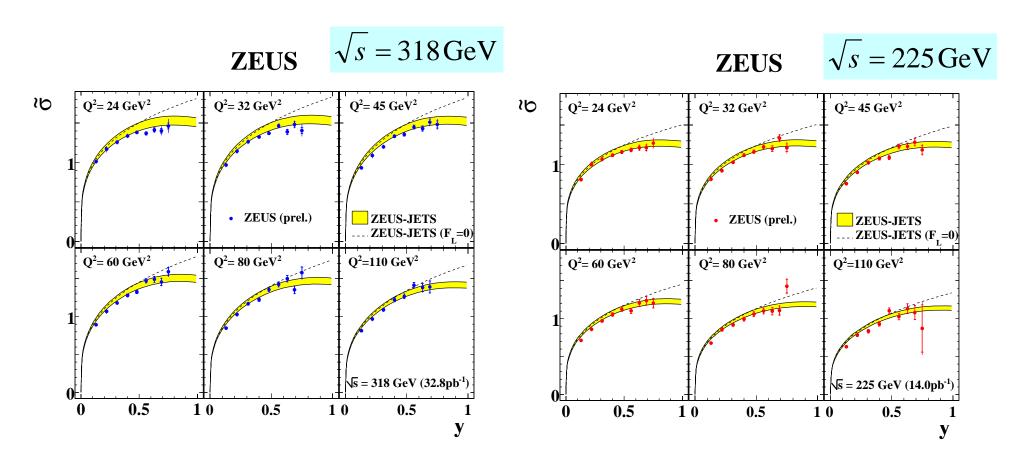

PHP contamination

$$\sqrt{s} = 318 \text{GeV}$$

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

• Estimated PHP contamination is less than 15% in cross section measurement with both beam energies.

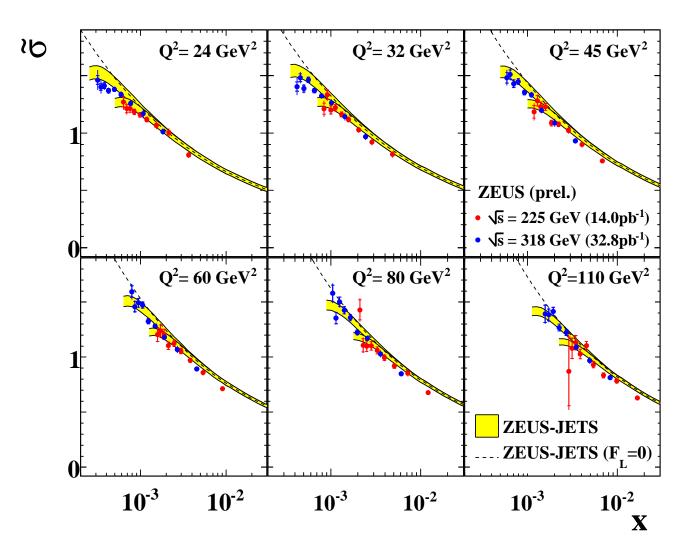
y


Systematic checks

Following systematic uncertainties are taken into account.

They are estimated conservatively.

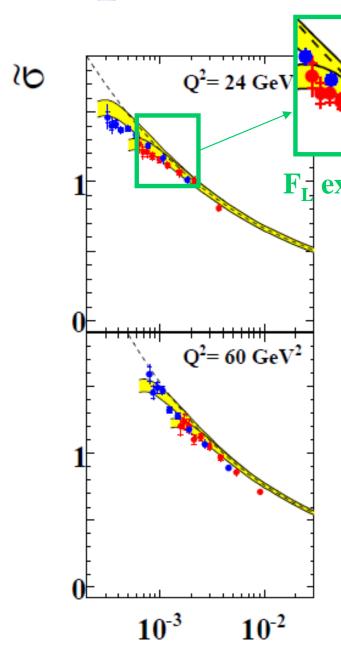
- Energy scale
- Electron finding
 - Looser and tighter criteria on electron shower shape study.
- Photoproduction normalization
- Position reconstruction
 - 4mm in both x and y direction to cover the effect from possible misalignment of detectors.
- Hit Fraction threshold
- Σ (E-pz) threshold
- $|Z_{vtx}|$ thresholds

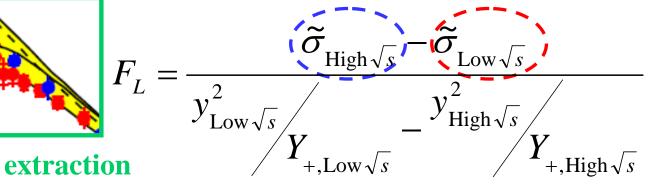

Reduced cross sections (vs. y)

- Cross section is measured up to $y \sim 0.76$.
- They are compared to predictions from ZEUS-JETS PDFs.

Reduced cross sections (vs. x)

ZEUS

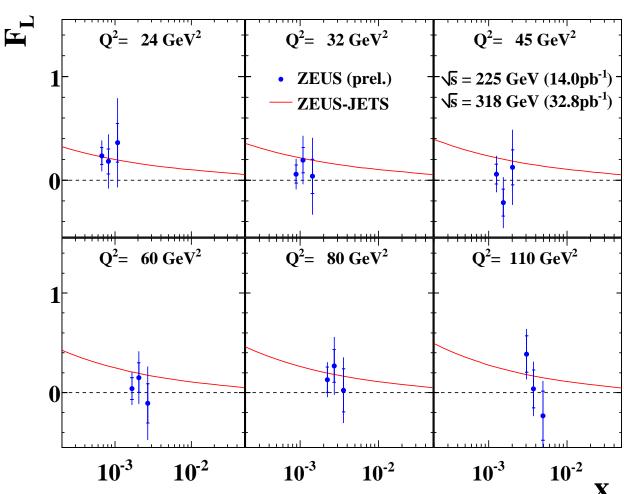



If $F_L \neq 0$, F_L contribution should be indirectly visible as turnover at low-x.

Direct extraction from the two sets of cross sections.

 Cross sections from both beam energies are compared to predictions from ZEUS-JETS PDFs.

F_L extraction


- F_L was extracted from the difference of cross sections at the same (x, Q^2) .
 - i.e. Subtraction method
- Bins are re-defined.
 - based on resolution and statistics.
- Additional systematic source:
 Relative normalization uncertainty 2%

ZEUS F_L

ZEUS

Consistent with F_L from ZEUS-JETS PDFs.

Due to large uncertainty, also consistent with F_L =0.

ZEUS F_L from two beam energies with conservative uncertainties.

- → Further improved measurement to come.
 - Many systematic uncertainties will be tightened. (e.g. relative lumi.)
 - Third beam energy
- Extension to lower energy electrons.

Summary

- ZEUS is measuring F_L.
 - Based on e⁺p data with $E_p = 920 \text{ GeV}$ and $E_p = 460 \text{ GeV}$.
 - New tracking technology is established.
 - PHP background data have being analyzed by using 6m tagger.
- Further improvement can be expected.
 - We have $E_p = 575 \text{ GeV}$ data of $\sim 8 \text{pb}^{-1}$.
 - Further understanding of systematic uncertainties will be done.