Low Energy Neutrino Astronomy and Results from BOREXINO

DESY Hamburg / DESY Zeuthen

March 25th and 26th

Lothar Oberauer, Physikdepartment E15, TU München

Neutrino Mixing

Flavor eigenstates = Mixing matrix x Mass eigenstates $\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ **2 mixing angles are measured:** $\Theta_{12} \sim 34^{\circ}$ $\Theta_{23} \sim 45^{\circ}$ $m_{3}^{2} - m_{2}^{2} \sim 2.6 \times 10^{-3} \text{ eV}^{2}$ atmospheric v and accelerator v exp. $m_2^2 - m_1^2 \sim 8 \times 10^{-5} eV^2$ solar and reactor v experiments

Open: Θ_{13} ? **CP** violating phase δ ? **Absolute mass scale (m**, < 2.2 eV) ? Mass hierarchy ? Neutrino oscillations (i.e. flavor transitions) proven

 \Rightarrow May complicate interpretation of astrophysical processes

 \Rightarrow However, it allows access to v intrinsic properties, which are not available in laboratory experiments !

Natural Neutrino Sources

(not yet verified)

Big Bang

Active galactic nuclei ?

Supernovae remnants ?,

An artists concept of an active galactic nuclei

Gamma ray bursts ?,

Supernovae relic neutrinos ?...

Energy Spectra of Astrophysical Neutrinos

Solar Neutrinos

The dominating solar pp - cycle

The sub-dominant solar CNO - cycle

...dominates in stars more massive as the Sun...

=>Large astrophysical relevance

"bottle-neck" reaction slower than expected (LUNA result)

 \Rightarrow Solar CNO-v prediction lowered by factor ~ 2 !

⇒ Impact on age of globular clusters

Solar Neutrinos

 $4p \rightarrow \text{He}^4 + 2e^+ + 2v_e + 26.7 \text{ MeV}$

Oscillations and matter effects

Oscillation length ~ 10² km => oscillation *smeared* out 0.8 and non-coherent 0.7 Effective v_e mass (due to forward scattering on 0.6 electrons) is enhanced by potential A 0.5 $A \sim G_F N_P E^2$ 0.4 => for E > 1 MeV matter effect dominates 0.3 and leads to an enhanced v_e suppression for those 0.2 energies...

BOREXINO

Neutrino electron scattering ve -> ve

Liquid scintillator technology (~300t): — Low energy threshold (~60 keV) Good energy resolution (~4.5% @ 1 MeV) Sensitivity on sub-MeV neutrinos Online since May 16th, 2007

Borexino Collaboration

Institute

(Russia)

Cracow (Poland) Heidelberg

(Germany)

BOREXINO in the Italian Gran Sasso Underground Laboratory in the mountains of Abruzzo, Italy, ~120 km from Rome Laboratori Nazionali del Gran Sasso LNGS

Shielding ~3500 m.w.e

Borexino Detector and Plants

External Labs

BOREXINO Detector layout

The ideal electron recoil spectrum due to solar neutrino scattering

Energy Spectrum (no cuts)

Statistics of this plot: ~ 1 day

Determination of pulse-height to energy conversion

Number of PM-hits

Date

Fiducial volume cut

Rejection of external background (mostly gammas) R < 3.3 m (100 t nominal mass)

Spectrum after muon and fiducial volume cuts

Next cut: ²¹⁴Bi-²¹⁴Po and Rn daughters removal

α/β Separation in BOREXINO

⁷Be signal: fit without α/β subtraction ²¹⁰Po peak not includ

Strategy:

- Fit the shoulder region only
- Area between ¹⁴C end point and ²¹⁰Po peak to limit ⁸⁵Kr content
- pep neutrinos fixed at SSM-LMA value
- Fit components:
 - □ ⁷Be ν
 - □ ⁸⁵Kr
 - □ CNO+²¹⁰Bi combined
 - Light yield left free

⁷Be signal: fit α/β subtraction of ²¹⁰Po peak

- ²¹⁰Po background is subtracted:
 - For each energy bin, a fit to the α/β Gatti
 variable is done with two gaussians
 - From the fit result, the number of α particles in that bin is determined
 - This number is subtracted
 - The resulting spectrum is fitted in the energy range between 270 and 800keV

The two analysis yield fully compatible results

BOREXINO 1st result

(astro-ph 0708.2251v2)

Scattering rate of ⁷Be solar v on electrons
⁷Be v Rate: 47 ± 7_{STAT} ± 12_{SYS} c/d/100 t

BOREXINO and v-Oscillations

 No oscillation hypothesis 75 ± 4 c/100t/d
 Oscillation (so-called Large Mixing Solution) 49 ± 4 c/100t/d
 BOREXINO experimental result 47 ± 7_{stat} ± 12_{sys} c/100t/d

Survival probability P_{ee} for solar v_e

Prospects of BOREXINO

- Improvement of systematical uncertainty up to now it is dominated by uncertainty on fiducial volume => calibrations
- ⁷Be flux measurement with 10% uncertainty => 1% accuracy for pp-neutrinos ! (BOREXINO + LMA parameters + solar luminosity)
- Theoretical uncertainty on pp-neutrino flux ~ 1%
 => high precision test of thermal fusion processes
- Aim to measure CNO and pep-neutrinos, perhaps ppneutrinos and ⁸B-neutrinos below 5.5 MeV
- Additional features: Geo neutrinos & reactor neutrinos & Supernova neutrinos (~100 events) for a galactic SN type II

CNO and pep Neutrinos

Problem: muon induced ¹¹C nuclei

 $^{11}C \rightarrow ^{11}B \; e^{+} \; \nu_{e} \; (Q = 1.0 \; MeV, T_{1/2} = 20.4 min)$

Aim: tag via 3-fold delayed coincidence

 μ , n (~ms) reconstruct position of n-capture veto region around this position for ~ 1 hour. Required rejection factor ~ 10

μ track reconstruction

Low Energy Neutrino Astronomy in the Future

- Details of a gravitational collapse (Supernova Neutrinos)
- Studies of star formation in former epochs of the universe ("Diffuse Supernovae Neutrinos Background" DSNB)
- High precision studies of thermonuclear fusion processes (Solar Neutrinos)
- Test of geophysical models ("Geoneutrinos")

LAGUNA

- Large Apparatus for Grand Unification and Neutrino Astronomy
- Future Observatory for v-Astronomy at low energies
- Search for proton decay (GUT)
- Detector for "long-baseline" experiments
- Institutes from Europe
- ~ 1.7 M€ for site feasibility studies (FP7 program)

LAGUNA

Large Apparatus for Grand Unification and Neutrino Astrophysics

coordinated F&E "Design Study" European Collaboration, **FP7** Proposal **APPEC** Roadmap

GLACIER MEMPHYS

LENA

liquid scintillator

Čerenkov muon veto

~50 kt target, 13,500 PMs

Present Tunnel

Present Laboratory

Future Laboratory with Water Cerenkov Detectors

Future

Safety Tunnel

65m

Water Čerenkov liquid-Argon 500 kt target in 3 tanks, ~100 kt target, 20m drift length, 28,000 PMs for Čerenkov- und scintillation 3x 81,000 PMs

LAGUNA DETECTOR LOCATIONS

COLLABORATING INSTITUTES

APC, Paris, France CEA, Saclay, France CPPM, IN2P3-CBRS, Marseille, France CUPP, Pyhäsalmi, Finland ETHZ, Zürich, Switzerland Institute for Nuclear Research, Moscow, Russia IPNO, Orsay, France LAL, IN2P3-CNRS, Orsay, France LPNHE, IN2P3-CNRS, Paris, France MPI-K Heidelberg, Germany Max Planck für Physik, München, Germany Technische Universität München, Germany Frejus, France Universidad de Granada, Spain Universität Hamburg, Germany and Spain University of Bern, Switzerland University of Helsinki, Finland University of Jyväskylä, Finland University of Oulu, Finland University of Silesia, Katowice, Poland University of Sheffield, UK

Pyhäsalmi, Finland

Sieroszowice, Poland

Romania

LNGS, Italy

Pilos, Greece

-00010

LENA: Diffuse SN Background

Conclusions

- Low Energy Neutrino Astronomy is very successful (Borexino > direct observation of sub-MeV neutrinos)
- Strong impact on questions in particleand astrophysics
- New technologies (photo-sensors, extremely low level background...)
- Strong European groups