#### **Exclusive Reactions at HERMES**

or

#### The Spin Budget of the Proton

Wolf-Dieter Nowak DESY

Physikseminar DESY Zeuthen, Feb. 20 2008

Wolf-Dieter Nowak.

Physikseminar DESY Zeuthen, Feb. 20, 2008

– p. 1

#### **Table of Contents**

- 3-dimensional picture of the nucleon:
   Generalized Parton Distributions (GPDs)
- ▷ Spin budget of the nucleon
- Experimental status on parton distributions
- DIS results: Quark & gluon contributions
- > HERMES spectrometer & Recoil Detector
- Deeply Virtual Compton Scattering (DVCS): Kinematics, azimuthal asymmetries
- Beam-charge and beam-spin asymmetries
- b Longitudinal and transverse target-spin asymmetries
- $\triangleright$  Model-dependent constraints on  $J_u$  vs.  $J_d$
- Summary and Outlook

– p. 2

## **Exp. Status on Parton Distribution Functions**



Improvement over last 6 years:

- spin-independent & helicity PDFs:
  - COMPASS:  $\frac{\Delta g}{a}$
  - HERMES:  $\Delta u, \Delta d, \Delta s, \frac{\Delta g}{g}$
  - JLab:  $\Delta u, \Delta d$  at large x
- transversity & friends:
   HERMES: Sivers function
   BELLE: Collins (fragm.) function
- Generalized Parton Distributions:
   CLAS, HERMES, (H1/ZEUS):
   first look on H, H, E
- $\Rightarrow$  much more to come ...

#### **3-dimensional Picture of the Proton**

#### Nucleon momentum in Infinite Momentum Frame: $(p_{\gamma^*} + p_{nucl})_z \rightarrow \infty$

Form factor





Nucleon's transv. charge distribution given by 2-dim. Fourier transform of Form Factor:  $\Rightarrow$  Parton's transverse localization b



· Parton density

Probability density to find partons of given long. mom. fraction xat resol. scale  $1/Q^2$ (no transv. inform.)  $\Rightarrow$  Parton's longitudinal momentum distribution function (PDF) f(x) distribution at  $\eta=0$ 

Generalized parton



**GPDs** probe simultaneously transverse localization  $\mathbf{b}_{\perp}$ for a given longitudinal momentum fraction x2nd moment by Ji relation:  $J_{q,g} = \frac{1}{2} \lim_{t \to 0} \int x \ dx$  $[H_{q,g}(x,\xi,t) + E_{q,g}(x,\xi,t)]$ 

## **Proton Spin Budget in a Nutshell**

#### NO unique and gauge-invariant decomposition of the nucleon spin:

(A) 'GPD-based': 
$$\frac{1}{2} = J_q + J_g = \frac{1}{2}\Delta\Sigma + L_q + \widehat{\Delta g} + L_g$$

- Total angular momenta of quarks  $(J_q)$  and gluons  $(J_g)$  are gauge-invariant and calculable in lattice gauge theory
- Intrinsic spin contribution and orbital angular momentum are gauge inv. for quarks  $(\frac{1}{2}\Delta\Sigma$  and  $L_q)$ , but not for gluons  $(\widehat{\Delta g}$  and  $L_g)$
- Probabilistic interpretation only for  $\frac{1}{2}\Delta\Sigma$  (well measured)
- $J_q$  accessible through exclusive lepton nucleon scattering
- $J_g$  very difficult to access experimentally
- (B) Light-cone gauge:  $\frac{1}{2} = \mathcal{J}_q + \mathcal{J}_g = \frac{1}{2}\Delta\Sigma + \mathcal{L}_q + \Delta g + \mathcal{L}_g$ 
  - All 4 terms have a probabilistic interpretation
  - $\Delta g$  is gauge invariant (being measured)

 $\Rightarrow \text{ Results from both decompositions must not be mixed, as} \\ \mathcal{L}_q \neq L_q, \Delta g \neq \widehat{\Delta g}, \mathcal{L}_g \neq L_g, \text{ even } \mathcal{J}_g \neq J_g \text{ !} \end{aligned}$ 

#### **DIS: Kinematics, Cross Sections, Asymmetry**



Unpolarized cross section:

Virtual-photon kinematics:  $Q^2 = -q^2$   $\nu = E - E'$ 

Fraction of nucleon momentum carried by struck quark:  $x=\frac{Q^2}{2M\nu}$ 

fraction of virtual-photon energy carried by produced hadron *h*:  $z = \frac{E_h}{\nu}$ 

Hadron transverse momentum:  $P_{h\perp}$  $\sigma_{UU} \equiv \frac{1}{2}(\sigma^{\vec{\leftarrow}} + \sigma^{\vec{\Rightarrow}})$ 

Cross section (helicity) difference:  $\sigma$ 

$$\sigma_{LL} \equiv \frac{1}{2} (\sigma^{\vec{\Leftarrow}} - \sigma^{\vec{\Rightarrow}})$$

• Double-spin asymmetry:  $A_{\parallel} \equiv \frac{\sigma_{LL}}{\sigma_{UU}} \simeq \frac{g_1}{F_1}$  (neglecting small  $g_2$  contribution)

• Measured asymmetry:  $A_{||} = \frac{1}{\langle P_T \rangle \langle P_B \rangle} \frac{\left(\frac{N}{L}\right)^{\Leftarrow} - \left(\frac{N}{L}\right)^{\Rightarrow}}{\left(\frac{N}{L}\right)^{\Leftarrow} + \left(\frac{N}{L}\right)^{\Rightarrow}}$ 

#### Direct determination of quark spin contribution $\Delta\Sigma$

Most precise  $g_1^d$  result: Hermes inclusive data [PRD75(2007)012007,hep-ex/0609039]:



#### **Next-to-leading Order QCD Fits**

#### Results by AAC [PRD74(2006)014015,hep-ph/0603213]: NLO in $\alpha_s$ , $\overline{MS}$ scheme



mpact of recent CLAS and COMPASS data [PRD75(2007)074027,hep-ph/0612360]:

|                | $\Delta g > 0$     | $\Delta g < 0$     |
|----------------|--------------------|--------------------|
| $\Delta\Sigma$ | $0.207\pm0.040$    | $0.243 \pm 0.065$  |
| $\Delta s$     | $-0.063 \pm 0.005$ | $-0.057 \pm 0.010$ |
| $\Delta g$     | $0.129 \pm 0.166$  | $-0.200 \pm 0.414$ |

Wolf-Dieter Nowak,

Physikseminar DESY Zeuthen, Feb. 20, 2008

#### **Determination of Gluon Contribution to Nucleon Spin**

- Quasi-real photoprod. of high- $p_t$  hadron pairs or single hadrons:  $\langle Q^2 
  angle pprox 0.1$  Ge
- Sensitivity through  $\gamma^*g$  'direct' hard scattering or 'resolved-photon' process left graphs: direct processes; right graphs: resolved-photon processes [COMPASS analysis]



• HERMES: Single high- $p_t$  hadrons. Pairs in old analysis (all  $Q^2$ ,  $\langle x_g \rangle \simeq 0.17$ [PRL84 (2000) 2584]  $\frac{\Delta g}{g} = 0.41 \pm 0.18_{stat} \pm 0.03_{sys-exp}$  (±unknown<sub>sys-Model</sub>) • RHIC:  $A_{LL}$  in inclusive direct  $\gamma \& \pi^0$  production, inclusive jet production

Wolf-Dieter Nowak,

#### **Results on Gluon Helicity Distribution** $\frac{\Delta g}{g}(x)$

Most precise results on  $\frac{\Delta g}{q}(x)$ :



[K.Kurek, DIS06, hep-ex/0607061]

HERMES high- $p_t$  single hadrons [prel.]:

COMPASS high- $p_t$  hadron pairs:

 $Q^2 < 1 \text{ GeV}^2$  ( $\langle x \rangle \simeq 0.085$ ):  $\frac{\Delta g}{g} = 0.016 \pm 0.058_{stat} \pm 0.055_{syst}$ [PLB 612,154 (2005)]

 $Q^2 > 1 \text{ GeV}^2$  ( $\langle x_g \rangle \simeq 0.13$ ) [prel.]:  $\frac{\Delta g}{g} = 0.06 \pm 0.31_{stat} \pm 0.06_{syst}$ 

Open charm ( $\langle x_g \rangle \simeq 0.15$ ) [prel.]:  $\frac{\Delta g}{g} = -0.57 \pm 0.31_{stat}$ 

 $Q^2 \simeq 0; (\langle x_g \rangle \simeq 0.22): \frac{\Delta g}{g} = 0.071 \pm 0.034_{stat} \pm 0.010_{sys-exp} \pm_{0.105}^{0.127} {}_{sys-Models}$ Phenix: Confidence limits for fits with different  $\frac{\Delta g}{g}$  assumptions

### **The HERMES Spectrometer**



- Pure gas target: polarized H, D; unpolarized H, D, N, Ne, Kr, Xe
- **Forward spectrometer:** 40 mrad  $\leq \Theta \leq$  220 mrad
- In Tracking planes: O(50) per spectrometer half:  $\delta p/p \sim 2\%, \delta \Theta \leq 1$  mrad
- PID for  $e^{\pm}$ : TRD, Preshower, Calorimeter
- PID for  $\pi^{\pm}, K^{\pm}, p$ : Dual-rad. Ring-imaging Cherenkov (2 GeV)
- Recoil particle detection for data  $\geq$  2006
  Wolf-Dieter Nowak.

## **Deeply Virtual Compton Scattering**



Same final state in DVCS and Bethe-Heitler  $\Rightarrow$  Interference!  $d\sigma(eN \rightarrow eN\gamma) \propto |\mathcal{T}_{BH}|^2 + |\mathcal{T}_{DVCS}|^2 + \underbrace{\mathcal{T}_{BH}\mathcal{T}_{DVCS}^* + \mathcal{T}_{BH}^*\mathcal{T}_{DVCS}}_{\tau}$ 

- $\mathcal{T}_{BH}$  is parameterized in terms of Dirac and Pauli Form Factors  $F_1, F_2$ , calculable in QED.
- **T**<sub>DVCS</sub> is parameterized in terms of Compton form factors  $\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}}$  (which are convolutions of resp. GPDs  $H, E, \widetilde{H}, \widetilde{E}$ )
- (Certain Parts of) interference term can be filtered out by forming certain cross section differences (or asymmetries)
- $\Rightarrow$  GPDs  $H, E, \widetilde{H}, \widetilde{E}$  indirectly accessible via interference term  $\mathcal{I}$

#### **Azimuthal Asymmetries in DVCS**

DVCS–Bethe-Heitler Interference term  $\mathcal{I}$  induces azimuthal asymmetries in cross-section:

- Beam-charge asymmetry  $A_C(\phi)$  [BCA]  $d\sigma(e^+, \phi) - d\sigma(e^-, \phi) \propto \operatorname{Re}[F_1\mathcal{H}] \cdot \cos \phi$
- Beam-spin asymmetry  $A_{LU}(\phi)$  [BSA]:  $d\sigma(\vec{e},\phi) - d\sigma(\vec{e},\phi) \propto \text{Im}[F_1\mathcal{H}] \cdot \sin\phi$
- Long. target-spin asymmetry  $A_{UL}(\phi)$ :  $d\sigma(\overleftarrow{P}, \phi) - d\sigma(\overrightarrow{P}, \phi) \propto \operatorname{Im}[F_1\widetilde{\mathcal{H}}] \cdot \sin \phi$  [L



• Transverse target-spin asymmetry  $A_{UT}(\phi, \phi_s)$  [TTSA]:

$$d\sigma(\phi,\phi_S) - d\sigma(\phi,\phi_S + \pi) \propto \operatorname{Im}[F_2\mathcal{H} - F_1\mathcal{E}] \cdot \sin(\phi - \phi_S) \cos\phi \\ + \operatorname{Im}[F_2\mathcal{H} - F_1\xi\mathcal{\widetilde{E}}] \cdot \cos(\phi - \phi_S) \sin\phi$$

 $(F_1, F_2 \text{ are the Dirac and Pauli elastic nucleon form factors})$ 

## **Kinematic Coverage of DVCS Experiments**



- Fixed-target experiments:  $x > 0.03, Q^2 < 10 \text{ GeV}^2$ 
  - COMPASS: low + medium  $x_B$
  - HERMES: medium  $x_B$ , higher  $Q^2$
  - JLab: medium+large  $x_B$ , lower  $Q^2$
  - JLab 11 GeV: larger  $x_B$ , higher  $Q^2$
- Collider experiments H1+ZEUS:

 $x_B < 0.01, Q^2 : 5...100 \text{ GeV}^2$ :

- small skewness
- $\Rightarrow$  almost forward GPDs !

⇒ fixed-target experiments essential to study non-forward region of GPDs !

 $\Rightarrow$  only COMPASS can explore low-x !

#### **Exclusive DVCS Events at HERMES**



- absolute normalization of data and Monte Carlo [solid line]
- elastic Bethe-Heitler process is main contribution in signal region
- associated Bethe-Heitler process is a small contribution
- semi-inclusive production is main background at higher  $M_X^2$
- as recoiling proton not (yet) detected, missing mass cut used instead
- *t* calculated under assumption of exclusivity, via scattered lepton kinematics
  Wolf-Dieter Nowak.
  Physikseminar DESY Zeuthen, Feb. 20, 2008

# **CLAS+HERMES:** 1<sup>st</sup> **Beam-spin Asymmetries** $A_{LU}(\phi) = \frac{1}{\langle |P_B| \rangle} \cdot \frac{d\sigma^{\rightarrow}(\phi) - d\sigma^{\leftarrow}(\phi)}{d\sigma^{\rightarrow}(\phi) + d\sigma^{\leftarrow}(\phi)} \propto \operatorname{Im} F_1 \mathcal{H} \cdot \sin \phi$

 $\Rightarrow$  extract 'amplitudes' fitting per  $\phi$ -bin  $A_{LU}(\phi) = c + A_{LU}^{\sin \phi} \sin \phi + A_{LU}^{\sin 2\phi} \sin 2\phi$ 



- HERMES: 27.5 GeV p,  $P_B \approx 55\%$ . No recoil prot. detect. [PRL87(2001,182001]
- **Solution** CLAS: 4.25 GeV p,  $P_B \approx 70\%$ . No prod. gamma detect. [PRL87(2001,182002]
- **expected**  $\sin \phi$  behaviour: significant  $\sin \phi$  amplitudes on both targets
- other harmonics don't contribute significantly

## HERMES Beam-charge Asy. vs. $\phi$ and $M_X^2$ $A_C(\phi) = \frac{d\sigma^+(\phi) - d\sigma^-(\phi)}{d\sigma^+(\phi) + d\sigma^-(\phi)} \propto \operatorname{Re} F_1 \mathcal{H} \cdot \cos \phi$

 $\Rightarrow \text{ extract 'azimuthal asymmetry amplitudes' by fitting in every } \phi\text{-bin}$  $A_C(\phi) = const. + A_C^{\cos\phi} \cos\phi + A_C^{\cos 2\phi} \cos 2\phi + A_C^{\cos 3\phi} \cos 3\phi$ 



publ. results for unpolarized proton target [hep-ex/0605108, PRD75(2007)011103(R)]

• use symmetrization ( $\phi \rightarrow |\phi|$ ) to get rid of sinusoidal terms

 $A_C^{\cos \phi} = 0.060 \pm 0.027, \text{ other contributions insignificant (dashed = pure \cos \phi) }$ 

- asymmetry only in exclusive and 'associate'  $M_X^2$  region ( $\rightarrow$  resol. smearing)
- preliminary deuteron data (not shown) completely consistent

## **HERMES Beam-charge Asymmetry vs.** $\boldsymbol{t}$

BCA *t*-dependence can distinguish different GPD model versions:



- $A_C^{\cos \phi}$ : elastic + associated production  $\Rightarrow$  highest *t*-bin mostly affected
- **GPD** *H* dominates,  $\tilde{H}$  and *E* suppr. [Goeke,Polyakov,Vanderh.,PPNP 47(2001)401]
- Curves (code [Vanderh.,Guichon,Guidal]) calculated for 4 different param. sets
- BCA insensitive to profile fct. param.'s

Only HERMES can measure BCA!

shown here: HERA-I (1996-1998) data disfavor Regge-inspired t-dependence with D-term [PRD75(2007)011103(R)]

more precise HERA-II BCA results from 'combined analysis' with TTSA

For all DVCS data: reduction of background & associated contribution in recoil detector data (2006+07)

Wolf-Dieter Nowak,

### HERMES Long. Target-spin Asymmetry vs. $\phi$

 $A_{UL}(\phi) = \frac{1}{\langle |P_L| \rangle} \cdot \frac{d\sigma^{\Rightarrow}(\phi) - d\sigma^{\Leftarrow}(\phi)}{d\sigma^{\Rightarrow}(\phi) + d\sigma^{\Leftarrow}(\phi)} \propto \mathrm{Im}F_1 \widetilde{\mathcal{H}} \sin \phi$ 

 $\Rightarrow$  extract 'azimuthal asymmetry amplitudes' by fitting per  $\phi$ -bin:

 $A_{UL}(\phi) = c + A_{UL}^{\sin\phi} \sin\phi + A_{UL}^{\sin 2\phi} \sin 2\phi$ 



- FULL existing data set analyzed (1996-2000 data)
  - $s_1$  : expected  $\sin \phi$  behaviour :  $2\sigma$  (1.5 $\sigma$ ) on p (d)
- $s_2$ : unexpected, sizeable (>  $3\sigma$ )  $A_{UL}^{\sin 2\phi}$  on p (1.7 $\sigma$  on d)  $\Rightarrow$  twist-3 ?
- final analysis tuning and paper in progress

## Why TTSA Data Expected to be Sensitive to $\mathbf{J}_{q}$ ?

 $A_{UT}(\phi,\phi_S) \propto \operatorname{Im}[F_2\mathcal{H} - F_1\mathcal{E}] \sin(\phi - \phi_S) \cos\phi + \operatorname{Im}[F_2\widetilde{\mathcal{H}} - F_1\xi\widetilde{\mathcal{E}}] \cos(\phi - \phi_S) \sin\phi$ 

**ANSATZ:** spin-flip Generalized Parton Distribution E can be parameterized as follows:

- Factorized ansatz for spin-flip quark GPDs:  $E_q(x,\xi,t) = \frac{E_q(x,\xi)}{(1-t/0.71)^2}$
- I indep. part via double distr. ansatz: 
    $E_q(x,\xi) = E_q^{DD}(x,\xi) \theta(\xi |x|)D_q\left(\frac{x}{\xi}\right)$
- using double distr.  $K_q$ :  $E_q^{DD}(x,\xi) = \int_{-1}^1 d\beta \int_{-1+|\beta|}^{1-|\beta|} d\alpha \, \delta(x-\beta-\alpha\xi) \, K_q(\beta,\alpha)$
- with  $K_q(\beta, \alpha) = h(\beta, \alpha) e_q(\beta)$  and  $e_q(x) = A_q q_{val}(x) + B_q \delta(x)$ based on chiral QSM

• where coeff.s A, B constrained by Ji relation, and  $\int_{1}^{1} dx e_q(x) = \kappa_q$ 

- $A_u, A_d, B_u, B_d$  are functions of  $J_u, J_d$  $\Rightarrow J_u, J_d$  are free parameters when calculating TTSA
- Sensitivity to  $J_u$  (with  $J_d = 0$ ) studied [EPJ C46, 729 (2006), hep-ph/0506264]

#### **HERMES:** First Measurement of TTSA

 $A_{UT}(\phi,\phi_S) = A_{UT}^{\sin(\phi-\phi_S)\cos\phi} \cdot \sin(\phi-\phi_S)\cos\phi + A_{UT}^{\cos(\phi-\phi_S)\sin\phi} \cdot \cos(\phi-\phi_S)\sin\phi + \dots$ 0.4 Cost Cost ▲ PRD75, 011103 □ this work DD:Fac,no D DD:Reg,D DD:Reg,no D 0.2 0  $A_{C}^{cos\varphi}$ 0.4 Dual:Reg Dual:Fac 0.2 0  $A_{UT}^{sin(\varphi-\varphi_S)}$ 8.1% scale uncertainty A<sub>UT, DVCS</sub> • 0.2 A<sub>UT, I</sub> J<sub>u</sub>=0.6-0.4-0.2-J\_=0.6 -0.2 -0.2  ${\rm A}_{{
m UT}}^{\sin(\phi-\phi_{\rm s})\cos\phi}$ 8.1% scale uncertainty -0.4 0.4 0.6 0 -t (GeV<sup>2</sup>) 0.2 0.1 0.3  ${6 \over Q^2} {8 \over (GeV^2)} {10 \over 2}$ 0.2 0.4 0 0 2 4 overall X<sub>B</sub>

## Model-dependent constraints on $J_{\rm u}$ vs $J_{\rm d}$



Double-distribution model: [Vanderhaghen,Guichon,Guidal] HERMES analysis method:

Unbinned maximum likelihood fit to all possible azimuthal asymmetry amplitudes at average kinematics:  $\Rightarrow$  'combined fit' of HERMES BCA and TTSA data against various model calculations, leaving  $J_u$  and  $J_d$ as free parameters  $\Rightarrow$  model-dep. 1- $\sigma$  constraints on  $J_u$  vs.  $J_d$ :

 $J_u + J_d/2.8 = 0.49 \pm 0.17(\exp_{\text{tot}})$ 

- Dual model [Guzey, Teckentrup]:  $J_u + J_d/2.8 = -0.02 \pm 0.27 (\exp_{tot})$
- Lattice gauge theory: QCDSF [Göckeler et al.], LHPC [Hägler et al.]
- DFJK model: zero-skewness GPDs extracted from nuclear form factor data using valence-quark contributions only [Diehl et al.])

## **Summary and Outlook**

- ▷ The HERMES experiment played a pioneering role exploring the potential of exclusive photon (also meson) production towards an interpretation of the data in terms of GPDs. Azimuthal asymmetries were measured with respect to beam spin and charge, and to longitudinal and transverse target polarization. Constraints on GPD models were obtained, in particular (model-dependent) constraints on the *u* and *d*-quark total angular momenta. Presently the quality of the data is higher than that of the available models !
- At JLAB, many dedicated high-statistics DVCS measurements on various targets were/are/will be performed, which will have strong impact on constraining GPDs. Plans are being substantiated for measurements at 12 GeV that are hoped to become reality beyond 2012. At CERN, COMPASS prepares a proposal to measure DVCS with both beam charges after2012. Exclusive reactions will hence presumably be mapped in the next decade, allowing the construction of precise GPD models which are expected to describe the 3-dimensional structure of the nucleon.