### What is Dark Matter?

Hitoshi Murayama (DESY, Berkeley, Kavli IPMU) May 22, 2018, DESY Colloquium







BERKELEY CENTER FOR THEORETICAL PHYSICS

#### 2012.7.4 discovery of Higgs boson



Run: 204769 Event: 71902630 Date: 2012-06-10 Tume: 13:24:31 CEST

http://atlas.ch

theory: 1964 design: 1984 construction: 1998

#### Higgsdependence Day July 4, 2012





## particle with a VEV

This observed particle has a VEV!

#### **Spin/Parity Hypothesis Tests**

Spin/parity hypothesis tests:  $H \rightarrow ZZ \rightarrow 4l$  channel

Kinematic discriminant built to describe the kinematics of production and decay of different J<sup>P</sup> state of a "Higgs"



have seen  $hZ_{\mu}Z^{\mu}$   $h_{\mu\nu}Z^{\mu\rho}X_{\mu}$ but a gauge boson  $\phi^{\dagger}\phi Z_{\mu}Z^{\mu}$ only way  $h\langle h\rangle Z_{\mu}Z^{\mu}$ 

#### we have discovered a particle that has a value in vacuum





 $\langle H \rangle$ =0 from gauge invariance (Elitzur)  $\langle H^{\dagger}H \rangle$  is not an order parameter for  $m_h$ =125GeV, it is crossover No phase transition in the Minimal Standard Model





 $\langle H \rangle$ =0 from gauge invariance (Elitzur)  $\langle H^{\dagger}H \rangle$  is not an order parameter for  $m_h$ =125GeV, it is crossover No phase transition in the Minimal Standard Model





### superconductors





## Minimal





- It looks very much like the Standard Model Higgs boson
- We've known the energy scale to probe since 1933
- now a UV complete theory of strong, weak, EM forces possibly valid up to even M<sub>Pl</sub>
- cosmology also looks minimal single-field inflation (Planck)



Where do we go next?





# Five evidences for physics beyond SM

- Since 1998, it became clear that there are at least five missing pieces in the SM
  - non-baryonic dark matter
  - neutrino mass
  - dark energy



- apparently acausal density fluctuations
- baryon asymmetry

We don't really know their energy scales...



### cluster of galaxies

Abell 2218 2.1B lyrs



galaxy

distorted light-rays





#### assumption

- a random density fluctuations  $\sim O(10^{-5})$ more-or-less scale invariant  $P(k) \propto k^{ns-1}$
- starts acoustic oscillation, amplified by gravitational attraction
- "knows" about everything between 0 < z < 1300 $\delta T/T = a_{lm} Y_{l}^{m}$  $(2l+1)c_{lm} = \sum_{m} a_{lm}^{*}a_{lm}$







#### dark matter



10



# $\Omega_m$ changes overall power





Conducting a major survey for 3004 nights! First data release Feb 2017

#### 2D & 3D Dark Matter Map

- Galaxy shape catalog now fixed (Mandelbaum, Miyatake + 17)
- Galaxy shapes + Photoz of gals  $\rightarrow$  3D mass & galaxy maps
- Strong correlations between DM and galaxy distributions



RA (J2000)







Miracle<sup>2</sup>





# What have we learned about Higgs?





**gg→ZZ, Z**γ\*

m<sub>41</sub> (GeV)

Z+X

#### Beautiful data

#### ATLAS-CONF-2016-067







### I hated it!

- Higgs boson is the only spin 0 particle in the standard model
  - we have never seen one before
  - one of its kind, no context
  - but does the most important job
- looks very artificial
- we still don't know dynamics behind the Higgs condensate
- Higgsless theories: now dead



# heoretical Foundation

- for Scalar Bosons?
  - Higgs just one of many scalar bosons
  - SUSY loops make  $m_h^2$  negative
  - superpartners
- composite
  - spins cancel among constituents
  - condensate by a strong attractive force, holography
  - top partner, pNGBs, vector-like quarks

#### Extra dimension

- Higgs spinning in extra dimensions
- new forces from particles running in extra D
- KK particles
  - a different "naturalness" argument

#### no new physics

#### ATLAS SUSY Searches\* - 95% CL Lower Limits

Status: March 2017

|                                                | Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>e</i> , μ, τ, γ                                                                                                                                                                                                                                                            | Jets                                                                                                                                                      | E <sup>miss</sup> <sub>T</sub>                                     | $\int \mathcal{L} dt [ft]$                                                                | <sup>-1</sup> ] Mass limit                                                                                                                                                                                                                                                                                                 | $\sqrt{s}=7,8$                                                                                                 | <b>3 TeV</b> $\sqrt{s} = 13$ TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reference                                                                                                                                                                                                                                |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inclusive Searches                             | $ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{x}_{1}^{0} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{x}_{1}^{0} (\text{compressed}) \\ \bar{g}\bar{s}, \bar{g} \rightarrow q \bar{q} \tilde{x}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q \bar{q} \tilde{x}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q \tilde{x}_{1}^{1} \rightarrow q q W^{\pm} \tilde{x}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q Q (\ell^{1}/\nu) \tilde{x}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q W Z \tilde{x}_{1}^{0} \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GGM (bino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{Gravitino LSP} \end{array} $                                                                                                                                                                                      | $\begin{array}{c} 0-3 \ e, \mu/1-2 \ \tau & ; \\ 0 \\ mono-jet \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \ (SS) \\ 1-2 \ \tau + 0-1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$                                                                               | 2-10 jets/3 <i>b</i><br>2-6 jets<br>1-3 jets<br>2-6 jets<br>2-6 jets<br>4 jets<br>0-3 jets<br>0-2 jets<br>-<br>1 <i>b</i><br>2 jets<br>2 jets<br>mono-jet | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | 20.3<br>36.1<br>3.2<br>36.1<br>13.2<br>13.2<br>3.2<br>3.2<br>20.3<br>13.3<br>20.3<br>20.3 | <b>q</b> , <b>ž q q q q q q q q q q q g g g g g g g g g g g g g g g g g g g g g g g g g</b>                                                                                                                                                                                                                                | 1.85 TeV<br>1.57 TeV<br>2.02 TeV<br>2.01 TeV<br>1.7 TeV<br>1.6 TeV<br>2.0 TeV<br>1.65 TeV<br>37 TeV<br>1.8 TeV | $\begin{split} &m(\tilde{q}) = m(\tilde{g}) \\ &m(\tilde{\chi}_{1}^{0}) < 200 \; GeV, \; m(1^{st} \; gen. \; \tilde{\mathfrak{q}}) = m(2^{nd} \; gen. \; \tilde{\mathfrak{q}}) \\ &m(\tilde{q}) - m(\tilde{\chi}_{1}^{0}) < 5 \; GeV \\ &m(\tilde{\chi}_{1}^{0}) < 200 \; GeV \\ &m(\tilde{\chi}_{1}^{0}) < 200 \; GeV \\ &m(\tilde{\chi}_{1}^{0}) < 400 \; GeV \\ &m(\tilde{\chi}_{1}^{0}) < 400 \; GeV \\ &m(\tilde{\chi}_{1}^{0}) < 500 \; GeV \\ &cr(NLSP) < 0.1 \; mm \\ &m(\tilde{\chi}_{1}^{0}) < 950 \; GeV, \; cr(NLSP) < 0.1 \; mm, \; \mu < 0 \\ &m(\tilde{\chi}_{1}^{0}) > 680 \; GeV, \; cr(NLSP) < 0.1 \; mm, \; \mu > 0 \\ &m(NLSP) > 430 \; GeV \\ &m(\tilde{G}) > 1.8 \times 10^{-4} \; eV, \; m(\tilde{g}) = m(\tilde{q}) = 1.5 \; TeV \end{split}$      | 1507.05525<br>ATLAS-CONF-2017-022<br>1604.07773<br>ATLAS-CONF-2017-022<br>ATLAS-CONF-2017-022<br>ATLAS-CONF-2016-037<br>ATLAS-CONF-2016-037<br>1607.05979<br>1606.09150<br>1507.05493<br>ATLAS-CONF-2016-066<br>1503.03290<br>1502.01518 |
| 3 <sup>rd</sup> gen.<br>§ med.                 | $\begin{array}{l} \tilde{g}\tilde{g},  \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g},  \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g},  \tilde{g} \rightarrow b \tilde{\lambda}_{1}^{1} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0<br>0-1 <i>e</i> , <i>µ</i><br>0-1 <i>e</i> , <i>µ</i>                                                                                                                                                                                                                       | 3 b<br>3 b<br>3 b                                                                                                                                         | Yes<br>Yes<br>Yes                                                  | 36.1<br>36.1<br>20.1                                                                      | Î Î<br>Î Î<br>Î                                                                                                                                                                                                                                                                                                            | 1.92 TeV<br>1.97 TeV<br>.37 TeV                                                                                | $m(\tilde{\chi}_{1}^{0}) < 600 \text{ GeV}$<br>$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}$<br>$m(\tilde{\chi}_{1}^{0}) < 300 \text{ GeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATLAS-CONF-2017-021<br>ATLAS-CONF-2017-021<br>1407.0600                                                                                                                                                                                  |
| 3 <sup>rd</sup> gen. squarks direct production | $ \begin{split} \bar{b}_1 \bar{b}_1, \bar{b}_1 \to b \bar{x}_1^0 \\ \bar{b}_1 \bar{b}_1, \bar{b}_1 \to b \bar{x}_1^{\dagger} \\ \bar{t}_1 \bar{t}_1, \bar{t}_1 \to b \bar{x}_1^{\dagger} \\ \bar{t}_1 \bar{t}_1, \bar{t}_1 \to b \bar{x}_1^{\dagger} \\ \bar{t}_1 \bar{t}_1, \bar{t}_1 \to b \bar{x}_1^0 \\ \bar{t}_1 \bar{t}_1, \bar{t}_1 \to \bar{x}_1^0 \\ \bar{t}_1 \bar{t}_1 (natural GMSB) \\ \bar{t}_2 \bar{t}_2, \bar{t}_2 \to \bar{t}_1 + Z \\ \bar{t}_2 \bar{t}_2, \bar{t}_2 \to \bar{t}_1 + h \end{split} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>2 $e, \mu$ (SS)<br>0-2 $e, \mu$<br>0-2 $e, \mu$ (C)<br>0<br>2 $e, \mu$ (Z)<br>3 $e, \mu$ (Z)<br>1-2 $e, \mu$                                                                                                                                                             | 2 b<br>1 b<br>1-2 b<br>0-2 jets/1-2 b<br>mono-jet<br>1 b<br>1 b<br>4 b                                                                                    | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes               | 3.2<br>13.2<br>.7/13.3<br>20.3<br>3.2<br>20.3<br>36.1<br>36.1                             | Ď1         840 GeV           Ď1         325-685 GeV           Ĩ1         117-170 GeV         200-720 GeV           Ĩ1         90-198 GeV         205-950 GeV           Ĩ1         90-323 GeV         150-600 GeV           Ĩ2         290-790 GeV         290-790 GeV           Ĩ2         320-880 GeV         320-880 GeV |                                                                                                                | $\begin{array}{l} m(\tilde{x}_{1}^{0}) < 100  \mathrm{GeV} \\ m(\tilde{x}_{1}^{0}) < 150  \mathrm{GeV},  m(\tilde{x}_{1}^{+}) = m(\tilde{x}_{1}^{0}) + 100  \mathrm{GeV} \\ m(\tilde{x}_{1}^{+}) = 2m(\tilde{x}_{1}^{0}),  m(\tilde{x}_{1}^{0}) = 55  \mathrm{GeV} \\ m(\tilde{x}_{1}^{0}) = 1  \mathrm{GeV} \\ m(\tilde{x}_{1}^{0}) = 1  \mathrm{GeV} \\ m(\tilde{x}_{1}^{0}) > 150  \mathrm{GeV} \\ m(\tilde{x}_{1}^{0}) = 0  \mathrm{GeV} \\ m(\tilde{x}_{1}^{0}) = 0  \mathrm{GeV} \\ m(\tilde{x}_{1}^{0}) = 0  \mathrm{GeV} \end{array}$                                                                                                                                                                                                                              | 1606.08772<br>ATLAS-CONF-2016-037<br>1209.2102, ATLAS-CONF-2016-077<br>1506.08616, ATLAS-CONF-2017-020<br>1604.07773<br>1403.5222<br>ATLAS-CONF-2017-019<br>ATLAS-CONF-2017-019                                                          |
| EW<br>direct                                   | $ \begin{array}{c} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{\dagger} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{-} \tilde{\chi}_{1}^{-} \rightarrow \tilde{\tau} \nu (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell (\tilde{\nu} \nu), \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b \tilde{b} / W W / \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ \text{GGM (wino NLSP) weak proc} \\ \text{GGM (bino NLSP) weak proc} \end{array} $ | $ \begin{array}{c} 2 e, \mu \\ 2 e, \mu \\ 2 \tau \\ 3 e, \mu \\ 2 \cdot 3 e, \mu \\ 2 \cdot 3 e, \mu \\ 4 \cdot 4 \cdot \mu \\ 4 \cdot 1 \cdot e, \mu + \gamma \\ 4 \cdot 2 \gamma \end{array} $                                                                             | 0<br>0<br>0-2 jets<br>0-2 b<br>0<br>-                                                                                                                     | Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes        | 20.3<br>13.3<br>14.8<br>13.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3<br>20.3      | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                    | $m(\tilde{k}_{1}^{0})=$<br>$m(\tilde{k}_{1}^{\pm})=$<br>$m(\tilde{k}_{2}^{0})=$                                | $\begin{split} & m(\tilde{x}_{1}^{0}) {=} 0  GeV \\ & GeV, m(\tilde{\ell}, \tilde{v}) {=} 0.5(m(\tilde{\chi}_{1}^{+}) {+} m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{0}) {=} 0  GeV, m(\bar{\tau}, \tilde{v}) {=} 0.5(m(\tilde{\chi}_{1}^{+}) {+} m(\tilde{\chi}_{1}^{0})) \\ & n[\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) {=} 0, m(\tilde{\ell}, \tilde{v}) {=} 0.5(m(\tilde{\chi}_{1}^{+}) {+} m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{+}) {=} m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) {=} 0, \tilde{\ell} \text{ decoupled} \\ & m(\tilde{\chi}_{1}^{+}) {=} m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) {=} 0, \tilde{\ell}(m(\tilde{\chi}_{2}^{0}) {+} m(\tilde{\chi}_{1}^{0})) \\ & cr {<} 1  mm \\ & cr {<} 1  mm \end{split}$ | 1403.5294<br>ATLAS-CONF-2016-096<br>ATLAS-CONF-2016-093<br>ATLAS-CONF-2016-093<br>1403.5294, 1402.7029<br>1501.07110<br>1405.5086<br>1507.05493<br>1507.05493                                                                            |
| Long-lived<br>particles                        | Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived<br>Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived<br>Stable, stopped $\tilde{g}$ R-hadron<br>Stable $\tilde{g}$ R-hadron<br>Metastable $\tilde{g}$ R-hadron<br>GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) +$<br>GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$ , long-lived $\tilde{\chi}_1^0$<br>$\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\mu v/\mu\mu v$<br>GGM $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow Z\tilde{G}$                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{split} \tilde{\chi}_1^{\pm} & \text{Disapp. trk} \\ \tilde{\chi}_1^{\pm} & \text{dE/dx trk} \\ & 0 \\ & \text{trk} \\ & \text{dE/dx trk} \\ \text{r(}e, \mu) & 1\text{-}2\mu \\ & 2\gamma \\ & \text{displ. }ee/e\mu/\mu, \\ & \text{displ. vtx + jet} \end{split} $ | 1 jet<br>-<br>1-5 jets<br>-<br>-<br>-<br>μ -<br>is -                                                                                                      | Yes<br>Yes<br>-<br>-<br>Yes<br>-                                   | 36.1<br>18.4<br>27.9<br>3.2<br>3.2<br>19.1<br>20.3<br>20.3<br>20.3                        | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                     | 1.58 TeV<br>1.57 TeV                                                                                           | $\begin{split} &m(\tilde{\chi}_1^{\pm})\text{-}m(\tilde{\chi}_1^{0})\sim 160 \; MeV, \; \tau(\tilde{\chi}_1^{\pm})=0.2 \; ns \\ &m(\tilde{\chi}_1^{\pm})\text{-}m(\tilde{\chi}_1^{0})\sim 160 \; MeV, \; \tau(\tilde{\chi}_1^{\pm})<15 \; ns \\ &m(\tilde{\chi}_1^{0})=100 \; GeV, \; 10 \; \mu s < \tau(\tilde{g}) < 1000 \; s \\ &m(\tilde{\chi}_1^{0})=100 \; GeV, \; \tau>10 \; ns \\ &10 < tan\beta < 50 \\ &1 < \tau(\tilde{\chi}_1^{0}) < 3 \; ns, \; SPS8 \; model \\ &7 < c\tau(\tilde{\chi}_1^{0}) < 740 \; mm, \; m(\tilde{g})=1.3 \; TeV \\ &6 < c\tau(\tilde{\chi}_1^{0}) < 480 \; mm, \; m(\tilde{g})=1.1 \; TeV \end{split}$                                                                                                                                | ATLAS-CONF-2017-017<br>1506.05332<br>1310.6584<br>1606.05129<br>1604.04520<br>1411.6795<br>1409.5542<br>1504.05162<br>1504.05162                                                                                                         |
| RPV                                            | LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu$<br>Bilinear RPV CMSSM<br>$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow eev, e\mu\nu$<br>$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow eev, e\mu\nu$<br>$\tilde{g}_{s}, \tilde{g} \rightarrow qq$<br>$\tilde{g}_{s}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$<br>$\tilde{g}_{s}, \tilde{g} \rightarrow i\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$<br>$\tilde{g}_{s}, \tilde{g} \rightarrow i\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$<br>$\tilde{g}_{s}, \tilde{g} \rightarrow i\tilde{\chi}_{1}^{1}, \tilde{\chi}_{1} \rightarrow bs$<br>$\tilde{i}_{1}\tilde{i}_{1}, \tilde{i}_{1} \rightarrow b\ell$                                                       | $\tau = e\mu, e\tau, \mu\tau \\ 2 e, \mu (SS) \\ \mu\mu\nu = 4 e, \mu \\ \nu_{\tau} = 3 e, \mu + \tau \\ 0 = 4 - 0 \\ 1 e, \mu = 8 \\ 1 e, \mu = 8 \\ 0 \\ 2 e, \mu$                                                                                                          |                                                                                                                                                           | Yes<br>Yes<br>Yes<br>ts -<br>ts -<br>b -<br>b -                    | 3.2<br>20.3<br>13.3<br>20.3<br>14.8<br>14.8<br>36.1<br>36.1<br>15.4<br>20.3               | \$\vec{v}_r\$           \$\vec{q}\$, \$\vec{s}\$           \$\vec{x}_1^3\$           \$\vec{x}_1^3\$           \$\vec{x}_1^3\$           \$\vec{k}_1^3\$           \$\vec{k}_1^3\$           \$\vec{k}_1^3\$           \$\vec{k}_1^3\$           \$\vec{k}_1^1\$           \$\vec{k}_1^1\$           \$\vec{k}_1^3\$       | 1.9 TeV<br>1.45 TeV<br>9V<br>1.55 TeV<br>2.1 TeV<br>1.65 TeV                                                   | $\begin{array}{l} \lambda_{311}'=0.11,\lambda_{132/133/233}=0.07\\ m(\hat{q})=m(\hat{g}),c\tau_{LSP}<1mm\\ m(\tilde{k}_{1}^{0})>400GeV,\lambda_{12k}\neq0(k=1,2)\\ m(\tilde{k}_{1}^{0})>0.2\times m(\tilde{k}_{1}^{+}),\lambda_{133}\neq0\\ BR(t)=BR(b)=BR(c)=0\%\\ m(\tilde{k}_{1}^{0})=800GeV\\ m(\tilde{k}_{1}^{0})=800GeV\\ m(\tilde{k}_{1}^{0})=1TeV,\lambda_{112}\neq0\\ m(\tilde{r}_{1})=1TeV,\lambda_{323}\neq0\\ BR(\tilde{r}_{1}\rightarrow be/\mu)>20\% \end{array}$                                                                                                                                                                                                                                                                                            | 1607.08079<br>1404.2500<br>ATLAS-CONF-2016-075<br>1405.5086<br>ATLAS-CONF-2016-057<br>ATLAS-CONF-2016-057<br>ATLAS-CONF-2017-013<br>ATLAS-CONF-2017-013<br>ATLAS-CONF-2016-022, ATLAS-CONF-2016-084<br>ATLAS-CONF-2015-015               |
| Other                                          | Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                             | 2 c                                                                                                                                                       | Yes                                                                | 20.3                                                                                      | č 510 GeV                                                                                                                                                                                                                                                                                                                  |                                                                                                                | m( $	ilde{x}_1^0)$ <200 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1501.01325                                                                                                                                                                                                                               |
| *Only                                          | a selection of the availab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | le mass limits                                                                                                                                                                                                                                                                | on new si                                                                                                                                                 | tates o                                                            | r 1                                                                                       | 0 <sup>-1</sup>                                                                                                                                                                                                                                                                                                            | P                                                                                                              | Mass scale [TeV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                          |

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

#### "The 2 TeV line has been reached for some scenarios"

Mass scale [TeV]

GITY .

ATLAS Preliminary  $\sqrt{s} = 7, 8, 13 \text{ TeV}$ 





# Why SUSY?

- rationale for scalars
- helps stabilize inflaton potential
- gauge coupling unification
- dark matter candidate
- hierarchy (naturalness) problem
- fun for colliders
- baryogenesis?
- cosmological constant?
- mathematically interesting
- string theory needs it





# Why SUSY?

- rationale for scalars
- helps stabilize inflaton potential
- gauge coupling unification
- dark matter candidate
- hierarchy (naturalness) problem
- fun for colliders
- baryogenesis?
- cosmological constant? 10<sup>-120</sup> to 10<sup>-60</sup>
- mathematically interesting
- string theory needs it





# Higgs mass is natural by doubling #particles?

- Higgs also repels itself
- Double #particles again
   ⇒ superpartners
- only log sensitivity to UV
- Standard Model made consistent up to higher energies



 $\Delta m_H^2 \sim \frac{\alpha}{4\pi} m_{SUSY}^2 \log(m_H r_H)$ 

still take it seriously



#### 314 159 265 358 979 323 846 264 338 327 950 288 -314 159 265 358 979 323 846 264 338 327 948 726 = 15 625

 $m_{H^2} = (125)^2 = 15625 \text{ GeV}^2$ 





15 625

 $m_{H^2} = (125)^2 = 15625 \text{ GeV}^2$ 314 159 265 358 979 323 846 264 338 327 950 288 -314 159 265 358 979 323 846 264 338 327 948 726









## Naturalness works!

- Why is the Universe big?
- Inflation
  - horizon problem
  - flatness problem
  - large entropy















| WORLD       | U.S. | N.Y. / REGION | BUSINESS | TECHNOLOGY | SCIENCE | HEALTH |  |  |  |  |  |  |
|-------------|------|---------------|----------|------------|---------|--------|--|--|--|--|--|--|
| ENVIRONMENT |      |               |          |            |         |        |  |  |  |  |  |  |

#### 315 Physicists Report Failure In Search for Supersymmetry

By MALCOLM W. BROWNE Published: January 5, 1993

Three hundred and fifteen physicists worked on the experiment.

Their apparatus included the Tevatron, the world's most powerful particle accelerator, as well as a \$65 million detector weighing as

R-parity violation compressed spectrum disappearing tracks clever analysis

clever analysis precision Higgs, flavor HL-LHC, HE-LHC ILC, CEPC, FCC...

A 3 U 2:40 0 B 12:45 19 12:45 B13 12:50 A 2 6 A 37 13:00 A40 13:00 A 2 8 13:10 A 3 4 13:15 A22 13:20 B09 13:30 A 2 7

JANEIRO

DELAYED DELAYED DELAYED DELAYED DELAYED DELAYED DELAYED DELAYED



#### Better Late Than Never

Even m<sub>SUSY</sub>~10 TeV ameliorates fine-tuning from 10<sup>-36</sup> to 10<sup>-4</sup>





#### been there before

- CMB anisotropy
- universe younger than oldest stars?
- cosmologists got antsy
- it turned out a little "finetuned"
  - low quadrupole
  - dark energy

"Big Bang not yet dead but in decline" Nature 377, 14 (1995)

"Bang! A Big Theory May Be Shot" A new study of the stars could rewrite the history of the universe Times, Jan 14 (1991)




### been there before

- CMB anisotropy
- universe younger than oldest stars?
- cosmologists got antsy
- it turned out a little "finetuned"
  - low quadrupole
  - dark energy







### been there before

- CMB anisotropy
- universe younger than oldest stars?
- cosmologists got antsy
- it turned out a little "finetuned"
  - low quadrupole
  - dark energy





### bee

- CMB anisotropy
- universe younger oldest stars?
- cosmologists got
- it turned out a lit tuned"
  - low quadrupol
  - dark energy





#### experiments



#### healthy field!



By A Pomarol





### Nima's anguish



 $m_{H}=125$  GeV seems almost maliciously designed to prolong the agony of BSM theorists....



### dream case for experiments



stupid not to do this!



#### What is Higgs really?

#### Only one? (SM) has siblings? (2DHM) not elementary?

#### ILC

Lumi 1920 fb-1, sqrt(s) = 250 GeV Lumi 2670 fb-1, sqrt(s) = 500 GeV





# What do we know about dark matter?

# Limits on PBH

Niikura, Takada, et al one night on Subaru observation on Andromeda reading out every 2 min















# "Uncertainty Principle"

Mass Limits

- Clumps to form structure
- imagine  $V = G_N \frac{Mm}{r}$  "Bohr radius":  $r_B = \frac{\hbar^2}{G_N Mm^2}$ 
  - too small  $m \Rightarrow$  won't "fit" in a galaxy!
- m >10<sup>-22</sup> eV "uncertainty principle" bound (modified from Hu, Barkana, Gruzinov, astro-ph/0003365)
- $m \ge 10^{-21} \text{ eV from Lyman-} \alpha$  (Takeshi Kobayashi)













## Light Gravitino



Anson Hook, Robert McGehee Jr, HM





#### Seesaw-charge assignment







#### Seesaw-charge assignment





#### cosmology

#### Seesaw-cha ge assignment



# New direction(s)









- Not only the mass scale is similar to QCD
- dynamics itself can be **QCD!** Miracle<sup>3</sup>

• 
$$DM = pions$$

e.g.  $SU(3)_{f}$ 





### self interaction



- σ/m ~ cm<sup>2</sup>/g
  ~10<sup>-24</sup>cm<sup>2</sup> / 300MeV
- flattens the cusps in NFW profile
- suppresses substructure
- actually desirable for dwarf galaxies?

SIDM Spergel & Steinhardt (2000) now complete theory





### self interaction



- σ/m ~ cm<sup>2</sup>/g
  ~10<sup>-24</sup>cm<sup>2</sup> / 300MeV
- flattens the cusps in NFW profile
- suppresses substructur
- actually desirable for dwarf galaxies?

SIDM Spergel & Steinhardt (2000) *now complete theory* 



Abell 3827







### communication

- 3 to 2 annihilation
- excess entropy must be transferred to e<sup>±</sup>, γ
- need communication at some level
- leads to experimental signal



### if totally decoupled



 3→2 annihilations without heat exchange is excluded by structure formation, [de Laix, Scherrer and Schaefer, Astrophys. J. 452, 495 (1995)]





### vector portal



$$\frac{\epsilon_{\gamma}}{2c_W}B_{\mu\nu}F_D^{\mu\nu}$$



# Super KEK B & Belle II











# Twin Higgs

- some new particles needed to cancel the top quark loop ⇒ 3 of them
- if not charged under "our QCD", no LHC signal
- Z<sub>2</sub> copy of SM
  - SM + SM'
- accidentally, approx. SU(4) symmetry in Higgs potential
- Higgs = PNGB SU(4)/SU(3)



Z. Chacko, H.-S. Goh, R. Harnik

 $V = -\mu^2 |H_1|^2 - \mu^2 |H_2|^2$  $+ \lambda (|H_1|^2)^2 + \lambda (|H_2|^2)^2 + 2\kappa (|H_1|^2 + |H_2|^2)^2$  $= -m^2 \mathcal{H}^{\dagger} \mathcal{H} + \lambda (\mathcal{H}^{\dagger} \mathcal{H})^2$ 



FIG. 1. A sample spectrum of twin particles. Here we use f/v = 1 to demonstrate the  $\mathbb{Z}_2$  invariance between the visible and twin sectors for t, h, Z, W; lighter particles are subject to  $\mathbb{Z}_2$ -breaking effects without spoiling the solution to the hierarchy problem. In practice, twin sector masses are of course raised by a factor of  $f/v \gtrsim 3$ .

| meson $M$               | particle content                                                        | $m_M^2 \propto$   | $m_M$                         |
|-------------------------|-------------------------------------------------------------------------|-------------------|-------------------------------|
| $	heta^0({f 3},{f 1})$  | $u'\bar{c}', c'\bar{u}', \frac{1}{\sqrt{2}}(u'\bar{u}' - c'\bar{c}')$   | $2m_{u'}$         | $m_{\pi}(1+\Delta)$           |
| $D^+(2,2)$              | $u'ar{d'},c'ar{d'},u'ar{s'},c'ar{s'}$                                   | $m_{u'} + m_{d'}$ | $m_{\pi}(1+\frac{\Delta}{2})$ |
| $D^{-}(2,2)$            | $d'ar{u}',s'ar{u}',d'ar{c}',s'ar{c}'$                                   | $m_{u'} + m_{d'}$ | $m_{\pi}(1+\frac{\Delta}{2})$ |
| $\eta^{0}({f 1},{f 1})$ | $\left \frac{1}{2}(d'\bar{d}'+s'\bar{s}'-u'\bar{u}'-c'\bar{c}')\right $ | $m_{u'} + m_{d'}$ | $m_{\pi}(1+\frac{\Delta}{2})$ |
| $\pi^0(1,3)$            | $d'\bar{s}', s'\bar{d}', \frac{1}{\sqrt{2}}(d'\bar{d}' - s'\bar{s}')$   | $2m_{d'}$         | $m_{\pi}$                     |

TABLE I. Decomposition of the meson  $SU(4)_f$  15-plet under  $SU(2)_U \times SU(2)_D \times U(1)_{\rm EM}$ . The third column shows the linear combination of quark masses that determines the meson masses-squared. From top to bottom, the meson masses go from heaviest to lightest, assuming  $m_{d'} = m_{s'} < m_{u'} = m_{c'} = m_{d',s'}(1 + \Delta)$ .



FIG. 2. A visual representation of the meson spectrum.



Figure 1: Sample Feynman diagram for  $\eta \to 2(e^+e^-)$ .

### lifetimes

- $\tau_{\eta} \sim |0^2 |0^{||}$  sec
  - does not modify 3→2 freezeout
  - For τ<sub>η</sub><10<sup>6</sup> sec, consistent with CMB, BBN limits
- $\tau_{\theta}$  > age of the Universe



Figure 2: Sample Feynman diagram for  $\eta \to \mu^+ \mu^-$ .



Figure 3: Sample Feynman diagram for  $\theta \to \pi + 2(e^+e^-)$ .
## $\pi\pi \rightarrow \eta\eta \rightarrow SM$

- If ππ→ηη is still in chemical equilibrium when η starts to decay, we will lose π
- need η lifetime to be longer than the decoupling of the chemical equilibrium
- This shouldn't happen in the halo today either
- can be avoided if  $\Delta > v_{halo}^2 \sim 10^{-6}$





## Twin Higgs

- invisible Higgs decay
  - 50% if *f*/v=1
  - now *f*/*v*>3
  - ILC down to 0.3%  $\approx 10^{-3}$  fine-tuning
  - "invisible" Higgs may have many lowmass collimated e<sup>+</sup>e<sup>-</sup> pairs at LHC
- Belle II covers ~a half of the parameter space (single γ)









### Direct Detection

- Many new ideas on light dark matter detection
- *m*=MeV–GeV
- v~|0-3 c
- $E_{\rm kin} \sim 10^{-6} {\rm m}$
- $E_{kin} \sim eV-keV$
- little radioactivity BG
- much higher number density n~0.3GeV/m
- use collective excitations
- e.g.,phonon/roton in <sup>4</sup>He
- D<sup>±</sup> mesons in twin SIMP



#### **PFS** subsystems distribution



### PFS collaboration



**Jet Propulsion Laboratory** California Institute of Technology





Caltech







Max-Planck-Institut für Astrophysik















JOHNS HOPKINS UNIVERSITY





0

(-)

121

-

# PFS pointings for MW satellites HSC imaging data are available for all samples ~







### Conclusion

- null signal at LHC and WIMPs forcing theorists to examine
  - new solutions to the hierarchy problem
  - new candidates for dark matter
  - can do both in some models
- New experimental signals
  - tradition: go to as high mass as possible
  - new trend: low mass but weaker coupling
  - ILC, Belle II, SHIP
  - new methods for MeV–GeV dark matter
- Don't give up till we find something new!