New estimates of the Higgs physics potential of the HL-LHC phase from the ATLAS experiment

Jan Stark

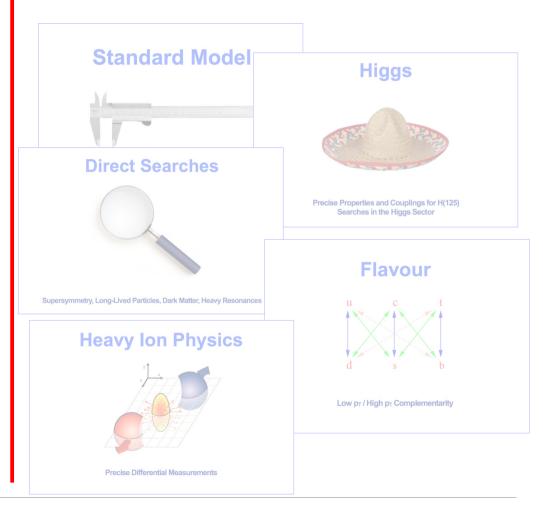
Laboratoire de Physique Subatomique et de Cosmologie Grenoble, France

Two recent colloquia at DESY

Halina Abramowicz December 5th

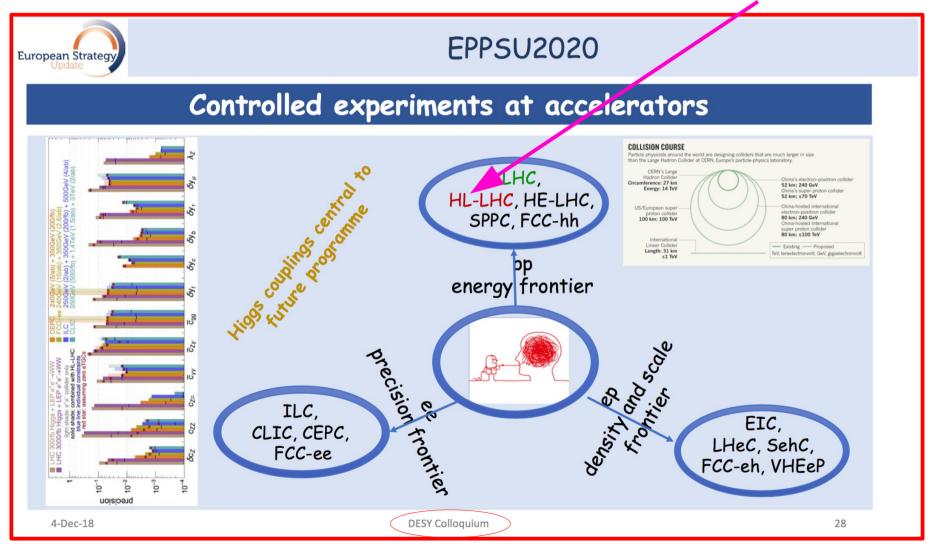
Home / Zeuthen / Colloquia in 2018 / December 05, 2018

Next update of the European Strategy for Particle Physics


Halina Abramowicz | Tel Aviv University | Secretary of the European Particle Physics Strategy Update Seminar room 3, 14:00

In October 2019, the CERN Council officially launched the process of updating the European Strategy for Particle Physics (EPPSU) to be completed by May 2020. The EPPSU, a community driven bottom-up approach, is meant to provide a clear prioritisation of European ambitions in advancing the particle physics science. It is supposed to take into account the worldwide particle physics landscape and developments in related fields, and to propose a program that maximises the scientific returns. In my presentation, I will discuss to which point the previous strategy recommendations brought us and the steps envisaged to converge on the next strategy update to guide the direction of the field to the mid-2020s and beyond.

Andreas B. Meyer November 27th, DESY HH


"Physics at the HL-LHC"

(Possible) Future colliders

In this colloquium: - not arguing about choice of future collider

- prospects from the one project that is already approved (HL-LHC); the "baseline"

Halina Abramowicz

The HL-LHC

LHC / HL-LHC Plan

10x more luminosity than "original" LHC (100x more than in 2016)

[current results discussed today are based on 2015+2016 data]

Unprecedented pile-up and event rates

→ need detector upgrades

Timescale consistent with

- development of sophisticated analyses
- improved theory calculations

ATLAS detector upgrades for the HL-LHC phase

Small selection of highlights:

New inner tracker

- extended coverage ($|\eta|$ < 4)
- improved granularity

Trigger/DAQ

- 10 kHz recorded

Calorimeters

- new front end electronics;
 higher granularity of readout (40 MHz) for triggering
- High Granularity Timing Detector;
 Separate vertices (in addition to z0)

Muon system

- extended trigger coverage ($|\eta| < 4$)

Full list of TDRs for ATLAS upgrades:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/WebHome#Upgrade_Projects_and_Physics_Pro

Upcoming CERN Yellow Report

HL-LHC prospects studies are a very active area these days:

- aim for a Yellow Report by the end of this year
- first step for ATLAS: PUB notes!
- now is the right time for this YR:
 - crucial input to the next update (2020) of the European Strategy for Particle Physics
 - final CMS/ATLAS detector optimisations for HL-LHC are available

Approach(es) for estimation of precision at 3000 fb⁻¹:

- Extrapolation based on current, published results
- Or use new analysis, based on generator-level event samples plus parameterised model of expected detector performance
- Present different scenarios for expected systematic uncertainties;
 Try not to be overly pessimistic.

ATLAS EXPERIMENT — PUBLIC RESULTS

ATLAS Public notes

Contact: ATLAS Publications Contact

This page lists all non-superseded ATLAS public (PUB) notes. This series of notes covers preliminary results using data. See also: list of ATLAS

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/PUBnotes

results by group					
262 documents					
Short Title	Group	Document Number	Date	√s (TeV)	Links
HL-LHC prospect for top mass using J/Psi NEW	TOPQ	ATL-PHYS- PUB-2018-042	04-DEC-18	14	Documents Internal
Prospects for MET+Jet NEW	EXOT	ATL-PHYS- PUB-2018-043	05-DEC-18	14	Documents Internal
Differential cross section measurement prospects at HL-LHC NEW	HIGG	ATL-PHYS- PUB-2018-040	04-DEC-18	14	Documents Internal
Prospects for \$B_{s} \to J/\psi \phi\\$ at HL-LHC NEW	BPHY	ATL-PHYS- PUB-2018-041	04-DEC-18	14	Documents Internal
Nuclear PDFs in Run 3 and 4 NEW	HION	ATL-PHYS- PUB-2018-039	30-NOV-18	5.02/NN	Documents Internal
Prospect for a measurement of the Weak Mixing Angle in p p> Z/gamma*> e+e- events with the ATLAS	etdM.	ATL-PHYS-	20 NOV 19	14	Doguments Lucy-

PUB-2018-037

30-NOV-18

27-NOV-18

ATL-PHYS-

ATL-PHYS-

WIMP DM pair + HF quarks; 0, 2 leptons NEW

Documents | Inter

Why look for New Physics?

With the discovery of the Higgs boson, the Standard Model is now a

- √ complete
- ✓ coherent
- ✓ predictive

theory of particles and their interactions.

Are we done?

We are convinced that other particles and/or phenomena exist.

The Standard Model does **not** explain:

- dark matter
- matter/anti-matter asymmetry
- neutrino masses
- ... and it has problems explaining the light Higgs mass (hierarchy problem)

- ...

I II III

Quarks

Leptons

4.8 MeV 104 MeV 4.2 GeV <2.2 eV 0.5 MeV 126 GeV

(c) Sfyrla

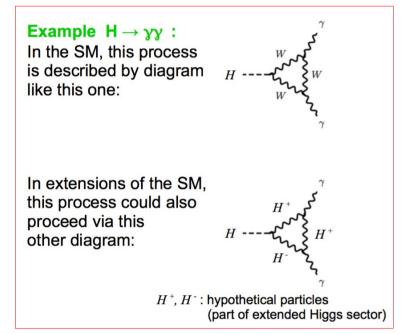
The Higgs sector

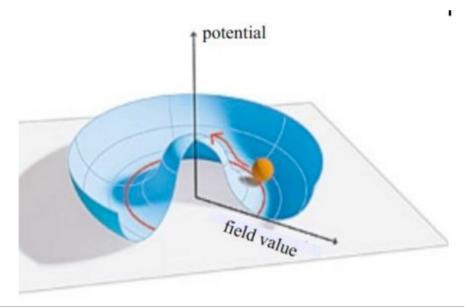
At LHC, finally have experimental access to the Higgs sector.

→ study it in detail, test SM predictions: couplings, ...

5% precision on couplings: sensitive to BSM scales O(1 TeV).

(sub-)1% precision \rightarrow O(10 TeV)

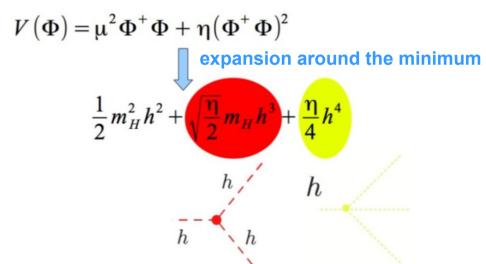

Higgs is first scalar fundamental particle. Is there an extended scalar sector?


Origin of the Higgs potential?

Postulated ad hoc in the SM.

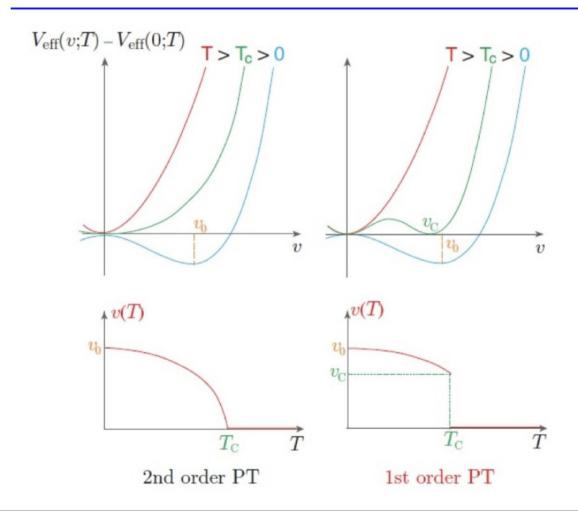
Does it have a more profound origin (analogy with Ginzburg-Landau theory of superconductivity)

Dynamical origin?



Higgs potential

A measurement of the Higgs self-coupling is the only way to experimentally reconstruct the Higgs potential (reconstruct its shape close to the minimum).


Higgs potential in the standard model:

Electroweak baryogenesis

To get the observed baryon asymmetry of the universe from an initially baryon-symmetric universe, Sacharow's conditions must be satisfied.

- (1) Baryon number (B) violation
- (2) C and CP violation
- (3) Out of equilibrium

It is not easy to construct a credible mechanism that meets these conditions.

The mechanism that meets these conditions and that is considered to be the most credible one is electroweak baryosynthesis.

An effective potential (free energy density) is used to describe the Higgs potential during the electroweak phase transition.

Electroweak baryosynthesis can only work if the electroweak phase transition is a a first order phase transition (PT).

First order PTs imply a system that is out of equilibrium (violent transition, large creation of entropy).

An exciting theory paper

PHYSICAL REVIEW D 97, 075008 (2018)

Probing baryogenesis through the Higgs boson self-coupling

M. Reichert, A. Eichhorn, H. Gies, 2,3 J. M. Pawlowski, 1,4 T. Plehn, and M. M. Scherer Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany

2Theoretisch-Physikalisches Institut, Abbe Center of Photonics,
Friedrich-Schiller-Universität Jena, Max Wien Platz 1, 07743 Jena, Germany

3Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany

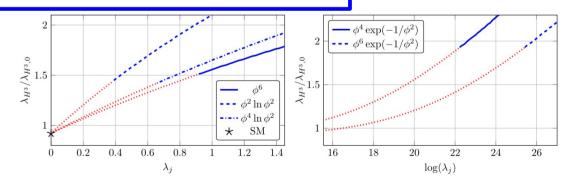
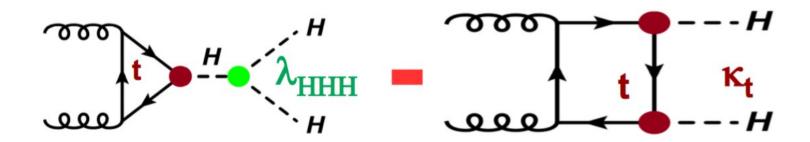
4Extreme Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung mbH,
Planckstr. 1, 64291 Darmstadt, Germany

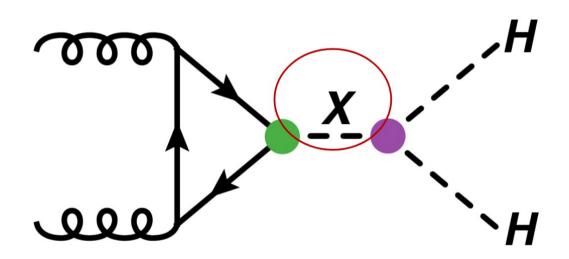
5Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany

(Received 28 November 2017; published 4 April 2018)

The link between a modified Higgs self-coupling and the strong first-order phase transition necessary for baryogenesis is well explored for polynomial extensions of the Higgs potential. We broaden this argument beyond leading polynomial expansions of the Higgs potential to higher polynomial terms and to nonpolynomial Higgs potentials. For our quantitative analysis we resort to the functional renormalization group, which allows us to evolve the full Higgs potential to higher scales and finite temperature. In all cases we find that a strong first-order phase transition manifests itself in an enhancement of the Higgs self-coupling by at least 50%, implying that such modified Higgs potentials should be accessible at the LHC.

DOI: 10.1103/PhysRevD.97.075008

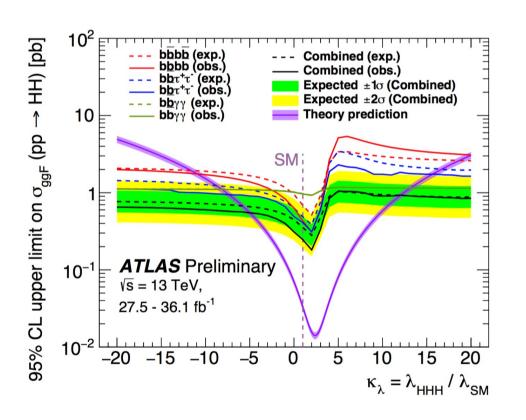

FIG. 8. Modification of the self-coupling $\lambda_{H^3}/\lambda_{H^3,0}$ as a function of the coefficients λ_j from the different UV potentials given in Eq. (11). Blue lines represent first-order phase transitions and red dotted lines second-order phase transitions. The cutoff is $\Lambda = 2$ TeV.

Di-Higgs production at LHC

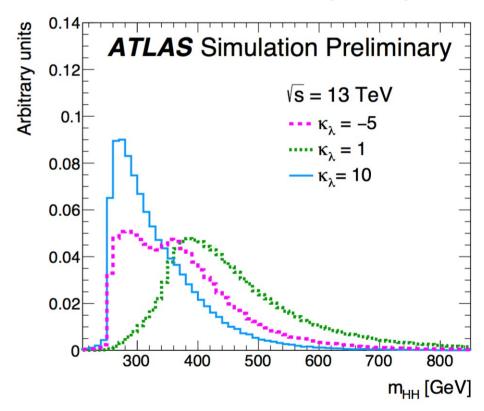
 m_h=125.09 GeV CERN-2017-002-M [arXiv:1610.07922] 	\sqrt{s} =8 TeV σ_{NLO} [fb]	$v_{s=13} \text{ TeV}$ $\sigma_{NLO} [\text{fb}]$	$\sqrt{s}=14 \text{ TeV}$ $\sigma_{NLO} [\text{fb}]$
ggF→hh (NNLO + NNLL with NLO top mass effects taken into account)	10.2	33.4	39.5
hhjj (VBF)	0.5	1.6	2.0
tthh	0.2	0.8	0.9
Whh+Zhh	0.3	0.9	1.0

[Di-Higgs production at LHC: hypothetical new particles]

Not the focus of this talk.

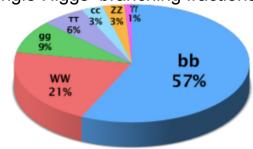

The search for new resonances that decay to two Higgs bosons is an exciting topic of its own. Especially with the move to high energy ($\sqrt{s} = 13 \text{ TeV}$) of the LHC.

Will briefly show an example of a search later when we discuss the current di-Higgs results.


Di-Higgs production at LHC: observables

Di-Higgs production cross section

strongly depends on self-coupling strength:

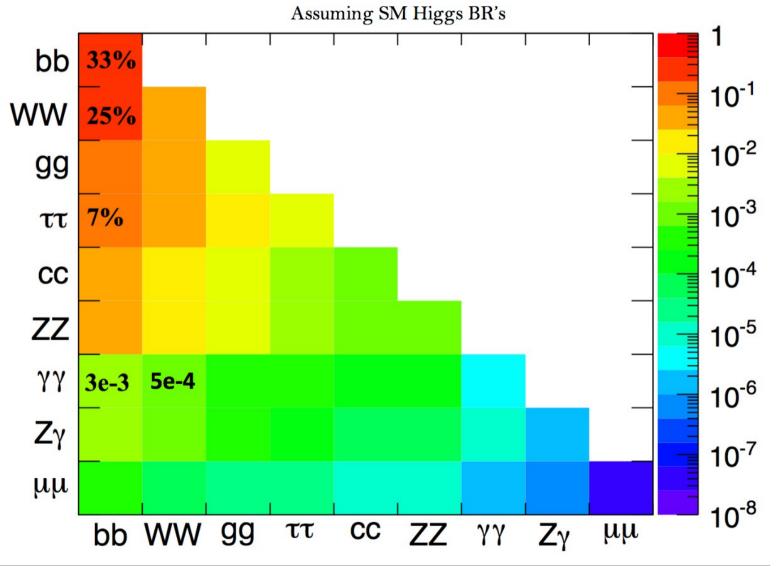

Kinematics of the HH events, in particular m(HH), depends on self-coupling strength:

On this slide, and in the remainder of this talk: express coupling strength in multiples of Standard Model expectation ($\lambda_{\rm SM}$): $\kappa_{\lambda} = \lambda_{\rm HHH} / \lambda_{\rm SM}$

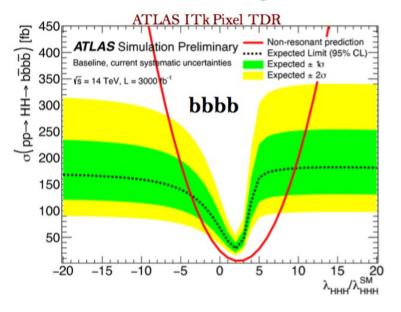
Single Higgs branching fractions

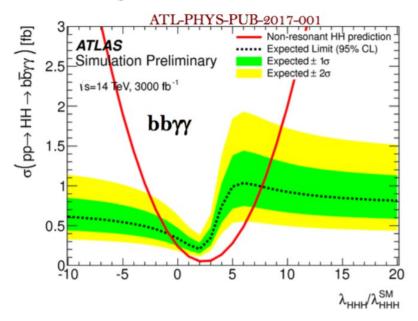
Di-Higgs: channels

bbbb:

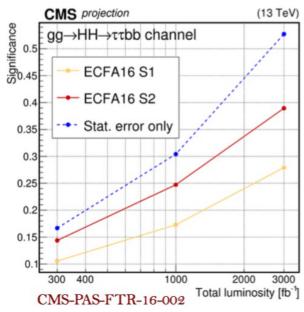

"relatively" large signal

bbyy:


"relatively" clean


bbττ:

"good" compromise


Existing, public projections

Published HL-LHC projections suggest a very challenging future.

Coupling limits $\kappa_{_{\lambda}} \in [-1, 8]$ for single channel.

The "50% claim"

To get an idea of what to expect, we quote the optimal reach of the high-luminosity LHC run with 3 ab^{-1} , based on the Neyman-Pearson theorem applied to the $b\bar{b}\gamma\gamma$ channel for self-couplings relatively close to the Standard Mode [41],

$$\frac{\lambda_{H^3}}{\lambda_{H^3,0}} = 0.4...1.7$$
 at 68% C.L., (9)

so any value for $\lambda_{H^3}/\lambda_{H^3,0}$ outside the range given above will not be compatible with the vanishing di-Higgs amplitude in Eq. (8). This reach will be improved when we combine several Higgs decay channels, but will also suffer from systematic uncertainties. In addition, it assumes a perfect knowledge of the top Yukawa coupling. This implies that models which predict a change in the Higgs self-coupling by less than 50% will not be testable at the LHC.

Text on the left: from the paper on slide 11.

And this is Ref. [41]:

PHYSICAL REVIEW D 95, 035026 (2017)

Maximizing the significance in Higgs boson pair analyses

Felix Kling, ^{1,2} Tilman Plehn, ³ and Peter Schichtel ⁴

¹Department of Physics, University of Arizona, 1118 E. Fourth Street, Tucson, AZ 85721, USA

²Theoretical Physics Department, Fermilab, Batavia, Illinois 60510, USA

³Institut für Theoretische Physik, Universität Heidelberg,

Philosophenweg 16, 69120 Heidelberg, Germany

⁴Institute for Particle Physics Phenomenology, Durham University, Durham DH1 3LF, United Kingdom (Received 28 September 2016; published 22 February 2017)

We study Higgs pair production with a subsequent decay to a pair of photons and a pair of bottoms at the LHC. We use the log-likelihood ratio to identify the kinematic regions which either allow us to separate the di-Higgs signal from backgrounds or to determine the Higgs self-coupling. We find that both regions are separate enough to ensure that details of the background modeling will not affect the determination of the self-coupling. Assuming dominant statistical uncertainties we determine the best precision with which the Higgs self-coupling can be probed in this channel. We finally comment on the same questions at a future 100 TeV collider.

DOI: 10.1103/PhysRevD.95.035026

$$\frac{\lambda}{\lambda_{\rm SM}} = 0.4...1.7$$
 at 68% CL and for 3 ab⁻¹ (12)

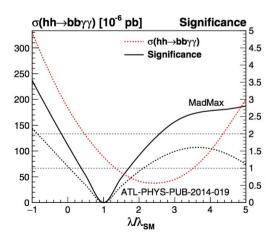


FIG. 6. Signal cross section (red dashed line) and maximum significance (black solid line) for observing an anomalous Higgs self-coupling at the LHC with an integrated luminosity of 3 ab⁻¹. We also show the significance from a cut-based rate measurement using the cuts suggested in Ref. [35] (black dashed line).

The latest measurements

Latest Run 2 result: HH → bbbb

Dominant backgrounds:

arXiv:1804.06174 [hep-ex], submitted to JHEP

- multi-jet production
- t tbar

Event selection:

- ≥4 b-tagged jets with p_{τ} > 40 GeV
- b-jets assigned to two H → bb candidates using angular information
- requirement on Higgs candidate $p_{_{\!\scriptscriptstyle T}}$ dependent on m(HH)
- veto events where Higgs candidate masses are not consistent with H → bb decay
- veto events consistent with top quark decay

Analysis strategy:

- Signal extracted from fit to m(HH) distribution
- Shape of t tbar background taken from simulation
- Mult-ijet background taken from data control region: events with ≥4 jets but only 2 b-tags.
 - reweighted to 4-b-tag data in sidebands
 - background model validated in 4-b-tag data in sidebands, close to the H → bb mass peaks

Latest Run 2 result: HH → bbbb

arXiv:1804.06174 [hep-ex], submitted to JHEP

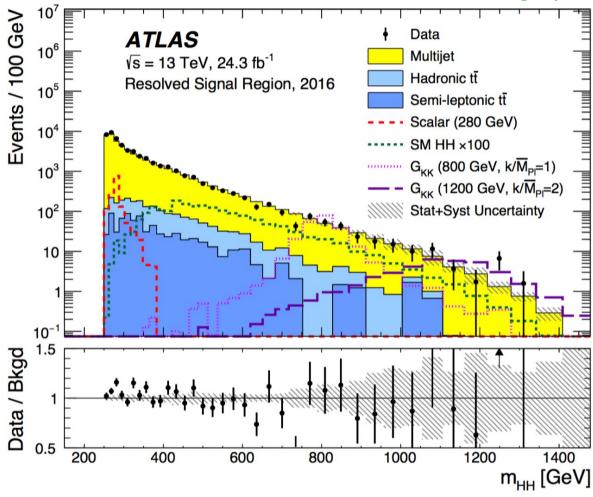


Table 8: 95% CL exclusion limits for SM non-resonant HH production, in units of the SM prediction for $\sigma(pp \to HH \to b\bar{b}b\bar{b})$.

Observed	-2σ	-1σ	Expected	+1 σ	+2 σ
13.0	11.1	14.9	20.7	30.0	43.5

Latest Run 2 result: HH → bbττ

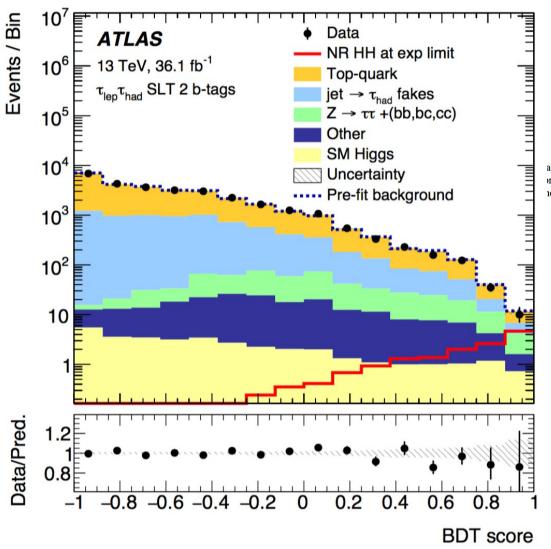
Phys. Rev. Lett. 121, 191801 (2018)

Dominant backgrounds:

- t tbar

Event selection:

- Two categories: $\tau_{\text{lep}}\,\tau_{\text{had}}$ and $\tau_{\text{had}}\,\tau_{\text{had}}$
- Boosted Decision Tree (BDT) used in each category.


 Exploits masses, angular variables and missing transverse energy.

Analysis strategy:

- Signal extracted from fit to distribution of BDT score
- t tbar background with true $\tau_{_{\text{had}}}$ taken from simulation
- t tbar component with jets: faking had: MC + data-driven methods for fake rate

Latest Run 2 result: HH → bbττ

Phys. Rev. Lett. 121, 191801 (2018)

able 3: Observed and expected upper limits on the production cross-section times the $HH \to bb\tau\tau$ branching ratio or NR HH at 95% CL, and their ratios to the SM prediction. The $\pm 1\sigma$ variations about the expected limit are also nown.

		Observed	-1σ	Expected	$+1\sigma$
	$\sigma(HH \to bb\tau\tau)$ [fb]	57	49.9	69	96
$ au_{ m lep} au_{ m had}$	$\sigma/\sigma_{ m SM}$	23.5	20.5	28.4	39.5
	$\sigma(HH \to bb\tau\tau)$ [fb]	40.0	30.6	42.4	59
$ au_{ m had} au_{ m had}$	$\sigma/\sigma_{ m SM}$	16.4	12.5	17.4	24.2
Combination	$\sigma(HH \to bb\tau\tau)$ [fb]	30.9	26.0	36.1	50
	$\sigma/\sigma_{ m SM}$	12.7	10.7	14.8	20.6

single most stringent limit on non-resonant HH production to date.

Latest Run 2 result: HH → bbyy JHEP 11 (2018) 040

Dominant backgrounds:

- bbyy and ccyy non-resonant continuum background
- various single Higgs (H $\rightarrow \gamma \gamma$) processes: Hbb, ttH, ZH, ...

Event selection:

Very simple event selection:

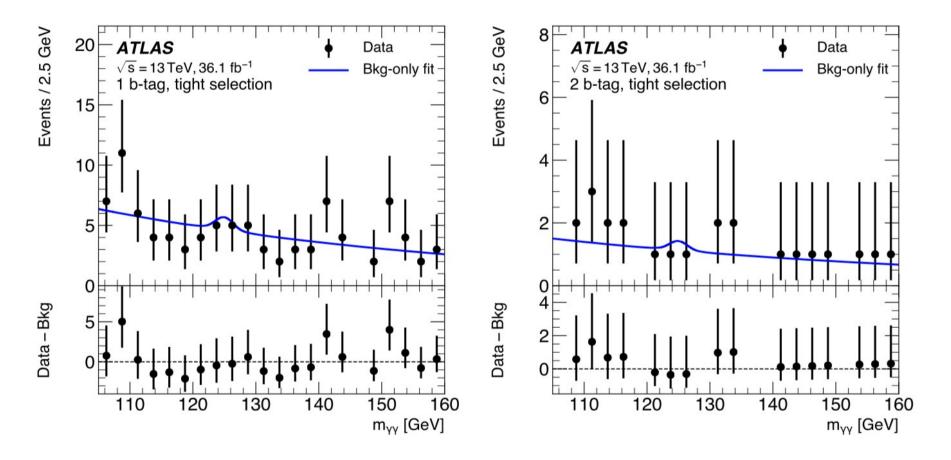
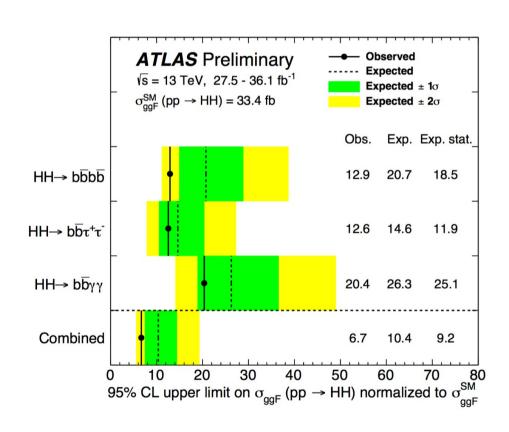
- acceptance requirements (p_T,...)
- di-jet mass consistent with H → bb
- two categories: one or two b-tags

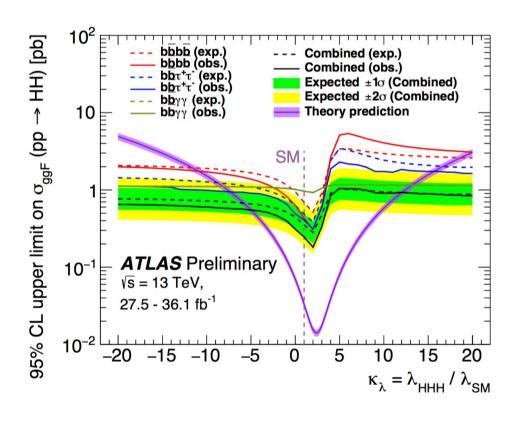
Analysis strategy:

- Signal extracted from fit m(yy) distribution
 - → continuum backgrounds from sidebands
- "Peaking" single Higgs backgrounds from simulation

Latest Run 2 result: HH → bbγγ

JHEP 11 (2018) 040

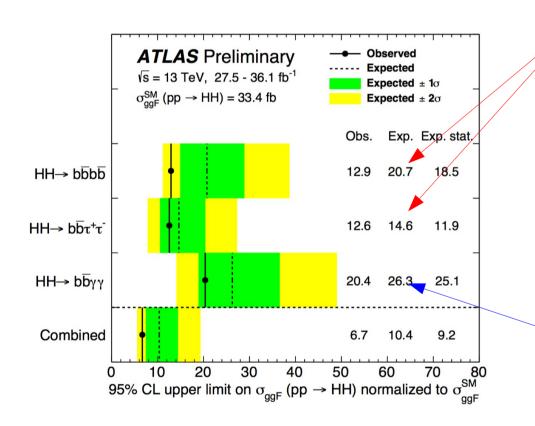




Table 4: The 95% CL observed and expected limits on the Higgs boson pair cross-section in pb and as a multiple of the SM production cross-section. The $\pm 1\sigma$ band around each 95% CL limit is also indicated.

	Observed	Expected	-1σ	$+1\sigma$
$\sigma_{gg o HH}$ [pb]	0.73	0.93	0.66	1.4
As a multiple of $\sigma_{\rm SM}$	22	28	20	40

Latest Run 2 combination: HH

ATLAS-CONF-2018-043 (September 2018)



Hot off the press: New HL-LHC projections

Updated HL-LHC projections

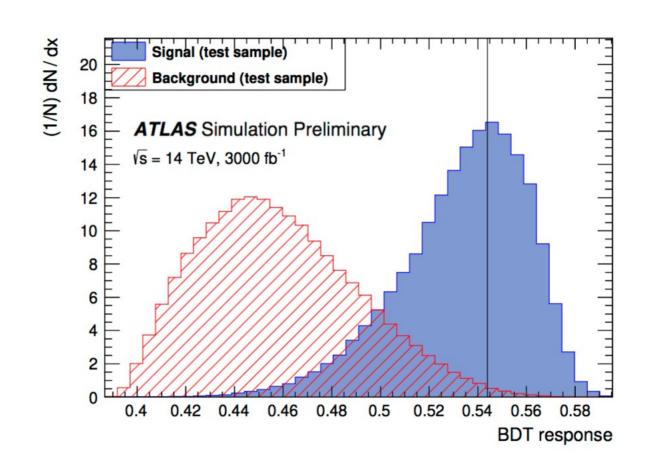
The new projections for bbbb and $bb\tau\tau$ are extrapolations based on the measurements that we just discussed.

The new projections for bbyy are based on a new analysis that uses more sophisticated techniques that the current measurement.

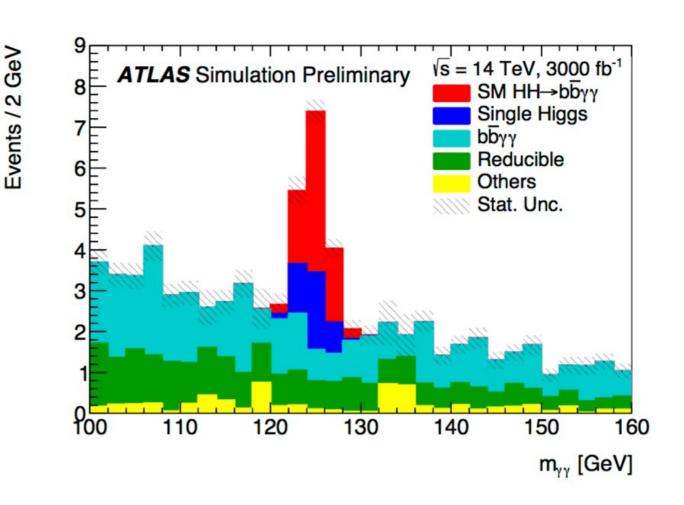
Updated HL-LHC projections: HH → bbγγ

Analysis proceeds in two steps:

Simple preselection


after preselection:

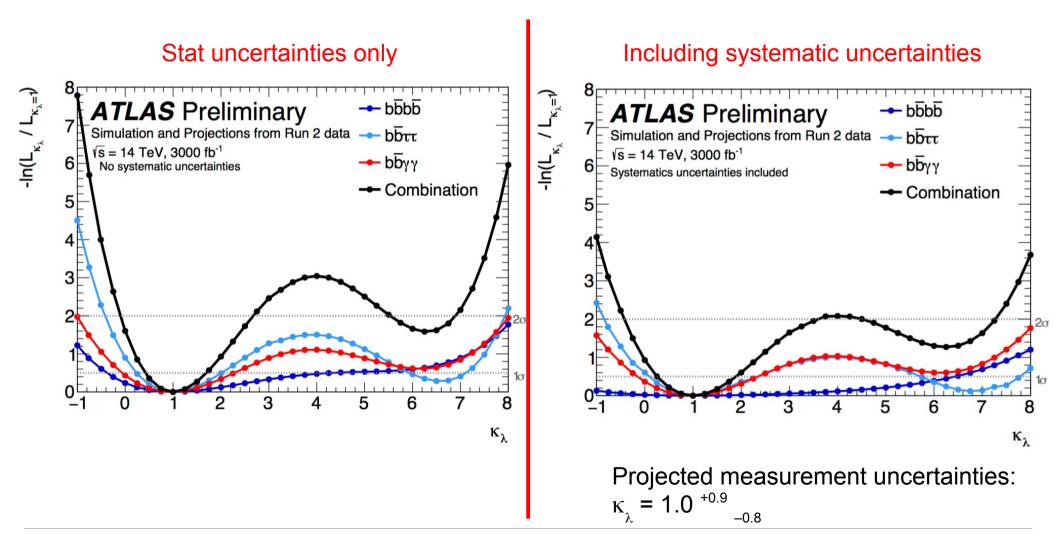
39000 events from continuum background


180 events from single Higgs Boson background

Boosted Decision Tree (BDT)

for background rejection, 21 variables

Updated HL-LHC projections: HH → bbγγ



After BDT requirement and 123 < $m(\gamma\gamma)$ < 127 GeV:

- 3.7 events continuum background
- 3.2 events single Higgs background (ttH, ZH, Zbb, ...)
- 6.46 di-Higgs signal events for $\kappa_{\lambda} = 1$.

Updated HL-LHC projections: combination of channels, extraction of κ_{λ}

These plots assume a signal as predicted by the SM (κ_{λ} = 1).

For the future: even more observables in the extraction of κ_{λ}

An analysis that is based on the same log-likelihood ratios that are mentioned in this paper (on the right) would be the matrix element method.

From slide 17:

And this is Ref. [41]:

PHYSICAL REVIEW D 95, 035026 (2017)

Maximizing the significance in Higgs boson pair analyses

Felix Kling, 1,2 Tilman Plehn, 3 and Peter Schichtel 1

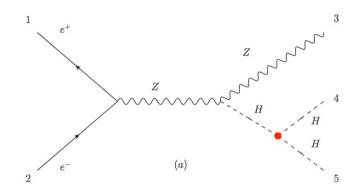
Department of Physics, University of Arizona, 1118 E. Fourth Street, Tucson, AZ 85721, USA 2

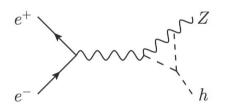
Theoretical Physics Department, Fermilab, Batavia, Illinois 60510, USA 3

Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany

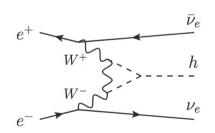
Institute for Particle Physics Phenomenology, Durham University, Durham DH1 3LF, United Kingdom (Received 28 September 2016; published 22 February 2017)

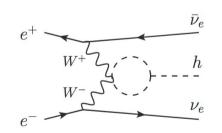
We study Higgs pair production with a subsequent decay to a pair of photons and a pair of bottoms at the LHC. We use the log-likelihood ratio to identify the kinematic regions which either allow us to separate the di-Higgs signal from backgrounds or to determine the Higgs self-coupling. We find that both regions are separate enough to ensure that details of the background modeling will not affect the determination of the self-coupling. Assuming dominant statistical uncertainties we determine the best precision with which the Higgs self-coupling can be probed in this channel. We finally comment on the same questions at a future 100 TeV collider.


DOI: 10.1103/PhysRevD.95.035026


Higgs self-coupling at (possible) future colliders

ILC at \sqrt{s} = 500 GeV, 2 ab⁻¹: $\sigma(\kappa_{\lambda})$ = 44%


ILC at \sqrt{s} = 1 TeV, 2 ab⁻¹: $\sigma(\kappa_{\lambda})$ = 18%


(from ILC TDR and LC-REP-2013-003)

FCC-ee: $\sigma(\kappa_{\lambda}) = 44\%$

Very indirect:

measuring centre-of-mass-energy-dependent effects on single Higgs observables (such as the HZ and vvH production cross sections)

$$\sqrt{s}$$
 = 240 GeV and \sqrt{s} = 365 GeV

(from FCC CDR)

FCC-hh: $\sigma(\kappa_{\lambda}) = ~5\%$

Question: so what about the quartic

Higgs self-coupling?

Table 10.2: Precision of the	e direct Higgs self-coupling measu	arement in $gg{ ightarrow} HH$ production	ı, for various
decay modes, from the FCC	C-hh detector performance studies.		

	b̄bγγ	b̄bZZ*[→4ℓ]	$b\bar{b}WW*[→2jℓν]$	4b+jet
$\delta \kappa_{\lambda}$	6.5%	14%	40%	30%

(from FCC CDR)

Summary

At LHC, finally have experimental access to the Higgs sector.

Studying the Higgs sector in detail:

- Additional Higgs bosons ?
- Measurements of the properties of the Higgs boson: mass, couplings, ...

Measuring the Higgs self-coupling is key test of the Standard Model.

- Hope to learn more about the origin of the Higgs potential
- Implications for Electroweak baryogenesis

The measurement of the self-coupling is notoriously difficult and will require very large datasets.

In this talk, showed, for the first time in public, updated projections for the HL-LHC phase from the ATLAS collaboration.

In the past: "Can we discover di-Higgs at the LHC?".
We are moving towards the new question: "When will we discover di-Higgs at the LHC?"

Additional material

Current HH combination: acceptances

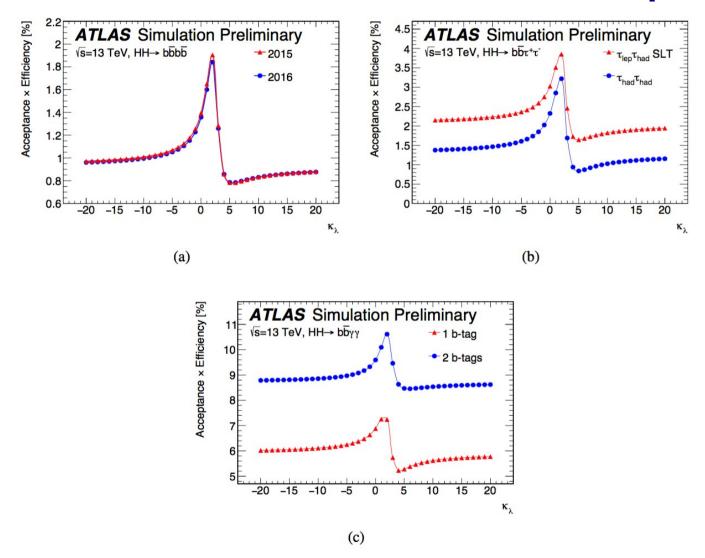


Figure 4: Signal acceptance times efficiency as a function of κ_{λ} for (a) $HH \to b\bar{b}b\bar{b}$, (b) $HH \to b\bar{b}\tau^{+}\tau^{-}$ and (c) $HH \to b\bar{b}\gamma\gamma$. The acceptances are split by years for the $HH \to b\bar{b}b\bar{b}$ analysis, due to different trigger configurations, and by event categories for the $HH \to b\bar{b}\tau^{+}\tau^{-}$ and $HH \to b\bar{b}\gamma\gamma$ analyses.

Measuring the Higgs self-coupling in e⁺ e⁻ collisions

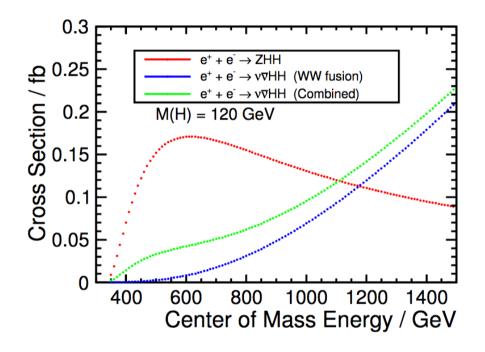


FIG. 1: The separate and combined production cross sections for the ZHH and $\nu\bar{\nu}$ HH processes as a function of the center of mass energy assuming the Higgs mass of 120 GeV. The red line is for the ZHH process, the blue line is for the $\nu\bar{\nu}$ HH fusion process and the green line is for the combined result.

Figure extracted from: J. Tian, LC-REP-2013-003.

Measuring the Higgs self-coupling in e⁺ e⁻ collisions

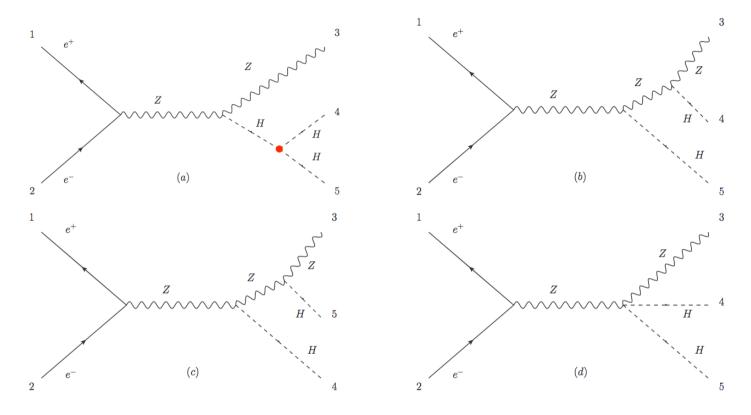


FIG. 2: Feynman diagrams for the double Higgs strahlung process $e^+e^- \to ZHH$. (a): involving trilinear Higgs self-coupling; (b), (c), (d): the irreducible diagrams.

At
$$\sqrt{s}$$
 = 500 GeV: $\frac{\delta\lambda}{\lambda} = 1.8 \frac{\delta\sigma}{\sigma}$ (dilution due to presence of diagrams without trilinear coupling)

Figure extracted from: J. Tian, LC-REP-2013-003.

Measuring the Higgs self-coupling in e⁺ e⁻ collisions

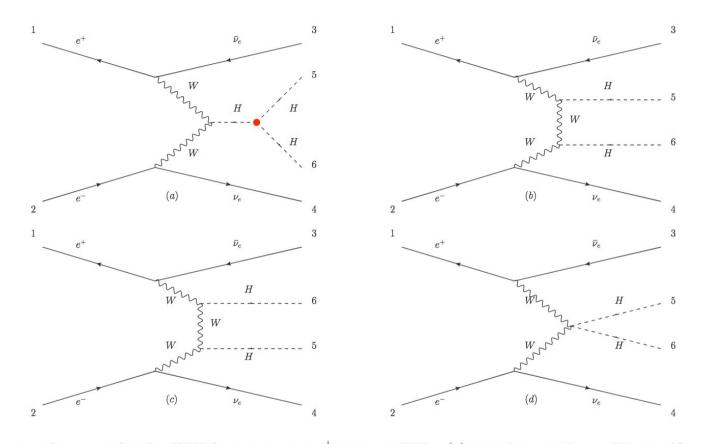
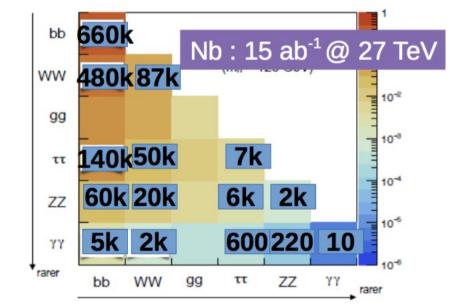
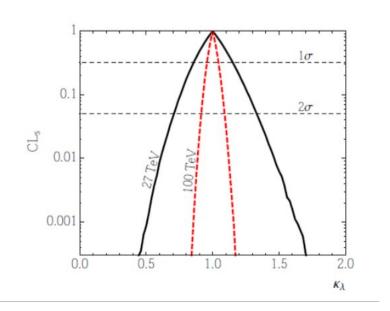


FIG. 3: Feynman diagrams for the WW fusion process $e^+e^- \to \nu\bar{\nu}HH$. (a): involving trilinear Higgs self-coupling; (b), (c), (d): the irreducible diagrams.


At
$$\sqrt{s}$$
 = 1 TeV: $\frac{\delta \lambda}{\lambda} = 0.85 \frac{\delta \sigma}{\sigma}$ (dilution due to presence

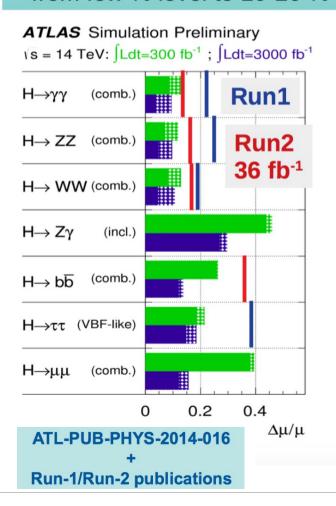
of diagrams without trilinear coupling)


Figure extracted from: J. Tian, LC-REP-2013-003.

Di-Higgs at HE-LHC

- Gain compared to HL-LHC
 - Signal cross-section : x4
 - Same factor or lower for background
 - Integrated luminosity : x 5
 - → Possibility to observe rare final states
 - → Reduction of stat. error by factor ~4

- Recent theory study on HE-LHC prospect (arXiv:1802.04319)
 - → ~30 % precision in λ just from HH → bb $\gamma\gamma$

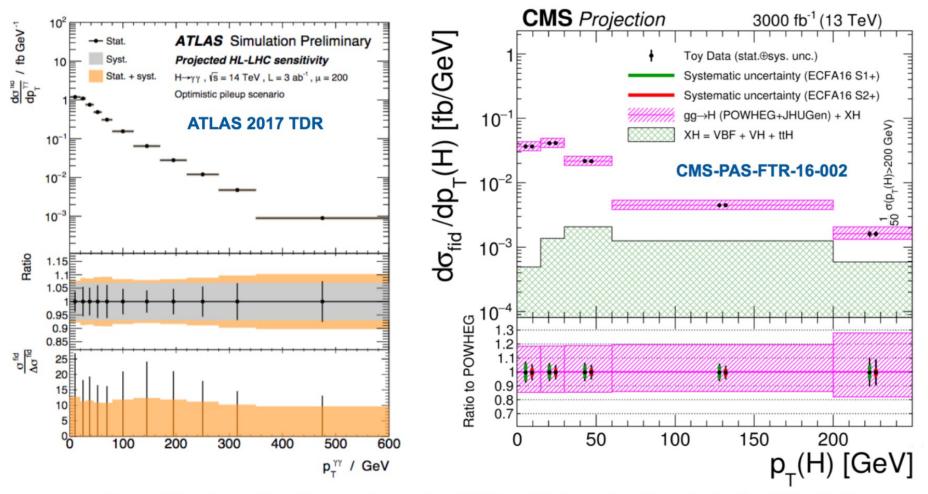


Higgs cross sections and couplings

Current public results based Run-1 extrapolation + few early Run-2 studies + specific studies based on full simulation

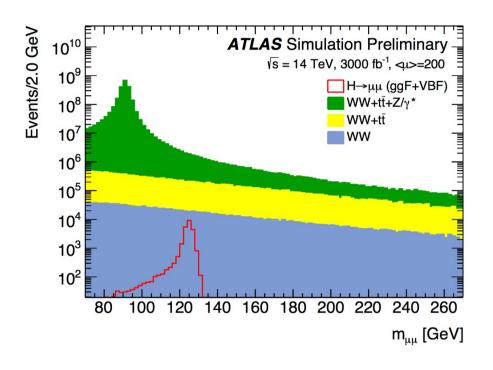
Signal strength precision $\mu=\sigma/\sigma_{SM}$: from few % level to 10-20 %

SM coupling precision κ : few % level



	U							CMS: a	rXiv:130	7.7135v2	
$L (fb^{-1})$	κ_{γ}	κ_W	κ_{Z}	κ_g	κ_b	κ_t	$\kappa_{ au}$	$\kappa_{Z\gamma}$	$\kappa_{\mu\mu}$	BR_{SM}	
300	[5, 7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[23, 23]	[14, 18]	(%)
3000	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4, 7]	[7, 10]	[2, 5]	[10, 12]	[8, 8]	[7, 11]	(,,,

- * YR18: Rerun extrapolation from Run-2 results
 - μ , κ , κ ratios (not syst limited)
 - Expect significant gain
- Previous extrapolations dominated by systematics
 - TH/ Exp syst. scenarios to be revisited
 - Example : ggF NNLO → N3LO
 (G. Salam talk in ECFA 16)
 - Unc. QCD scale : (+7.4,-7.9) → 3.9 %
 - _ Unc. PDF + α_s : (+7.1,-6.0) → 3.2 %


Differential cross section

* Benefit from large dataset and go beyond inclusive measurement

- * Sensitive to $\kappa_{\rm b}/\kappa_{\rm c}$ (low p_T) and $\kappa_{\rm r}/{\rm BSM}$ (high p_T) with statistical limitation
- * YR 18: Combination between experiments and interpretation

Example of a rare decay: H → μμ

ATL-PHYS-PUB-2018-006

Study Higgs coupling to second-generation fermions

Current limits: ~3 times SM cross section

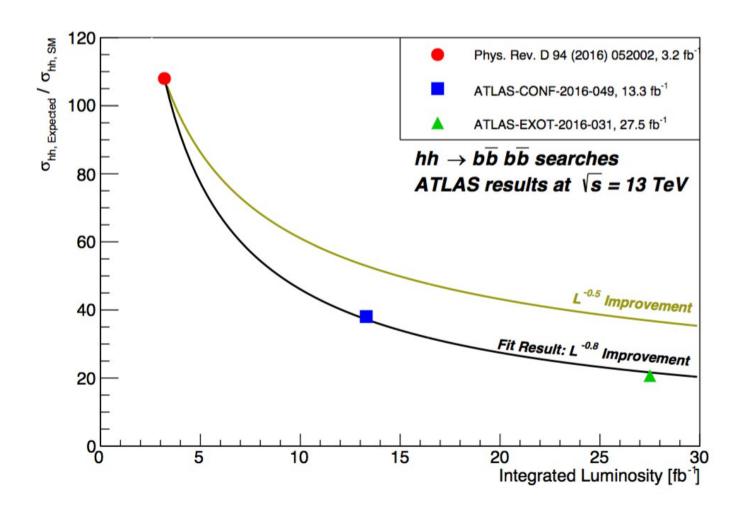
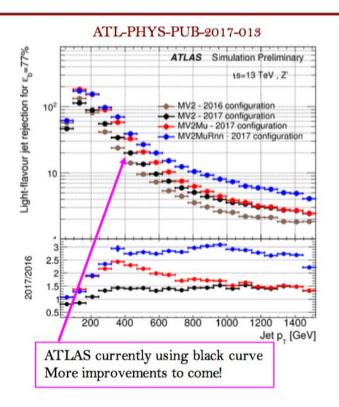
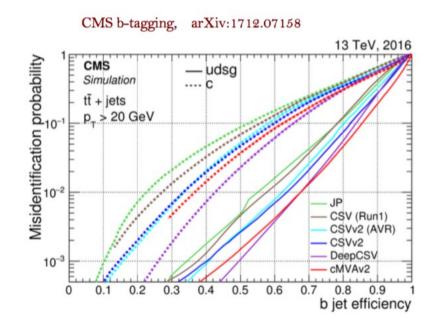
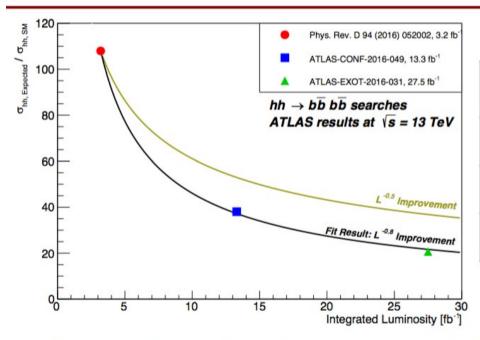

Based on projected HL-LHC detector performance

Table 5: Expected signal and background yields and signal significance in a $\pm 1.5\sigma_G$ invariant-mass window around $m_{\mu\mu}=125$ GeV for each category, where σ_G is the resolution of the core of the invariant mass distribution of signal events. The last rows shows the total signal and background yields, the average invariant mass resolution, and the sum in quadrature of the significance of each category. The projections correspond to an integrated luminosity $\int \mathcal{L}dt = 3000 \text{ fb}^{-1}$ for a center-of-mass energy \sqrt{s} =14 TeV for the reference detector scenario.


Category	S	VBF	В	FWHM	σ_G	$S/\sqrt{S+B}$
				[GeV]	[GeV]	
VBF-like	386	197	19430	4.37	1.88	2.75
low $p_{\rm T}$, central	921	11	350500	3.21	1.37	1.55
med $p_{\rm T}$, central	2210	84	300500	3.08	1.32	4.01
hi $p_{\rm T}$, central	1810	242	211800	3.50	1.56	3.91
low $p_{\rm T}$, non central	2460	28	1740500	4.11	1.79	1.86
med $p_{\rm T}$, non central	5860	230	1483600	4.24	1.80	4.80
hi $p_{\rm T}$, non central	4380	588	829000	4.70	1.92	4.80
Total	18020	1380	4935500	3.93	1.69	9.53


Table 6: The table compares the overall significance and signal strength uncertainty achievable with 3000 fb^{-1} in the three different detector scenarios defined in the ATLAS Scoping Document, based on the event categories defined in the text.

Scoping Scenario	$\langle \mu \rangle$	Overall significance	$\Delta \mu$	$\Delta \mu$
			w/ syst. errors	w/o syst. errors
reference	200	9.5	±0.13	±0.12
middle	200	9.4	±0.14	± 0.12
low	200	9.2	±0.14	±0.13


What is driving this improvements?

Improvements include:

- Improved jet and b-tagging performance and calibration
- Better background discrimination from selection optimization
- Better background modeling
- Improved signal acceptance

$hh \rightarrow 4b$ extrapolation on upper limit on $\frac{\sigma}{\sigma_{SM}}$	Run II (120 fb ⁻¹)	Run II+III (450 fb ⁻¹)	HL-LHC 3000 fb ⁻¹
HL-LHC Prospects Studies (using current systematics)	-		~3.7
$L^{-0.5}$ improvement on 27.5 fb ⁻¹ result	~10	~5.2	~2
$L^{-0.8}$ improvement on 27.5 fb ⁻¹ result	~6.5	~2.2	<1

Caution: these are my own extrapolations with many assumptions

- Some thoughts (my own opinions)
 - Prospect studies don't account for analysis improvements
 - Conservative?
 - Is continued improvement like $L^{-0.8}$ over optimistic?
 - Hard to indefinitely improve analysis... will we run into "systematics wall"?
 - Currently there are 3 channels with similar sensitivity
 - Run III and HL-LHC will be exciting!

- Can we discover di-Higgs at the HL-LHC?
 - If we can continue to improve analyses at the current rate, better ask:

When will we discover di-Higgs at the HL-LHC?