Searches for Higgs bosons and New Physics at the Tevatron

Volker Büscher Universität Bonn

DESY Seminar, March 18/19, 2008

- Indirect constraints from precision measurements
- The SM Higgs boson
- MSSM Higgs bosons
- Supersymmetry: Squarks, Gluinos, Charginos
- Heavy Resonances

Full set of Tevatron results available at:

http://www-d0.fnal.gov/Run2Physics/WWW/results.htm

http://www-cdf.fnal.gov/physics/physics.html

The Tevatron Collider

Electron Cooling in operation

The Tevatron Collider

Electron Cooling in operation

Tevatron: Proton-Antiproton Collider at \sqrt{s} = 1.96 TeV, collisions every 396 ns

- Advantage: High centre-of-mass energy
 - \rightarrow production of massive particles (LEP: $m\stackrel{\scriptstyle <}{\scriptstyle\sim}$ 100 GeV)

The Tevatron Experiments

Wo General-Purpose Detectors:	CDF	DØ
Electron acceptance	$ \eta < 2.0$	$ \eta < 3.0$
Muon acceptance	$ \eta < 1.5$	$ \eta < 2.0$
Silicon Precision tracking	$ \eta < 2.0$	$ \eta < 3.0$
Hermetic Calorimeter	$ \eta < 3.6$	$ \eta < 4.2$

Powerful trigger systems (2.5 MHz \rightarrow 100 Hz)

- Dilepton triggers starting at $p_T > 4$ GeV
- Jets+ E_T triggers with $E_T > 25$ GeV

The Tevatron Experiments – Dataset

- $3.2 + 3.0 \text{ fb}^{-1}$ recorded by DØ + CDF

- Most results presented here based on 2 fb⁻¹

Pinning down EWSB at the Tevatron

Standard Model relates m_H , m_t , m_W via radiative corrections:

ightarrow Indirect constraints on Higgs boson mass: $m_H = 87^{+36}_{-27}$ GeV and $m_H < 160$ GeV at 95% C.L.

Pinning down EWSB at the Tevatron

Combined top mass measurement from CDF+DØ: $m_t = 172.6 \pm 0.8 (\text{stat}) \pm 1.1 (\text{syst}) \text{ GeV}$ New CDF W mass measurement (200 pb^{-1}): [GeV] $m_W = 80.413 \pm 0.048 \text{ GeV}$ a N new world average: m_W = 80.398±0.025 GeV Projected uncertainties for 8 fb^{-1} : m_t : $\pm 1.2 \text{ GeV}$ $m_W: \pm 15-20 \text{ MeV}$ CDF Top Mass Uncertainty DØ Run 1a (e) (I+I and I+j channels combined) 250

Integrated Luminosity (pb⁻¹

Search for Higgs Bosons – Production and Decay

Light Higgs bosons (m $_H \stackrel{<}{\sim}$ 135 GeV):

Dominant decay mode: $H \rightarrow b\bar{b}$

Production: in association with W,Z

- \rightarrow leptonic W,Z-decays provide best signature
- \rightarrow b-tagging to suppress background from W/Z+jets

Heavy Higgs bosons (m_H \gtrsim 135 GeV):

Dominant decay mode: $H \rightarrow WW$

Production: Gluon-Gluon Fusion

 \rightarrow relatively high cross-section

 \rightarrow clean 2-lepton+ E_T signature via H \rightarrow WW \rightarrow l ν l ν

Search for low-mass Higgs Boson

For best sensitivity, need to combine many channels:

 $WH
ightarrow \ell
u {
m b}ar{{
m b}}, ZH
ightarrow
u ar{
u} {
m b}ar{{
m b}}, ZH
ightarrow \ell^+ \ell^- {
m b}ar{{
m b}}$ (with ℓ =e, μ)

Challenge: very low signal rates, massive backgrounds from V+jets First step: select events consistent with W/Z+2 jets

Second step: b-tagging

Exploiting B-meson lifetime, mass and decay modes to separate b- from light-quark jets:

- impact parameter
- secondary vertices
- vertex mass
- vertex track multiplicity
- soft leptons

Similar strategies in both experiments:

- use neural networks for optimal combination of tagging information
- use several NN operating points to define channels with high/low s/b:
 - 1 tight b-tag (low s/b, "single tag"),
 - 2 loose b-tags (high s/b, "double tag")

- Backgrounds dominated by W/Z+bb, $t\bar{t}$
- Main handle: invariant mass of two b-jets

- For optimal separation power, use neural networks:

Note: signal-to-background ratios are at most 10-20%

- \rightarrow need full combination of all channels to reach sensitivity
- \rightarrow need to control systematics at a level $\ll 10\%!$

Main concern: modeling of V+jets backgrounds

- shapes: from MC (alpgen, MCFM, CKKW)
- normalisation: combination of (N)NLO cross-sections and sideband-fitting

New channels added for Winter 2008

DØ: H $\rightarrow \gamma \gamma$

CDF: H+jj with H $\rightarrow \tau \tau$

Search for high-mass Higgs Boson: H→WW

Main irreducible background: WW $\rightarrow \ell \nu \ell \nu$

Additional information: angular correlations exploiting spin of Higgs boson

 \rightarrow Charged leptons from Higgs decay tend to have small opening angle $\Delta\Phi$

For best sensitivity, use multivariate techniques

- For each event, use full kinematic information x_{obs} to calculate probabilities that event comes from signal (P_H) and background (P_B):

$$P_{H/B}(x_{obs}) = rac{1}{\sigma_{H/B}}\int dy_{true}^n\,\sigma_{H/B}^{theory}(y_{true})\,\epsilon(y_{true})\,G(x_{obs},y_{true})$$

- Then calculate likelihood ratio $\frac{P_H}{P_H+P_B}$ for optimal separation of signal and background:

- For each event, use full kinematic information x_{obs} to calculate probabilities that event comes from signal (P_H) and background (P_B):

$$P_{H/B}(x_{obs}) = rac{1}{\sigma_{H/B}}\int dy_{true}^n\,\sigma_{H/B}^{theory}(y_{true})\,\epsilon(y_{true})\,G(x_{obs},y_{true})$$

- Then calculate likelihood ratio $\frac{P_H}{P_H+P_B}$ for optimal separation of signal and background
- Finally, combine with other kinematic variables in a neural network:

Tevatron Full Combination

Massive exercise in advanced statistics

- currently combining 28 different channels
- full distributions of final variables are analyzed
- \rightarrow 28 NN/LR/Mass distributions

- > 50 different sources of systematic uncertainties are considered
 - taking into account correlations bin-to-bin and channel-to-channel
 - $\rightarrow > 50$ 300x300 covariance matrices...

Systematic uncertainties need to be constrained in sidebands

- \rightarrow very complicated procedure...
- used several techniques (Bayesian, mod. frequentist) and 4 independent programs to cross-check calculations
- \rightarrow results agree within 10%

Tevatron Full Combination

- Sensitivity improvement still scaling faster than luminosity
- Exciting times are ahead!

Tevatron Full Combination

- Sensitivity improvement still scaling faster than luminosity
- Exciting times are ahead!

Strong hint for new physics: The hierarchy problem

- fermion loop corrections to Higgs mass are divergent
- \rightarrow Higgs mass should be of the order of the cutoff scale Λ (e.g. $M_{\rm Planck}$)

$$egin{aligned} & \mathrm{H} & \cdots & \displaystyle{ \int \limits_{\mathrm{f}}} & \mathrm{H} & \Delta M_{H}^{2} = N_{f} rac{\lambda_{f}^{2}}{8\pi^{2}} igg[-\Lambda^{2} + 6m_{f}^{2} \mathrm{log} rac{\Lambda}{m_{f}} - 2m_{f}^{2} igg] + \mathcal{O}(1/\Lambda^{2}) \end{aligned}$$

- in contradiction to indirect evidence for a light SM Higgs boson
- \rightarrow there must be something beyond the SM that modifies these corrections

Two main options:

- 1. New physics at O(1 TeV) \rightarrow loop corrections stay "reasonably" small
- 2. New symmetry that suppresses loop corrections

Most straightforward way: cancel fermion loops with boson loops

$$H \cdots \bigoplus_{f} H + H \cdots H = 0$$

Cancellation exact for equal couplings and mass

The idea: particle physics is symmetric under transformation fermion \leftrightarrow boson

 \rightarrow implies one supersymmetric partner for each SM particle

Superpartners are heavy \rightarrow SUSY must be broken

- Details of SUSY breaking mechanism unknown
- \rightarrow need to consider several models: gravity-, gauge-, anomaly-mediated breaking

Predictions:

- Many new SUSY particles: Charginos/Neutralinos/Gluinos, Squarks, Sleptons
- Extended Higgs sector: 5 physical Higgs bosons h,H,A,H $^{\pm}$

M_W vs. m_t for SM vs. MSSM

- Supersymmetric theories predict additional particles that modify loop corrections
- Lightest MSSM Higgs boson: $m_h \stackrel{<}{\sim} 135$ GeV

Blue Band Plot for SM vs. MSSM

Adding constraints from CDM, $b \rightarrow s\gamma$ etc. allows prediction of m_h in MSSM: $m_h = 110 {+8 \atop -10} (exp) \pm 3$ (theo) GeV

O. Buchmueller et al., arXiv:0707.3447

Search for SUSY Higgs

Important: Higgs- $b\bar{b}$ -coupling depends on tan β

 \rightarrow large cross-sections for Higgs production at high tan $\!\beta$

Additional search channels at high $\tan\beta$:

- associated production with bb: bb Φ with $\Phi \rightarrow$ bb,au au
- enhanced gluon fusion cross-section: $gg \rightarrow \Phi \rightarrow \tau \tau$

Search for SUSY Higgs: $\Phi ightarrow au au$

Mode	Fraction (%)	Comments
$ au_{ m e} au_{ m e}$	3	Large DY BGND
$ au_{\mu} au_{\mu}$	3	Large DY BGND
$\tau_{e}^{}\tau_{\mu}^{}$	6	Small QCD BGND
$\tau_{\rm e}^{} \tau_{\rm h}^{}$	23	Golden
$ au_{\mu} au_{ m h}$	23	Golden
$ au_{ m h} au_{ m h}$	41	Large QCD BGND

Selections:

- A) two isolated taus with one leptonic tau decay
- B) isolated electron and muon
- Irreducible background from $Z
 ightarrow au^+ au^-$
- Reconstruction of effective mass from visible tau decay products and E_T

January 2007: new CDF results with 1 fb^{-1}

February 2007: new DØ results with 1 fb⁻¹

 \rightarrow unfortunately no confirmation of signal

October 2007: new CDF results with 1.8 fb^{-1}

Interpretation within MSSM: limits on $tan\beta$ as a function of m_A

- based on DØ 1 fb⁻¹ $\mu \tau_h$, CDF 1.8 fb⁻¹ $\mu \tau_h$, $e \tau_h$, $e \mu$
- limits from bbh channels currently not competitive
- no Tevatron combination yet
- benchmark scenarios: no-mixing and mhmax

Expect to reach sensitivity to $\tan\beta \approx 20$ with full Run II dataset

In addition: expect to probe large m_A with WH/ZH channels

- Squarks/Gluinos produced via strong interaction
 - \rightarrow large cross sections at hadron colliders
- Decays: jets + LSP
 - LSP assumed to be stable (*R_p* conserved)
 - \rightarrow Signature: jets + E_T
- Data collected with dedicated triggers: acoplanar jets + E_T

Mass region	Main Channel	Signature
$m_{ ilde{ ext{q}}} < m_{ ilde{ ext{g}}}$	$ ilde{ ext{q}} ilde{ ext{q}}$	$2\mathbf{j} + E_T$
$m_{ ilde{ extsf{q}}} > m_{ ilde{ extsf{g}}}$	ĝĝ	$4\mathbf{j} + E_T$
$m_{ ilde{ ext{q}}} pprox m_{ ilde{ ext{g}}}$	q̃q,q̃g	$3j + E_T$

3-jet Background

Mass region	Main Channel	Signature	E_T	$H_T = \sum p_T^{jet}$	Exp. Bckgd.	Data
$m_{ ilde{ ext{q}}} < m_{ ilde{ ext{g}}}$	$ ilde{ ext{q}} ilde{ ext{q}}$	$2\mathbf{j} + E_T$	>225 GeV	>325 GeV	11 ± 3	11
$m_{ ilde{ ext{q}}} > m_{ ilde{ ext{g}}}$	$\tilde{\mathbf{g}}\tilde{\mathbf{g}}$	$4\mathbf{j} + E_T$	>100 GeV	>400 GeV	18 ± 5	20
$m_{ ilde{ ext{q}}}pprox m_{ ilde{ ext{g}}}$	q ̃q,q̃ĝ	$3j + E_T$	>175 GeV	>375 GeV	11 ± 3	9

- No evidence for squark/gluino production at the Tevatron
- New limits in squark/gluino mass plane (mSUGRA: taneta=3, A_0 = 0, μ < 0)
- Sensitivity beyond indirect limits from LEP

What other particles does SUSY predict?

Particle Spectrum

Search for Charginos and Neutralinos

- Production cross section (electroweak) relatively small
 → need clean leptonic signature to suppress backgrounds
- Golden channel: $\widetilde{\chi}^{\pm} \widetilde{\chi}_2^0 \rightarrow 3\ell + E_T$
- Experimental Challenge: low- p_T leptons
 - \rightarrow need multilepton triggers with low thresholds
 - \rightarrow need efficient lepton identification at low p_T

Search for Charginos and Neutralinos

Analysis Strategy:

- two identified leptons plus isolated track
- isolation criteria designed to be efficient for electrons, muons and hadronic τ -decays

Transverse momentum thresholds (DØ):

Selection	$p_T^{\ell 1}$	$p_T^{\ell 2}$	$p_T^{\ell 3}$	
$ee\ell$	>12 GeV	>8 GeV	>4 GeV	
$e\mu\ell$	>12 GeV	>8 GeV	> 5 GeV	
$\mu\mu\ell$	>12 GeV	>8 GeV	>4 GeV	
ls- $\mu\mu$	>11 GeV	> 5 GeV	_	

DØ Results (0.9–1.7 fb⁻¹):

Selection	Expected Background	Observed	Signal (m $_{\tilde{\chi}^{\pm}}$ =110 GeV)
$ee\ell$	$1.8 {\pm} 0.7$	0	6.8±0.4
$e\mu\ell$	0.9±0.4	0	$4.0{\pm}0.2$
$\mu\mu\ell$	$0.3{\pm}0.8$	2	$2.5{\pm}0.2$
ls- $\mu\mu$	1.1±0.4	1	4.2±0.7
Combined	4.1±1.2	3	17.5±0.8

CDF Results (2 fb^{-1}):

(t=tight,l=loose)	3t	2t,11	1t,21	2t+trk	1t,1l+trk
Expected Background	$0.5{\pm}0.1$	$0.25 {\pm} 0.04$	$0.14{\pm}0.03$	$3.2{\pm}0.7$	$2.3{\pm}0.6$
Observed	1	0	0	4	2
Signal (m $_{\tilde{\chi}^{\pm}}$ =120 GeV)	$2.3{\pm}0.3$	$1.6{\pm}0.2$	$0.7{\pm}0.1$	4.4±0.7	$2.4{\pm}0.4$

 \rightarrow No evidence for chargino/neutralino production

 \rightarrow Limits on product of cross section and leptonic branching fraction

Search for Charginos and Neutralinos

Limits constrain SUSY beyond LEP chargino limits:

– 3ℓ -max scenario: $m_{\widetilde{\chi}^\pm} > 145~{
m GeV}$

Updates with 3 fb⁻¹ datasets currently in progress

Search for Charginos and Neutralinos

Run II projections (combining CDF and DØ):

- 3 ℓ -max scenario: will probe $m_{\widetilde{\chi}^\pm} > 200$ GeV
- large-m $_0$ scenario: sensitive up to $m_{\widetilde{\chi}^\pm} pprox 150$ GeV

Updates with 3 fb⁻¹ datasets currently in progress

Beyond mSUGRA

Many other SUSY models on the market \rightarrow large variety of SUSY searches at the Tevatron

Gauge-Mediated SUSY Breaking

- Inclusive $\gamma \gamma + E_T$: charginos excluded up to 229 GeV (DØ)
- Long-lived neutralinos: limits up to 101 GeV (CDF)

Anomaly-Mediated SUSY Breaking

- Stable charginos: excluded up to 174 GeV (DØ)

Split Supersymmetry

– Long-lived Gluinos $ilde{ extrm{g}} o g ilde{\chi}_1^0$:

limits up to 320 GeV for lifetimes up to 100 hours (DØ)

R-Parity Violation

- LLE couplings: limits on charginos up to 234 GeV (DØ)

Beyond mSUGRA

Many other SUSY models on the market \rightarrow large variety of SUSY searches at the Tevatron

Gauge-Mediated SUSY Breaking

- Inclusive $\gamma \gamma + E_T$: charginos excluded up to 229 GeV (DØ)
- Long-lived neutralinos: limits up to 101 GeV (CDF)

Anomaly-Mediated SUSY Breaking

- Stable charginos: excluded up to 174 GeV (DØ)

Split Supersymmetry

– Long-lived Gluinos $ilde{ ext{g}} o g ilde{\chi}_1^0$:

limits up to 320 GeV for lifetimes up to 100 hours (DØ)

R-Parity Violation

– LLE couplings: limits on charginos up to 234 GeV (DØ)

Searches for heavy charged or neutral difermion resonance X:

- Channels considered for $X^0 \rightarrow f\bar{f}$: ee, $\mu\mu$, $\tau\tau$, $q\bar{q}$, $t\bar{t}$ (plus e μ , $\gamma\gamma$)
- Channels considered for $X^{\pm} \rightarrow f f'$: $e\nu, q\bar{q}$, tb

Searches for Leptoquarks LQ→lq:

- Final states considered: eeqq, $e\nu qq$, $\mu\mu qq$, $\mu\nu qq$, $\nu\nu qq$, $\tau\tau bb$, $\nu\nu bb$
- High LQ mass \rightarrow decay products with high transverse momenta

 \rightarrow check for excess at high S $_{T}$ = p_{T}^{1} + p_{T}^{2} + p_{T}^{3} + p_{T}^{4}

Mass limits for BR(LQ \rightarrow lq)=1:

- 1st Generation: M>256 GeV
- 2nd Generation: M>251 GeV
- 3rd Generation: M>180 GeV

Conclusions

Tevatron is running very well: 3 fb⁻¹ on tape, good prospects for 8 fb⁻¹ by 2010 Precision measurements of Top and W mass pinpoint SM Higgs boson mass SM Higgs search finally reaching sensitivity SUSY Higgs: limits on tan β at low m_A (consistent with B_s $\rightarrow \mu\mu$)

Direct searches for Supersymmetry:

- Squarks, Gluinos: excluded below about 380 GeV, 310 GeV
- Charginos: excluded below 145 GeV (in favourable scenarios)
- numerous signatures and models beyond mSUGRA have been investigated

Searches for heavy resonances probing masses up to 1 TeV

Conclusions

Still plenty of room for SUSY discovery at LHC!

BACKUP

Direct detection of Higgs bosons requires large enough production rates

 \rightarrow connect initial state (ee, qq, gg) with H using vertices with large couplings:

Selection of good choices for e^+e^- and Hadron-Collider:

History: Higgs searches at LEP

LEP: e^+e^- collider with centre-of-mass energy of up to 206–209 GeV

 \rightarrow kinematic limit for ZH production at about m_H =116 GeV

Slight excess (1.7 σ) at 115 GeV (mainly driven by ALEPH 4-jet channel) Limit on m_H at 95% C.L.: 114.4 GeV

Search for SUSY Higgs: $\Phi b(b) \rightarrow bbb(b)$

- Selection: at least 3 b-jets
- Backgrounds: multijet production
 - modelled extrapolating from 2-tag data
- Reconstruction of Higgs boson mass in $b\bar{b}$ spectrum
- Additional variable: $m_{diff}=m_{SV}^{j1}+m_{SV}^{j2}-m_{SV}^{j3}$
 - sensitive to flavour composition of the 3 b-tagged jets
- Limits derived from 2D-template fits to both variables

- No evidence for squark/gluino production at the Tevatron
- New limits in squark/gluino mass plane (mSUGRA: $tan\beta = 3, A_0 = 0, \mu < 0$)
- Sensitivity beyond indirect limits from LEP

What other particles does SUSY predict?

Particle Spectrum

Dedicated searches for light sbottom or stop quarks

- can use b- and charm-tagging to substantially reduce backgrounds
- still significant potential with more integrated luminosity

 $ilde{\mathrm{b}}
ightarrow b + ilde{\chi}_1^0$

$$ilde{\mathrm{t}}
ightarrow c + ilde{\chi}_1^0$$

Dedicated searches for light sbottom or stop quarks

- can use b- and charm-tagging to substantially reduce backgrounds
- still significant potential with more integrated luminosity

High $\tan\beta \rightarrow \text{light staus}$

 \rightarrow cascade decays of squarks to taus

 $DØ (1 fb^{-1}):$

- dedicated search in τ +jets+ E_T
- 1.7 events expected, 2 observed
- \rightarrow mSUGRA exclusion contour:

 $\tan\beta = 15, A_0 = -2m_0, \mu < 0$

Search for Supersymmetry at LHC – V+jets Background

- Search for SUSY in Jets+ E_T is flagship analysis at the LHC
- Modelling of V+jets backgrounds is crucial
- Default pythia modelling is not adequate

Search for Supersymmetry at LHC – V+jets Background

- Search for SUSY in Jets+ E_T is flagship analysis at the LHC
- Modelling of V+jets backgrounds is crucial
- Default pythia modelling is not adequate

Vector Boson plus Jet Production at the Tevatron

Dedicated Analyses to test new MC Generators in Z+jets data

Vector Boson plus Jet Production at the Tevatron

Dedicated Analyses to test new MC Generators in Z+jets data

Search for Charginos and Neutralinos

Heavy sleptons:

$\Delta M < 0$: two-body decays into real sleptons

 $\Delta M{<}\text{-}6$ GeV: good efficiency, high branching fractions

-6 GeV< Δ M<0: very soft third lepton \rightarrow limit set by ls- $\mu\mu$ -analysis

Δ M>0: three-body decays via slepton- and W/Z-exchange

 $\Delta M{\gtrsim}0:$ slepton-exchange maximal \rightarrow large BR(3 $\ell):$ "31-max scenario"

 $\Delta M \gg 0$: W/Z-exchange dominates \rightarrow small BR(3 ℓ): "large-m₀ scenario"

Supersymmetry and rare decays: $B_s \rightarrow \mu^+ \mu^-$

SM prediction: BR(B $_s \rightarrow \mu^+ \mu^-$)=3.8×10⁻⁹

- → significant at high tan β : BR= $O(10^{-7})$ → complementary to trilepton search
- Tevatron: large production rate for B_s
- Selection: two isolated muons, displaced vertex

MSSM: enhancement $\sim (\tan\beta)^6$

Supersymmetry and rare decays: $B_s \rightarrow \mu^+ \mu^-$

Results (limits at 95% C.L.):

DØ (2 fb⁻¹): 2.3±0.5 expected, 3 observed $\rightarrow BR(B_s \rightarrow \mu^+\mu^-) < 9.3 \times 10^{-8}$ CDF (2 fb⁻¹): 3.7±1.0 expected, 3 observed $\rightarrow BR(B_s \rightarrow \mu^+\mu^-) < 5.8 \times 10^{-8}$

Projection for Run IIb: sensitivity will approach 10^{-8}

 \rightarrow will test large part of SUGRA parameter space

CP violation in B_s^0 system:

- SM prediction for CPV phase $\Phi_S = (4.2 \pm 1.4) \times 10^{-3}$
- potentially modified by new physics

DØ: new combined constraint extracted from 4 measurements

- time-dependent angular distributions in ${
 m B}^0_s o J/\Psi \Phi$
- effective mean lifetime from flavour-specific B_s^0 decays
- charge asymmetry in semileptonic B_s^0 decays

(Still) 4 solutions, including:

$$\Delta \Gamma_s = 0.13 \pm 0.09 \text{ ps}^{-1}$$

 $\Phi_s = -0.70^{+0.47}_{-0.39}$