Colloquium – DESY Zeuthen

UT

JUNO

and The Fate of Antimatter

Achim Stahl – RWTH Aachen University – JARA-FAME

In the beginning ...

tested in the lab

matter

anti-matter

created matter and antimatter in equal amounts

the Big Bang

incident photon

"a million times"

electron

... we only find matter

Today ...

Evolution of Matter

Galaxy A1689-zD1: ~700 million years after the Big Bang

matter and antimatter annihilated ...

Big Bang

Radiation era

~ ~300,000 years: "Dark Ages" begin

~400 million years: Stars and nascent galaxies form

on years: Dark ages end

How ?

500

... some matter survived

Andrei Sakharov

~4.5 billion years: Sun, Earth, and solar system have formed

- 1. Baryon-Number Violation theoretical ideas
- 2. CP-Violation

·13.71

- not enough !
- 3. Thermal Non-Equilibrium understood

Today ...

Baryon to Photon Ratio:

$$\eta = rac{n_B - n_{\overline{B}}}{n_\gamma} pprox 5 \cdot 10^{-10}$$

 $n_{\gamma} pprox 0.4/mm^3$ $n_B pprox 0.2/m^3$ $n_{\overline{B}} pprox 0$

Standard Model fails by many orders of magnitude

... we only find matter

• 13.7 billion years: Present

igodol

Content

- The Fate of Antimatter
- The p/d EDM
- Neutrino Oscillations
- Reactor Neutrino Experiments
- **CP-Violation**
- The Mass Hierarchy
- The JUNO Project
- Summary

Electric Dipole Moments

ELECTRIC DIPOLE MOMENTS

Electric Dipole Moments

- \rightarrow Violate P- and T-Symmetry
- → CPT-Theorem: violate CP-Symmetry

STORAGE RING EDM

frozen spin @ $p_p = 700.740 \text{ MeV/c}$ (magic momentum) EDM turns spin out of accelerator plane

PRECURSER EXPERIMENT

Jülich Electric Dipole moment Investigation

magnetic ring RF-Wien filters introduce f-Field

Neutrinos-Oscillations

Achim Stahl - September 27th, 2017

Special case: 2 flavours only

$$\binom{\nu_e}{\nu_{\mu}} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \binom{\nu_1}{\nu_2}$$

Mass difference
$$\Delta m^2 = m_2^2 - m_1^2$$

Mixing anlge θ

Oscillation length: $\frac{4\pi E_{\nu}}{\Delta m^2} \approx 2.48 \text{ m} \frac{E_{\nu} [MeV]}{\Delta m^2 [eV^2]}$

Disappearance: Appearance:

here: $P(\nu_{\alpha} \rightarrow \nu_{\alpha}) = 1 - \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4 E_{\nu}}$: $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = -\sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4 E_{\nu}}$

v_e --- electron neutrino flavor
 v_μ --- muon neutrino flavor
 v_τ --- tau neutrino flavor

Normal or inverted hierarchy ? Only 3 generations ? Majorana or Dirac neutrinos ? CP-violation ? Absolute mass scale ?

- Osc.: reactor, atmos., beam
- Osc.: precision measurements
- $> 2\beta 0\nu$ -experiments
- > Osc.: beam
- KATRIN, but beyond ?

Reactor Neutrino Experiments

DETECTION

Reactor:
$$n \rightarrow p^+ e^- \bar{\nu}_e$$

 $\overline{
u}_e + p
ightarrow n + e^+$ inverse eta-decay (IBD)

- 1. prompt event: $e^+ \rightarrow \gamma \gamma$
- 2. delayed event: *n* thermalization + capture on Gd

Energy Measurement:

1. prompt event scintillation from positron gammas from annihilation $E(\bar{v}_e) = E_{\text{prompt}} + Q - 2m_e$

2. delayed event Gd: 30 μsec delay, 8 MeV H: 200 μsec delay, 2.2 MeV

NEUTRINO DETECTOR

- **1. Target:** Scintillator + 0.1 % Gd
- 2. y-catcher: Scintillator
- 3. Buffer: Oil
- 4. Veto: Water or Scintillator
- 5. Muon Tracker

The Mixing Angle θ_{13}

v.

THE 3 EXPERIMENTS

Double Chooz

THE 3 EXPERIMENTS

MEASURED SPECTRUM

THE 5 MeV EXCESS

S.-H. Seo (for the RENO) collab.; arXiv 1410.7987

WORLD COMPARISON

CP-Violation

Matter = Anti-Matter?

$$\begin{aligned} & \mathsf{P}_{\alpha \to \beta} = \delta_{\alpha\beta} - 4 \sum_{i>j} Re(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*) \sin^2 \frac{(m_i^2 - m_j^2)L}{4E} \\ & + 2 \sum_{i>j} Im(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*) \sin \frac{(m_i^2 - m_j^2)L}{2E} \end{aligned} \\ & \mathsf{Example:} \\ & \mathsf{Numerically relevant terms only} \\ & 4 \sum_{i>j}^2 c_{13}^2 \cdot s_{23}^2 \cdot \sin^2 \frac{\Delta m_{13}^2 L}{4E} \\ & \bullet c_{13}^2 \cdot s_{12} s_{13} s_{23} \cdot (c_{12} c_{23} \cos \delta - s_{12} s_{13} s_{23}) \cdot \cos \frac{\Delta m_{23}^2 L}{4E} \cdot \sin \frac{\Delta m_{13}^2 L}{4E} \\ & \bullet c_{13}^2 \cdot c_{12} c_{23} s_{12} s_{13} s_{23} \sin \delta \sin \frac{\Delta m_{23}^2 L}{4E} \cdot \sin \frac{\Delta m_{13}^2 L}{4E} \cdot \sin \frac{\Delta m_{12}^2 L}{4E} \\ & \bullet c_{13}^2 \cdot c_{12} c_{23} s_{12} s_{13} s_{23} \sin \delta \sin \frac{\Delta m_{23}^2 L}{4E} \cdot \sin \frac{\Delta m_{13}^2 L}{4E} \cdot \sin \frac{\Delta m_{12}^2 L}{4E} \\ & \bullet c_{13}^2 \cdot c_{12} c_{23} s_{12} s_{13} s_{23} \sin \delta \sin \frac{\Delta m_{23}^2 L}{4E} \cdot \sin \frac{\Delta m_{13}^2 L}{4E} \\ & \bullet solare Skala \\ & \pm 8 \cdot c_{13}^2 \cdot s_{13}^2 \cdot s_{23}^2 \cdot \cos \frac{\Delta m_{23}^2 L}{4E} \cdot \sin \frac{\Delta m_{13}^2 L}{4E} \\ & \frac{1}{4E} (1 - 2s_{13}^2) \\ & \mathsf{Materie-Effekt} (CP-odd) \end{aligned}$$

Jarlskog's Determinant for neutrinos: $0.28\sin\delta$ (quarks: $4\cdot10^{-5}$) Achim Stahl - September 27th, 2017

$P(\overline{v_{\mu}} \rightarrow \overline{v_{e}}) =$ 1,000m $4 s_{13}^{2} c_{13}^{2} \cdot s_{23}^{2} \cdot \sin^{2} \frac{\Delta m_{13}^{2} L}{\Delta E}$ θ_{13} $+8 \cdot c_{13}^2 \cdot s_{12} s_{13} s_{23} \cdot (c_{12} c_{23} \cdot \cos \delta - s_{12} s_{13} s_{23}) \cdot \cos \frac{\Delta m_{23}^2 L}{\Delta E} \cdot \sin \frac{\Delta m_{13}^2 L}{\Delta E} \cdot \sin \frac{\Delta m_{12}^2 L}{\Delta E}$ **CP-even** $\frac{1}{2} 8 \cdot c_{13}^2 \cdot c_{12} c_{23} s_{12} s_{13} s_{23} \sin \delta \sin \frac{\Delta m_{23}^2 L}{AE} \cdot \sin \frac{\Delta m_{13}^2 L}{AE} \cdot \sin \frac{\Delta m_{12}^2 L}{AE}$ CP-odd +4 s_{12}^2 , c_{13}^2 , $(c_{12}^2c_{23}^2 + s_{12}^2s_{23}^2s_{13}^2 - 2c_{12}c_{23}s_{12}s_{13}s_{23}\cos\delta)$, $\sin\frac{\Delta m_{12}^2L}{\Delta E}$ solare Skala $\frac{+}{-8} \cdot c_{13}^2 \cdot s_{13}^2 \cdot s_{23}^2 \cdot \cos \frac{\Delta m_{23}^2 L}{AF} \cdot \sin \frac{\Delta m_{13}^2 L}{AF} \cdot \frac{a \cdot L}{AF} \cdot (1 - 2s_{13}^2)$ Materie-Effekt (CP-odd)

Run 1-7: $\nu: 7.48 \times 10^{20} \, pot$ $\bar{\nu}$: 7.53 × 10²⁰ pot **Run 8:** $v: 7.48 \times 10^{20} pot$

Achim Stahl, Sept. 2017

 $\delta_{\rm CP}$

0

Parameter **No CP-violation** $\overline{\delta}_{CP}$ $\sin^2 \theta_{13}$ "excluded" $\sin^2 \theta_{23}$ at 90% c.l. Δm_{32}^2

T2K-RESULTS

0.002

Best-fit

-1.789

0.0219

0.534

 10^{-5}

 $\pm 1\sigma$

[-2.450; -0.880]

[0.0208; 0.0233]

[0.490; 0.580]

 $2.539 \times 10^{-3} \,\mathrm{eV}^2/\mathrm{c}^4 \quad \begin{bmatrix} -3.000; -2.952 \end{bmatrix} \times 10^{-3} eV^2/c^4 \\ \begin{bmatrix} 2.424; \ 2.664 \end{bmatrix} \times 10^{-3} eV^2/c^4 \end{bmatrix}$

NOVA-APPEARANCE

<u>2</u>π

The Mass Hierarchy

MASS HIERARCHY AND CP

"theorist's plot"

- No experimental uncertainties
- No uncertainties of external parameters

MASS HIERARCHY AND CP

"theorist's plot"

- No experimental uncertainties
- No uncertainties of external parameters

arXiv:1506.07917

MASS HIERARCHY AND CP

"theorist's plot"

- No experimental uncertainties
- No uncertainties of external parameters

arXiv:1506.07917

Impact of the Mass Hierarchy CP Violation Majorana Neutrinos

Neutrino Masses

The Mass Hierarchy

Method 1: MATTER EFFECTS

MATTER EFFECTS: ORCA

Resonant transition (MSW) near the core of the earth

Method 1: MATTER EFFECTS

neutrino beam

Matter Effect is proportional to L!

Long baseline Beams

- T2K (295 km) too short
- Nova (810 km) 2σ
- LBNE/DUNE (1300 km) excellent

FUTURE: DUNE

1...4 Liquid Argon TPCs; 10 kt each

ICARUS: 600 t MicroBooNE: 170 t Prototypes DUNE: 10 000 t

CERN: Neutrino Platform 600t prototypes DUNE SP/DP

Method 2: 3-Falvour-Interference

$$\Delta m_{ij} = m_i^2 - m_j^2$$

Yu-Feng Li et al., Phys.Rev. D88 (2013) 013008

DSCILLATION PATTERN Leading terms:

Yu-Feng Li et al., Phys.Rev. D88 (2013) 013008

EXPERIMENTAL LANDSCAPE

Ma	itter-Effects:	a	pproval status	
1.	atmospheric neutrinos	PINGU	:	4σ
		ORCA	···	4σ
		INO		2σ
2.	beam neutrinos	Nova DUNE/LBNE	() ()	2 σ >5 σ

|--|

The JUNO Project

THE JUNO PROJECT

550 scientists, 70 institutions, 1/3 from Europe

Armenia, Belgium, Brazil, Chili, Chinese Republic, Czech Republic, Germany, Finland, France, Italy, Latvia, Pakistan, Russia, Slovakia, Thailand, Taiwan, and the United States

Jiangmen Underground Neutrino Observatory

supported by

Deutsche Forschungsgemeinschaft

THE JUNO PROJECT

Liquid Scintillator

Ultra-high purity (BOREXINO technology) 20.000 t fiducial volume acrylic sphere (Ø35.5 m) 2m water buffer 20.000 PMTs (20") embedded in a water Čerenkov veto Muon tracker on top

THE CHALLENGE

THE CHALLENGE Excellent Energy Resolution (3% @ 1 MeV)

Photonstatistics

- high lightyield
- good transparency
- PMT-coverage
- PMT-DE

&

Calibration

- $\alpha/\beta/\gamma$ sources (in all positions)
- light pulsers (in all positions)
- UV-laser (in many positions)
- e⁺ beam (along axis)

The MCP-PMT

Photo dection in the cathode

Hamamatsu R12860 (20"PMT)

Detection efficiency = quantum efficiency x collection efficiency x area coverage Typ. 27% Spec. > 24%

The MCP-PMT

Detection efficiency = quantum efficiency x collection efficiency

x area coverage

Typ. 27% Spec. > 24%

erage

Achim Stahl - September 27th, 2017

Night Vision / China

The MCP-PMT

Detection efficiency = quantum efficiency x collection efficiency

Тур. 27% Spec. > 24%

MCP-PMT 8" prototype

- x area coverage

Night Vision / China

THE SURFACE LAB

江门中微子实验站配套基建工程整体鸟瞰图

THE JUNO PROJECT

Physics of JUNO

Mass Hierarchy

MC-studies: >3 sigma in 4 years (3% resolution @ 1 MeV)

v-oscillations with reactor neutrinos: Mass hierarchy Precision Measurements

Others

- **Super Nova**
 - **Direct observation**
- Diffuse Super Nova background

Solar Neutrinos

- Oscillation parameters
- Metallicity Atmospheric Neutrinos
- Oscillations
- Mass hierarchy ? Geo Neutrinos
- Models of the earth's interior

Heat production → climate
Nucleon Decay
i.e. p → K⁺ ν
Dark Matter
χ → νν

Sterile Neutrinos

With radioactive sources

Physics of LS-Detectors Others Others LENA @ Phyäsalmi JUNO @ Jiangmen

DETECTOR LAYOUT

Cavern ----

height: 115 m, diameter: 50 m shielding from cosmic rays: ~4,000 m.w

Muon Vet plastic scinti Water Chere 1,500 photo 100 kt of wa reduction of neutron bac

Steel Cyli height: 100 70 kt of orga 13,500 phot

non-scintillating organic liquid shielding external radioactivity

Nylon Vessel -

parting buffer liquid from liquid scintillator

Target Volume height: 100 m, diameter: 26 m 50 kt of liquid scintillator

Ach Vertist Polesigs 1994 Roll and in Terms 2012 k pressure and buoyancy forces

LENA

50 kt LS

1400 m overburden

> 200 km to next reactor

7% resolution @ 1 MeV

JUNO 20 kt LS 700 m overburden 35 GW at 55 km 3% resolution @ 1 MeV

18

Super Nova

What will we detect? What can we learn about super novae?

Achim Stahl - September 27th, 2017.

TITLE

(b) Type II Supernova

TITLE

(b) Type II Supernova

Neutrino Spectrum

Type IIa; standard paramters; 10 kpc

J.-S. Lu et al., Phys.Rev. D94 023006

Neutrino Spectrum

Type IIa; standard paramters; 10 kpc

J.-S. Lu et al., Phys.Rev. D94 023006

Achim Stahl - September 27th, 2017

Diffuse Supernova Neutrino Background Averaged neutrino signal from all supernovae in the universe

Neutrino Mass from Time-of-Flight

Type IIa; standard paramters; 10 kpc

- Sensitivity ~ 1 eV
- Independent of distance

Neutrino Physics is a very active field

T2K running with anti-neutrinos

2β0ν: GERDA with strong German constribution

IceCube: cosmic v and more

LENA: not

forgotten!

Nova just started

Waiting for first results from KATRIN

Japan: HyperK?

Many activities on sterile v: SOX, Soli δ , ...

US longe baseline approaching approval

Will PINGU/ORCA come?

Achim Stahl - September 27th, 2017

- Neutrino Physics is a very active field
- Oscillation parameters reaching % region
- The precision on θ_{13} is still improving
- Mass hierarchy is the next step
- JUNO has been approved. Construction started Jan. 2015

Achim Stahl – RWTH Aachen University – JARA-FAME

Achim Stahl - September 27th, 2017

NuFIT 3.0 (2016)

	Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 0.83)$		Any Ordering
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	3σ range
$\sin^2 \theta_{12}$	$0.306\substack{+0.012\\-0.012}$	$0.271 \rightarrow 0.345$	$0.306\substack{+0.012\\-0.012}$	$0.271 \rightarrow 0.345$	$0.271 \rightarrow 0.345$
$\theta_{12}/^{\circ}$	$33.56^{+0.77}_{-0.75}$	$31.38 \rightarrow 35.99$	$33.56^{+0.77}_{-0.75}$	$31.38 \rightarrow 35.99$	$31.38 \rightarrow 35.99$
$\sin^2 \theta_{23}$	$0.441^{+0.027}_{-0.021}$	$0.385 \rightarrow 0.635$	$0.587^{+0.020}_{-0.024}$	$0.393 \rightarrow 0.640$	$0.385 \rightarrow 0.638$
$\theta_{23}/^{\circ}$	$41.6^{+1.5}_{-1.2}$	$38.4 \rightarrow 52.8$	$50.0^{+1.1}_{-1.4}$	$38.8 \rightarrow 53.1$	$38.4 \rightarrow 53.0$
$\sin^2 \theta_{13}$	$0.02166^{+0.00075}_{-0.00075}$	$0.01934 \rightarrow 0.02392$	$0.02179^{+0.00076}_{-0.00076}$	$0.01953 \rightarrow 0.02408$	$0.01934 \rightarrow 0.02397$
$\theta_{13}/^{\circ}$	$8.46_{-0.15}^{+0.15}$	$7.99 \rightarrow 8.90$	$8.49_{-0.15}^{+0.15}$	$8.03 \rightarrow 8.93$	$7.99 \rightarrow 8.91$
$\delta_{ m CP}/^{\circ}$	261^{+51}_{-59}	$0 \rightarrow 360$	277^{+40}_{-46}	$145 \rightarrow 391$	$0 \rightarrow 360$
$\frac{\Delta m_{21}^2}{10^{-5} \ \mathrm{eV}^2}$	$7.50_{-0.17}^{+0.19}$	$7.03 \rightarrow 8.09$	$7.50_{-0.17}^{+0.19}$	$7.03 \rightarrow 8.09$	$7.03 \rightarrow 8.09$
$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.524^{+0.039}_{-0.040}$	$+2.407 \rightarrow +2.643$	$-2.514^{+0.038}_{-0.041}$	$-2.635 \rightarrow -2.399$	$ \begin{bmatrix} +2.407 \to +2.643 \\ -2.629 \to -2.405 \end{bmatrix} $

www.nu-fit.org

Ne	utrinos		www.nu-fit.org
			NuFIT 3.0 (2016)
	$(0.800 \rightarrow 0.844)$	0.515 ightarrow 0.581	$0.139 \rightarrow 0.155$
$ U _{3\sigma} =$	$0.229 \rightarrow 0.516$	$0.438 \rightarrow 0.699$	$0.614 \rightarrow 0.790$
	$(0.249 \rightarrow 0.528)$	$0.462 \rightarrow 0.715$	$0.595 \rightarrow 0.776 /$

Quarks

	$(0.97434^{+0.00011}_{-0.00012})$	0.22506 ± 0.00050	0.00357 ± 0.00015
$V_{\rm CKM} =$	0.22492 ± 0.00050	0.97351 ± 0.00013	0.0411 ± 0.0013
	$0.00875^{+0.00032}_{-0.00033}$	0.0403 ± 0.0013	0.99915 ± 0.00005

PDG 2017