Exotic Run 2 Searches from ATLAS and CMS: Midterm Report

Gabriel Facini @ DESY April 17/18, 2018

CMS

The Large Hadron Collider

LHC 27 km

CERN Prévessin

RAR OTHER IN

27 kilometer proton-proton collider at CERN

A big machine to probe small distances

G. Facini, DESY Seminar

FRN Meyrin

ATLAS

The Large Hadron Collider

27 km

CERN Prévessin

G. Facini, DESY Seminar

SPS 7 km

The ATLAS Detector

Doing science bigly!

Detector Size and Weight Diameter: 25 m Length: 46 m Overall weight: 7000 tonnes 3000 km of cables Weight of ATLAS is same as a hundred 747 jets (empty) ATLAS is half the size of Cathedral of Notre Dame de Paris

The CMS Detector

Doing science bigly!

The Standard Model

At the smallest scales probed, we study the interactions of **fundamental particles**

CMS

"Simulation"

- How do we understand what is happening in the collisions and in the detector?
- Monte Carlo Generators: programs calculate the rate processes occur and the energies of the resultant particles according to the SM
- Detector Simulation: another program simulates how these particles would interact with the detector
- Reconstruction: take the energy signatures in the detector and group them to reconstruct the particles which were created
 - same code for data and for detector simulation

The Higgs Boson

CMS

400F

300

200

100

-100

Events / (20 GeV/c²)

A detailed study of associated Standard Model Higgs production (WH and $t\bar{t}H$) at the LHC (or a possible upgraded Tevatron collider), where the Higgs boson decays to bb pairs, is reported for 80 $< m_H < 120$ GeV. Even for optimistic b-tagging performances of the detector, the signal cannot be cleanly extracted from the background. For an integrated luminosity of $10^4 \ pb^{-1}$ and $m_H = 100 \ \text{GeV}$, one can expect at best ~ 110 reconstructed $H \rightarrow b\bar{b}$ decays from WH production, above a resonant background of ~ 150 WZ events and a non-resonant background of ~ 4800 events, and ~ 100 reconstructed $b\bar{b}$ pairs (of which ~ 50 from $H \rightarrow b\bar{b}$) decay) from $t\bar{t}H$ production, above a background of ~ 4000 events. The main difficulty in extracting these two channels is in the expected low signal rate after reconstruction, the need for accurate control of all the background sources and for extremely good *b*-tagging performance. Nevertheless, for a few years of running at a luminosity of $10^{33}cm^{-2}s^{-1}$, the $H \to b\bar{b}$ channel may be the best way to probe the region 80 $< m_H < 100$ GeV.

⊥⊥⊟ 200

ieV]

The Standard Model

Very successful theory

Precise measurements in great agreement with predictions.

G. Facini, DESY Seminar

CMS

as

Where to Next?

The Standard Model is an *effective theory*

Empirical

- Does not include gravity
- Does not include Dark Matter/Energy (95% of universe)
- Why does the universe have more matter than antimatter?

Aesthetic

- stability relies the difference of big numbers to be very small (fine tuning)
- large scale differences of forces

Direct Searches

Taylor searches to a *given theory*

- Motivated by belief or disbelief?
- Powerful but limited to model of choice

Look more **generally** for a **signature**

- motivated by *minimal or general* arguments
- Correlation of channels is limited

Can also search for new physics indirectly

G. Facini, DESY Seminar

Run 2: Pure Exploration

For 2015, LHC √s *increased* from 8 TeV to 13 TeV Results in cross section increase:

CMS

larger for heavier objects! (and production mode dependence)

G. Facini, DESY Seminar

Datasets

Excellent performance by the LHC and high data taking efficiency by detectors

in the 13 TeV pp collisions period (2015, 2016).

Results shown here include data collected in 2015 & 2016 = ~36/fb ~80/fb are available for analysis - results starting this summer

HL-LHC

- ~150/fb collected by end of 2018. To cut stat error in 1/2 would take ~10 years.
- Make HL-LHC instead of simply waiting

Exotics Searches

A tremendous program consisting of:

~70 searches ~600 scientists

I cannot cover the entire program or related programs like supersymmetry in one seminar.

A.	TLAS Exotics S	earch	nes* -	95%	6 CL	Upper Exclusion Limits		ATLA	AS Preliminar
Sti	atus: July 2017						$\int \mathcal{L} dt = \langle \langle $	3.2 – 37.0) fb ⁻¹	\sqrt{s} = 8, 13 TeV
	Model	l, γ	Jets†	E	∫£ dt{fb	⁻¹) Limit	*		Reference
Extra dimensione	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD 0EH ADD BH righ $\sum p\gamma$ ADD 0H multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW \rightarrow gq/r$ 2UED/ RPP	$\begin{array}{c} 0 = , \mu \\ & 2 \gamma \\ & - \\ \geq 1 = , \mu \\ & - \\ & 2 \gamma \\ & 1 = , \mu \\ & 1 = , \mu \end{array}$	1-4j 2j $\geq 2j$ $\geq 3j$ 1J $\geq 2b, \geq 3$	Y65 Y65 j Y65	36.1 36.7 37.0 3.2 3.6 36.7 36.1 13.2	Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma	7.75 TeV 8.8 TeV 8.9 TeV 8.2 TeV 8.2 TeV 8.55 TeV 4.1 TeV	$\begin{split} u &= 2\\ u &= 3 \text{ MLZNLO}\\ u &= 0\\ u &= 0, \ M_D = 3 \text{ TeV, rot BH}\\ u &= 0, \ M_D = 3 \text{ TeV, rot BH}\\ k_f \overline{M}_H &= 0.1\\ k_f \overline{M}_H &= 1.0\\ \text{ Ther} (1, 1), \ \mathcal{B}(\mathcal{A}^{(11)} \rightarrow tr) = 1 \end{split}$	ATLAS-CONF-2017-000 CERN-EP-2017-132 1703/03217 1806.02286 1812/02286 CERN-EP-2017-132 ATLAS-CONF-2017-101 ATLAS-CONF-2016-104
Gauge bosons	$\begin{array}{l} \mathrm{SSM} \ Z' \to t \mathbb{Z} \\ \mathrm{SSM} \ Z' \to \tau \tau \\ \mathrm{Leptophable} \ Z' \to b b \\ \mathrm{Leptophable} \ Z' \to b b \\ \mathrm{SSM} \ W' \to t r \\ \mathrm{HVT} \ V' \to WV \to qappa \ \mathrm{model} \ \mathrm{B} \\ \mathrm{HVT} \ V' \to WH/ZH \ \mathrm{model} \ \mathrm{B} \\ \mathrm{LRSM} \ W_R' \to t b \\ \mathrm{LRSM} \ W_R' \to t b \end{array}$	2 4, p 2 r - 1 4, p 8 0 c, p multichann 1 4, p 0 c, p	- 25 ≥15, ≥1J 2J el 25, 0-1 j ≥15, 1J	- - - - - - - - -	36.1 36.1 3.2 36.1 36.7 36.7 36.1 20.8 20.3	Z' mass Z' mass Z' mass Z' mass Z' mass V' mass	4.5 TeV 2.4 TeV TeV 5.1 TeV 3.5 TeV 2.93 TeV TeV	$\Gamma/m = 3\%$ $g_V = 3$ $g_V = 3$	ATLA9 CONF 2017/027 ATLA9 CONF 2017/060 1603.08791 ATLAS CONF 2016/014 1706.04766 CEFN-EP-8017-147 ATLAS-CONF 2017-055 1410.4105 1403.0005
δ	Cl gapg Cl éégg Cl auté	- 2 s, p 2(35)/23 c,	2 j ⊭ ≥1 b, ≥1,	- - I Yes	37.0 36.1 20.3	Λ Λ Λ	4.9 TeV	$\begin{array}{c c} 21.8 \text{ TeV} & a_{kk}^{+} \\ \hline & 40.1 \text{ TeV} & a_{kk}^{-} \\ C_{kk} = 1 \end{array}$	1708.09217 ATLAS-CONF-2017-027 1504.04605
WO	Axial-vector mediator (Dirac DM) Vector mediator (Dirac DM) VV(gg EFT (Dirac DM)	0 σ,μ 0 σ,μ,1γ 0 σ,μ	1 — 4j ≤lj 1J,≤1j	Yes Yes Yes	36.1 38.1 3.2	****** 1.5 TeV ****** 1.2 TeV M_ 700 GeV		$\begin{array}{l} g_{\rm g}{=}0.25, \ g_{\rm g}{=}1.0, \ m(g) < 400 \ {\rm GeV} \\ g_{\rm g}{=}0.25, \ g_{\rm g}{=}1.0, \ m(g) < 400 \ {\rm GeV} \\ m(g) < 150 \ {\rm GeV} \end{array}$	ATLAS-CONF-2017-060 1704.03548 1608.02372
9	Scelar LQ 1# gen Scelar LQ 2** gen Scelar LQ 3** gen	2 e 2 µ 1 e, µ	$ \begin{array}{c} \geq 2 j \\ \geq 2 j \\ \geq 1 b, \geq 3 \end{array} $	- j Yes	32 32 20.3	10 mass 1.1 TeV 10 mass 1.05 TeV 10 mass 640 GeV		$\beta = 1$ $\beta = 1$ $\beta = 0$	1605.06005 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ \ \mathcal{TT} \rightarrow \mathcal{H}t + X \\ VLQ \ \mathcal{TT} \rightarrow \mathcal{Z}t + X \\ VLQ \ \mathcal{TT} \rightarrow \mathcal{W}t + X \\ VLQ \ \mathcal{BB} \rightarrow \mathcal{H}t + X \\ VLQ \ \mathcal{BB} \rightarrow \mathcal{Z}t + X \\ VLQ \ \mathcal{BB} \rightarrow \mathcal{Z}t + X \\ VLQ \ \mathcal{BB} \rightarrow \mathcal{W}t + X \\ VLQ \ \mathcal{QQ} \rightarrow \mathcal{W}q\mathcal{W}q \end{array} $	0 or 1 e, μ 1 e, μ 1 e, μ 1 e, μ 2%23 e, μ 1 e, μ 1 e, μ	$(\ge 2b, \ge 3)$ $\ge 1b, \ge 3$ $\ge 1b, \ge 1d$ $\ge 2b, \ge 1d$ $\ge 2b \ge 23$ $\ge 2b \ge 1d$ $\ge 1b, \ge 1d$ $\ge 4j$	j Yos j Yos 2) Yes j Yes 22 Yes Yes	13.2 36.1 20.3 20.3 36.1 20.3	Times 1.2 TeV Times 1.16 TeV Times 1.35 TeV Bimess 700 GeV Bimess 790 GeV Bimess 790 GeV Bimess 680 GeV		$\begin{split} \mathcal{B}(T \to H) &= 1 \\ \mathcal{B}(T \to Zt) &= 1 \\ \mathcal{B}(T \to Wb) &= 1 \\ \mathcal{B}(B \to Hb) &= 1 \\ \mathcal{B}(B \to Hb) &= 1 \\ \mathcal{B}(B \to Zb) &= 1 \\ \mathcal{B}(B \to Wt) &= 1 \end{split}$	ATLAS-CONF-2016-104 1705-10751 CEFIN-EP-G017-084 1505-04305 1403-5500 CEFIN-EP-2017-084 1509-04261
Exciled fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wr$ Excited lepton t^* Excited lepton t^*	- 1γ - 1 cr 2 e, μ 3 c, μ 3 e, μ, τ	2j 1j 1b,1j 1b,20j - -	- - Yès -	37.0 36.7 13.8 20.8 20.3 20.3	e" mass e" mass 6" mass 6" mass 7" mass 7" mass 7" mass 1.6 TeV	6.0 TeV 5.3 TeV 2.3 TeV 3.0 TeV	only a^* and a^* , $A = m(q^*)$ only a^* and a^* , $A = m(q^*)$ $f_g = f_g = f_g = 1$ A = 3.0 TeV A = 1.6 TeV	1708.09127 CEDIN-EP-2017-148 ATLAS CONF 2016 060 1610.02664 1411.2921 1411.2921
Other	LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	2 ε, μ 2,3,4 ε, μ (S 3 ε, μ, τ 1 ε, μ - -	2j 	- - Yes -	20.3 36.1 20.3 20.3 20.3 7.0	M° moss 2.0 M° moss 870 GeV H°* moss 870 GeV H°* moss 657 GeV spin-1 invisible particle moss 657 GeV motion arged particle moss 765 GeV monopole mose 1.34 TeV	TaV	$\begin{split} & \alpha(W_0)=2.4 \ \text{feV}, \text{no mixing} \\ & \text{DV production} \\ & \text{DV production}, \ & \text{S}(H_k^{1,1}\to\delta r)=1 \\ & a_{\text{scremat}}=0.2 \\ & \text{DV production}, \ & q =\text{Se} \\ & \text{DV production}, \ & q =1, \text{gs}, \ & \text{spin 1/2} \end{split}$	1506,06020 ATLAS-CONF-2017-053 1411,2921 1410,5404 1504,04158 1504,04158
	×	s=8 TeV	Vs = 1	3.164		10 ⁻¹ 1	10	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown *Small-radius (large-radius) jets are denoted by the letter j (J).

All results for: <u>ATLAS</u> and <u>CMS</u>

G. Facini, DESY Seminar

Look for a bump along an entire mass range

...as mass of new particle is never predicted by model

Look for a bump along an entire mass range

...as mass of new particle is never predicted by model

Limits on Model

Don't see bump, so put upper bound on new particle production rate

(same procedure for searches for non-resonant physics)

CMS

Don't see bump, so put upper bound on new particle production rate

(same procedure for searches for non-resonant physics)

Questions to Ask:

How far do we need to go?

- What mass range do we need to cover?
 - Lower bound: Previous experiments
 - Upper bound: ??
- How low in cross-section do we need to reach?
 - Strong production: Given by QCD
 - EW coupling: ??

Did we cover all possible signatures/models?

• Has the correct model for nature beyond the SM been written down?

"there is no experiment nor facility, proposed or conceivable, in the lab or in space, accelerator or non-accelerator driven, which can guarantee discoveries beyond the SM, and answers to the big questions of the field" (M.Mangano, 98th ECFA, November 2015)

Reach of Experiment

New physics search sensitivity is limited by...

on limit [pb]	knowledge of background systematics limited	amount of data statistics limited
cross secti	<i>sensitivity ~S/B</i> source of systematics dictate improvement with luminosity	<i>sensitivity ~S/√B</i> cross-section limit ~1/√L mass limit ~log(L)

How far do we need to go?

- M_X [TeV] ~1/pb -> 3/fb -> 36/fb is 3 factors of 10 in the past ~2 years
- $36/fb \rightarrow 140/fb$ is $\sim x4 = factor of 2$ in sensitivity (1 year)
- $36/fb \rightarrow 300/fb$ is $\sim x10 = factor of 3$ in sensitivity (6 years)

Aside: Planning

- Nice for search to become a SM measurement if no discovery
 - "Discover" SM process so at least "discover" something ;)
 - Add to SM knowledge: indirectly restricts NP models
 - Add precision: *Kinematics of process can be altered by NP!*

Aside: Planning

- Nice for search to become a SM measurement if no discovery
 - "Discover" SM process so at least "discover" something ;)
 - Add to SM knowledge: indirectly restricts NP models
 - Add precision: *Kinematics of process can be altered by NP!*

progress with more lumi

striking BSM signal i.e. X->tttt

SM tttt production

Is the energy of each top as we expect?

Aside: Planning

- Nice for search to become a SM measurement if no discovery
 - "Discover" SM process so at least "discover" something ;)
 - Add to SM knowledge: indirectly restricts NP models
 - Add precision: *Kinematics of process can be altered by NP!*

Status: Classics

- A few searches for generic signatures cover many models and have been a standard of the hadron collider search program*
- I will go through a few touching on what has happened and where we can go next.

Two Lepton Search

Run Number: 303499 Event Number: 959589792 Date: 2016-07-08, 18:19:12 CET

EXPERIMENT

Motivated by Grand Unified Theories or more generally any additional U(1) symmetries

 $m_{\mu\mu}$ = 1.98 TeV invariant mass di-muon event observed with ATLAS

Aside: Tracking

- magnetic spectrometer
 - charged particle describes a circle of radius R in a magnetic field

 $p_T[\text{GeV/c}] = 0.3 \cdot B[\text{T}] \cdot R[\text{m}]$

Aside: Tracking

- magnetic spectrometer
 - charged particle describes a circle of radius R in a magnetic field

 $p_T[\text{GeV/c}] = 0.3 \cdot B[\text{T}] \cdot R[\text{m}]$

Performance: Muons

Data/MC comparisons for E_T<200 GeV Extrapolations of knowledge above
Muons in Search

Dilepton Search

5

JHEP 10 (2017) 182

Latest Greatest

41.4 fb⁻¹(13 TeV)

CMS proves the point of the demonstration of a working detector by releasing 2017 data analysis

Systematics

Source	Dielectron channel		Dimuon channel		
	Signal	Background	Signal	Background	
Luminosity	3.2% (3.2%)	3.2% (3.2%)	3.2% (3.2%)	3.2% (3.2%)	
MC statistical	<1.0% (<1.0%)	<1.0% (<1.0%)	<1.0% (<1.0%)	<1.0% (<1.0%)	
Beam energy	2.0% (4.1%)	2.0% (4.1%)	1.9% (3.1%)	1.9% (3.1%)	
Pile-Up effects	<1.0% (<1.0%)	<1.0% (<1.0%)	<1.0% (<1.0%)	<1.0% (<1.0%)	
DY PDF choice	N/A	<1.0% (8.4%)	N/A	<1.0% (1.9%)	Largest theory
DY PDF variation	N/A	8.7% (19%)	N/A	7.7% (13%)	uncertainty.
DY PDF scale	N/A	1.0% (2.0%)	N/A	<1.0% (1.5%)	
DY α_S	N/A	1.6% (2.7%)	N/A	1.4% (2.2%)	
DY EW corrections	N/A	2.4% (5.5%)	N/A	2.1% (3.9%)	
DY γ -induced corrections	N/A	3.4% (7.6%)	N/A	3.0% (5.4%)	
Top Quarks theoretical	N/A	<1.0% (<1.0%)	N/A	<1.0% (<1.0%)	
Dibosons theoretical	N/A	<1.0% (<1.0%)	N/A	<1.0% (<1.0%)	
Reconstruction efficiency	<1.0% (<1.0%)	<1.0% (<1.0%)	10% (17%)	10% (17%)	Largest exp
Isolation efficiency	9.1% (9.7%)	9.1% (9.7%)	1.8% (2.0%)	1.8% (2.0%)	uncertainty.
Trigger efficiency	<1.0% (<1.0%)	<1.0% (<1.0%)	<1.0% (<1.0%)	<1.0% (<1.0%)	
Identification efficiency	2.6% (2.4%)	2.6% (2.4%)	N/A	N/A	
Lepton energy scale	<1.0% (<1.0%)	4.1% (6.1%)	<1.0% (<1.0%)	<1.0% (<1.0%)	Large uncertainty at
Lepton energy resolution	<1.0% (<1.0%)	<1.0% (<1.0%)	2.7% (2.7%)	<1.0% (6.7%)	high masses due to
Multi-jet & W+jets	N/A	10% (129%)	N/A	N/A	extrapolation.
Total	10% (11%)	18% (132%)	11% (18%)	14% (24%)	

Background and signal systematic uncertainties at dilepton masses of 2 TeV (4 TeV).

CMS Dileptons: What New Physics will look like!

- Dileptons: What's Next? Measurements
 - The new physics we are looking for could be out of reach of the LHC
 - Employ Effective Field Theories (EFTs) to parameterize the new physics effects when E << M
 - In some variables, the BSM effects scale like (E/M)ⁿ. For n>0 we can profit from the large center of mass energy

S[^], T[^], W, and Y modify the γ , Z, and W propagators. The effects of S[^] and T[^] on DY processes do not grow with energy, W and Y do!

42

High Mass Di-Jet Search

Motivations: quark compositeness Dark Matter mediators Extended Gauge sectors

Run: 305777 Event: 4144227629 2016-08-08 08:51:15 CEST

arxiv:1703.09127

Highest-mass dijet event: $m_{ii} = 8.12 \text{ TeV}, |y^*| = 0.38$

cartoons from C. Doglioni

High Mass Dijets

Leading jet pT > 0.44 TeV 2nd jet pT > 0.06 TeV |y*|<0.6

|y*| = |y₁-y₂|/2

Rejects forward peaking t-channel QCD processes.

$$f(z) = p_1(1-z)^{p_2} z^{p_3} z^{p_4 \log z}$$

What next??

46 G. Facini, DESY Seminar

arxiv:1703.09127

- Cannot save all LHC collisions so dijet searches were limited to have one jet with pT > 440 GeV —> m(X) > 1 TeV
- Employ the initial state radiation to go below 1 TeV

- Cannot save all LHC collisions so dijet searches were limited to have one jet with pT > 440 GeV —> m(X) > 1 TeV
- Employ the initial state radiation to go below 1 TeV

- Employ the initial state radiation to go below 1 TeV
- With the same selection, looking at a lower mass necessitates a difference reconstruction technique

Boosted jet: Increasing transverse momentum Boosted jet: Same momentum, decrease object mass! X

• With the trick CMS introduced, we can now search from the Zpeak to the highest jet energies that the LHC can produce

The Full Range

- The full dijet mass range is covered!
- What about b-quarks?

 Thinking about EFTs, a variable that has BSM sensitivity that scales with energy is the Higgs pT

arXiv:1709.05543

Two Bosons

- Diboson resonances historically connected to electroweak symmetry breaking models
 - Spin 0: Heavy scalars in extended Higgs sector Spin 1: Extended gauge models (W', Z' in SSM/ HVT) Spin 2: Kaluza-Klein gravitons (bulk RS)
- Employ jet substructure (JSS) techniques, so remains a "hot topic"

- Entire industry of variables developed to exploit 2 prong structure
- Mass of jet represents object mass (after calibration)

Performance: Boson Tagging

Charged

leptons

Hadrons

Neutrinos

~20%

Final States

(VV, V γ , VH, HH) x (leptonic, hadronic) = large program

All hadronic analyses: Playground for new ideas

gluon jets have more tracks than V-jets

arXiv:1708.04445

VV->JJ

All hadronic analyses: Playground for new ideas

N-tracks is not well modeled

arXiv:1602.00988

VV->JJ

determine correction for signal using data in an inclusive 1 V sample

VV->JJ

All hadronic analyses: Playground for new ideas

Fit the background! N(Track) modeling = non-issue

$$\frac{\mathrm{d}n}{\mathrm{d}x} = p_1(1-x)^{p_2-\xi p_3} x^{-p_3},$$

arXiv:1708.04445

Whats the New Toy?

Tack-Calo Cluster (TCC) exploits better spacial resolution of tracking detector at high momentum to get better view of energy density inside jets

ATL-PHYS-PUB-2017-15

G. Facini, DESY Seminar

Whats the New Toy?

Tack-Calo Cluster (TCC) exploits better spacial resolution of tracking detector at high momentum to get better view of energy density inside jets

CMS

If know number of V-jets before tagging, can compare efficiency in data/MC. Done!! ;)

ATL-PHYS-PUB-2017-15

MET+Jet

• Dark Matter! There is evidence for something we cannot explain. Is it Dark Matter?

Backgrounds

Backgrounds

Can we exploit knowledge of visible W/Z decays to control the invisible Z decays? <u>What about the photon?</u>

MET ~ boson p_T

The experimental effects we can control, the theoretical ones, we need help!

Backgrounds

arXiv:1705.04664

Thank you, Theorists!

CMS

Where else can we exploit such sophisticated techniques?

Precision Searching

Vectorlike Quarks

- Why is Higgs mass so far from Planck scale?
- New strong sector in which in which the Higgs boson would be a pseudo–Nambu–Goldstone such as Composite Higgs Models

arXiv:1803.09678

Vectorlike Quarks

• This signature forces us to an extreme phase space not just of energy but of *multiplicity*

Vectorlike Quarks

• ...yet we manage

arXiv:1803.09678

Top Measurements

• Impressive top measurements are critical to the program

arXiv:1802.06572

Somethings left out

 Unusual signatures i.e. long-lived particles - see recent seminar from G. Watts (<u>link</u>)

Somethings left out

- General Search (ATLAS), MUSIC (CMS) important parts of the search program that deserve more time
- How do we ensure we looked everywhere?

Somethings left out

- Flavor anomalies ... more information needed!!
 - B-physics anomalies could be explained by LQ-like or Z'-like mediators
 - TeV-scale and 3rd generation favored
 - LQ could also explain g-2

Quark level transition $\mathbf{b} \to \mathbf{c}\ell\bar{\nu}$ R_D, R_{D^*} : combined ~ 4σ deviation $R_{D^{(*)}}^{\tau/\ell} = \frac{\Gamma(\bar{B} \to D^{(*)}\tau\bar{\nu})}{\Gamma(\bar{B} \to D^{(*)}\ell\bar{\nu})}$

Quark level transition $\mathbf{b} \rightarrow \mathbf{s}\ell\bar{\ell}$ $R_K, R_{K^*}: \sim 2.5 \sigma$ deviation (LHCb)

$$R_{K^{(*)}} = \frac{\Gamma(\bar{B} \rightarrow \bar{K}^{(*)} \mu^+ \mu^-)}{\Gamma(\bar{B} \rightarrow \bar{K}^{(*)} e^+ e^-)}$$

 $B^0 \rightarrow K^{\star 0} \mu^+ \mu^-$ angular analysis: 3.4 σ deviation (LHCb) (Click Me)

Possible new contribution in the $b \rightarrow s\ell\ell$ transition in BSM scenarios involving Z'

Conclusion

- Collected over 80/fb of data and analyzed a lot of 36/fb dataset
 - ~140/fb expected by the end of this year
- Null results so far but there is still much work to be done!
- To push the frontier of knowledge we need to:
 - Be creative and improve our experimental tools (taggers!)
 - Transition from search mode to measurement mode.
 - With theorists, improve knowledge of SM processes by also providing measurements (backgrounds!)
 - Expand the search to all possible final states and signatures we do not know where new physics is hiding!!