

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

News on the Measurements of the W Boson Mass

Jun.-Prof. Dr. Matthias Schott

Electroweak Precision Physics

Summary of the Electroweak Sector

- The electroweak sector of the Standard Model has five parameters
 - $\alpha_{em,} G_{F,} m_{W,} m_{Z,} sin^2 \theta_W$
 - (+ m_H for the scalar sector)
- However, they are not independent, but related by theory

$$\sin^2 \theta_W = 1 - \frac{m_W^2}{m_Z^2}$$
$$m_W^2 \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2}G_F}$$

JProf. Dr. M. Schott (Johannes Gutenberg University, Mainz)

- Tree-level not sufficient
 - The impact of corrections stored in EW form factors
- The relation between SM parameters appear with quadratic dependence on m_{top}, logarithmic dependence on M_H
- Idea of electroweak fits
 - Measure many different observables
 - Calculate the relations between all observables
 - Probe the consistency of the SM / Predict observables

$$\sin^2 heta_{ ext{eff}}^f = \kappa_Z^f \sin^2 heta_W$$

 $g_{V,f} = \sqrt{
ho_Z^f} (I_3^f - 2Q^f \sin^2 heta_{ ext{eff}}^f)$
 $g_{A,f} = \sqrt{
ho_Z^f} I_3^f$
 $M_W^2 = rac{M_Z^2}{2} \left(1 + \sqrt{1 - rac{\sqrt{8}\pi lpha (1 + \Delta r)}{G_F M_Z^2}}
ight)$

$$\begin{split} & M_W\left(\ln(M_H), m_t^2, M_Z, \Delta\alpha_{\rm had}^{(5)}(M_Z^2), \alpha_s(M_Z^2)\right) \\ & \sin^2\!\theta_{\rm eff}^f\left(\ln(M_H), M_H, m_t^2, M_Z, \Delta\alpha_{\rm had}^{(5)}(M_Z^2), \alpha_s(M_Z^2)\right) \end{split}$$

Input and Outcome to the Electroweak Fit

- Input for the gobal electroweak fit mostly from
 - LEP: Z boson observables
 - Tevatron: W boson, top quark mass
 - LHC: Higgs Boson, top quark mass
- Result: Amazing predictions!
 - Top-Quark mass before its discovery
 - Higgs-Boson mass before its discovery and the funding argument for the LHC

Z Boson Measurements at LEP

- Z bosons can be produced directly in e⁺e⁻ collisions, i.e. we can scan the Breit-Wigner lineshape
- We do not need to reconstruct energy of the decay particles
 - Mass measurement is reduced to a pure counting experiment
- Reach enormous precision
 - Mass known to 2 MeV!
- Not only crucial input for the electroweak fit, but also for the LHC detector calibration!

JProf. Dr. M. Schott (Johannes Gutenberg University, Mainz)

Where do we stand and what do we need?

- Z boson observables: LEP was great; we can't do better (now)
- Top-quark mass: huge progress; new approaches to overcome theoretical unc. on m_{top}
 - (SM prediction ±2.5 GeV, measurement unc. <0.7 GeV)
- Higgs mass: Only logarithmic dependence, hence not important for the fit
- W mass: SM prediction at 5 MeV precision, known only to 19 MeV!
 - Here we can gain a lot!

https://twiki.cern.ch/twiki/bin/view/CMS Public/PhysicsResultsTOPSummaryFigures

Indirect measurements LEP-1 and SLD (m_t)	80.363±0.020
NuTeV	80.135±0.085
CDF μμ 9 fb ⁻¹	-80.365±0.047
CDF <i>ee</i> 9 fb ⁻¹	80.313±0.027
CDF <i>ee+µµ</i> 9 fb ⁻¹ ⊷	80.328±0.024
D0 ee 10 fb ⁻¹	80.373±0.024
TeV combined: D0+CDF Preliminary	80.351±0.018
Direct measurement TeV and LEP-2	80.385±0.015

80 80.1 80.2 80.3 80.4 80.5 80.6 W-boson mass (GeV/*c*²)

http://pdg.lbl.gov/2014/reviews/ rpp2014-rev-w-mass.pdf

Why do we need that?

- So far a "simple" thing: test consistency of the SM
 - Current p-value = 0.22
- But electroweak precision measurements are sensitive to several new physics scenarios, e.g. SUSY
 - Radiative correction depends on mass splitting (Δm²) between squarks in SU(2) doublet
 - Precision on m_w could significantly limit the allowed MSSM space

Measurement Strategy

Mass Sensitive Variables

- Main signature: final state lepton (electron or muon): p_T(lepton)
- Recoil: sum of "everything else" reconstructed in the calorimeters
 - a measure of p_T(W,Z)
 - gives us also missing transverse energy

$$\vec{u}_{T} = \sum_{i} \vec{E}_{T,i}$$
$$\vec{p}_{T}^{miss} = -\left(\vec{p}_{T}^{l} + \vec{u}_{T}\right)$$
$$m_{T} = \sqrt{2p_{T}^{l}p_{T}^{miss}(1 - \cos\Delta\phi)}$$

JProf. Dr. M. Schott (Johannes Gutenberg University, Mainz)

Mass Sensitive Variables

- Sensitive final state distributions:
 - Lepton transverse momentum
 p_T(I)
 - Transverse mass: m_T
 - Missing transverse energy ("neutrino p_T"): p_T^{miss}
- Template-Fit approach
 - Assume various W boson mass values in MC event generator and predict the p_T(I), m_T, p_T^{miss} distributions
 - Compare to data
 - Mass determination by χ² minimization

Page 11

Why is this measurement complicated?

Simple Life in the USA

Measurement Strategy at LHC and Tevatron

- Parameterized (not full) simulation that includes all corrections
- Low pile-up
- CDF-Experiment: e/mu channel
 - Only 20% of data-set used
 - Calibration: J/Psi, Upsilon, Z
- D0-Experiment: e-channel
 - Acceptance up to η<1.0
 - Calibration: Z boson only

- QED FSR using PHOTOS
- Reweighting to correct for physics and detector modelling
- Data-Set: Run 1 (2011)
 - 7 TeV, 4.6 fb⁻¹ (e), 4.1 fb⁻¹ (µ)
 - Mature, well understood data; moderate (but still significant) pile-up

Production of W Bosons at the LHC and Tevatron

- Tevatron: Proton / anti-protons
 - Main production involves up and down quarks
 - small impact of heavy quarks
 - No differences between W+/W-
 - Similar production of Z bosons
- LHC: Proton-proton collisions
 - Heavy quarks become important in the production
 - Different production modes of W+ and W-
 - Z Boson production still dominated by light quarks

Measurements at the Tevatron

[Phys Rev D88 (2013)]

- Do not worry about tables
 - These tables have been my life for 5 years!
- Experimental uncertainties
 - CDF: 10 MeV (Lepton Scale, Hadronic Recoil)
 - D0: 18 MeV (Lepton Scale)
- Physics modelling dominated by PDFs: 10-11 MeV for both
- Precision after >10 years
 - CDF: 19 MeV
 - D0: 26 MeV

Source	Uncertainty (MeV)
Lepton energy scale and resolution	7
Recoil energy scale and resolution	6
Lepton removal from recoil	2
Backgrounds	3
Experimental subtotal	10
Parton distribution functions	10
QED radiation	4
$p_T(W) ext{ model}$	5
Production subtotal	12
Total systematic uncertainty	15
W-boson event yield	12
Total uncertainty	19

Source	Uncertainty (MeV)
Electron energy calibration	16
Electron resolution model	2
Electron shower modeling	4
Electron energy loss model	4
Recoil energy scale and resolution	5
Electron efficiencies	2
Backgrounds	2
Experimental subtotal	18
Parton distribution functions	11
QED radiation	7
$p_T(W) ext{ model}$	2
Production subtotal	13
Total systematic uncertainty	22
W-boson event yield	13
Total uncertainty	26

Signal Selection and Measurement Regions

- Lepton selections
 - Muons : |η| < 2.4; isolated</p>
 - Electrons : 0<|η|<1.2 or
 1.8<|η|<2.4; isolated
- Kinematic requirements
 - $p_T > 30 \text{GeV} p_T^{\text{miss}} > 30 \text{GeV}$
 - m_T >60GeV u_T <30GeV</p>
- Measurement categories
 - Electron/muon channel, p_T-, m_T-Fits, 3/4 rapidity regions, W boson charge
- Muon Channel: 7.8 M events
- Electron Channel: 5.9 M events

Physics Modelling

Physics Modelling

- No available generator can describe all observed features: p_T(Z)/p_T(W), A_i, ...
 - Variation of do/dm modeled with a Breit-Wigner + EW cor.
 - do/dp_T is modeled with PS MC
 - do/dy modeled at NNLO
 - A_i(y,pt) modeled at NNLO
- QCD aspects
 - Rapidity, p_T distributions; angular distributions
- EW aspects
 - ISR and FSR QED corrections Missing higher-order effects

$$\frac{d\sigma}{dp_1 dp_2} = \left(\frac{d\sigma}{dm}\right) \left(\frac{d\sigma}{dy}\right) \left(\frac{d\sigma(p_t, y)}{dpt} \frac{1}{\sigma(y)}\right) \cdot \left(\sum_i A_i(y, p_t) P_i(\cos\theta, \phi)\right)$$

Transverse Momentum (A several years effort)

- Traditional approach: fit predictions to Z data, apply to W
 - primordial k_T; α_S^{ISR}; ISR cut-off
 - Tested with Powheg+Pythia8, and Pythia8 standalone
- Associated Uncertainties: Z Boson Data, Parton Show Variations and
 - Z
 —W extrapolation : factorization scale variations (separately for lightand heavy-quark induced production), heavy quark masses

JProf. Dr. M. Schott (Johannes Gutenberg University, Mainz)

Transverse Momentum (A several years effort)

- Theoretically more advanced calculations were also attempted
 - DYRES (and other resummation codes : ResBos, CuTe)
 - Powheg MiNLO + Pythia8
- All predict a harder $p_T(W)$ spectrum for given $p_T(Z)$ distribution Behaviour is **disfavoured by data** (see later)

JProf. Dr. M. Schott (Johannes Gutenberg University, Mainz)

40

25

30

35

p₊^{W,Z} [GeV]

Overview of QCD Uncertainties

- CT10nnlo uncertainties (synchronized in DYNNLO and Pythia) + envelope comparing CT10 to CT14 and MMHT.
 - Strong anti-correlation of uncertainties for W₊ and W⁻!
- AZ tune uncertainty; parton shower PDF and factorization scale; heavyquark mass effects
- A_i uncertainties from Z data; envelope for A₂ discrepancy

W-boson charge	W	W^+		W^-		Combined	
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^{ℓ}	$m_{ m T}$	p_{T}^ℓ	m_{T}	
$\delta m_W [{ m MeV}]$					[
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7	
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4	
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5	
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9	
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6	
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3	
Total	15.9	18.1	14.8	17.2	11.6	12.9	

JProf. Dr. M. Schott (Johannes Gutenberg University, Mainz)

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Detector Calibration

Mass Sensitive Variables

- Lepton calibration
 - momentum calibration using the Z peak
 - efficiency corrections

 (reconstruction, identification, trigger) rederived via tag- and probe-method in 3 dimensions
- Recoil calibration
 - Event activity corrections
 - Recoil response calibration using expected p_T balance between lepton pairs and u_T in Z events

Muon Momentum and Efficiency Calibration

Parameterization of momentum corrections:

$$p_T^{MC,corr} = p_T^{MC} \times \left[1 + \alpha(\eta.\phi)\right] \times \left|1 + \beta_{curv}(\eta) \cdot G(0,1) \cdot p_T^{MC}\right|$$

- Momentum scale and resolution corrections probed using $Z \rightarrow \mu\mu$ events
- Also to correct: Track sagitta bias from rotational detector deformations
 - Using $W \rightarrow \mu \nu$ events for overall effect and $Z \rightarrow \mu \mu$ for eta-calibration

JProf. Dr. M. Schott (Johannes Gutenberg University, Mainz)

Data

0.5

Z→ μ⁺μ⁻

1.5

2

Background

Hadronic Recoil Calibration

- Recoil correction steps
 - Step 1: Equalize pile-up multiplicity distribution in data and MC
 - Step 2: Correct for residual differences in the ΣE_T distribution
 - removes u_T resolution discrepancy due to imperfect event activity mis-modeling
 - Can be done directly in W events no extrapolation systematics
- MC based closure test!

A distribution which took us months

- Typically one expects a Φ symmetry of the detector response (and the physics)
- We observed significant differences to MC
 - offset of the interaction point with respect to the detector center in the transverse plane
 - Non-zero crossing angle between the proton beams
 - φ-dependent response of the calorimeters

3 tables after 3 years of work

- Experimental uncertainty due to muon detector calibration on the 10 MeV level
 - In terms of average accuracy on the position resolution, this means µm-precision!
- Not even discussed here: How to estimate backgrounds
 - We control the background contributions on a rel. 5% level!
 - Final background related uncertainties
 - p_T-fit: 3-5 MeV
 - m_T-fit: 8-9 MeV (elec.)
 - m_T-fit: 3-5 MeV (muon)

										,
$ \eta_{\ell} $ range	[0.0, 0.8]		[0.8, 1.4]		[1.4, 2.0]		[2.0, 2.4]		Combined	
Kinematic distribution	p_{T}^{ℓ}	$m_{\rm T}$	p_{T}^{ℓ}	$m_{\rm T}$	p_{T}^{ℓ}	$m_{\rm T}$	$p_{\mathrm{T}}^{\widetilde{\ell}}$	$m_{\rm T}$	p_{T}^{ℓ}	m_{T}
δm_W [MeV]										
Momentum scale	8.9	9.3	14.2	15.6	27.4	29.2	111.0	115.4	8.4	8.8
Momentum resolution	1.8	2.0	1.9	1.7	1.5	2.2	3.4	3.8	1.0	1.2
Sagitta bias	0.7	0.8	1.7	1.7	3.1	3.1	4.5	4.3	0.6	0.6
Reconstruction and										
isolation efficiencies	4.0	3.6	5.1	3.7	4.7	3.5	6.4	5.5	2.7	2.2
Trigger efficiency	5.6	5.0	7.1	5.0	11.8	9.1	12.1	9.9	4.1	3.2
Total	11.4	11.4	16.9	17.0	30.4	31.0	112.0	116.1	9.8	9.7
$ n_{e} $ range				0.6]	[0.6.1.2]		[1 82 2 4]		Combined	
Kinematic distribution			p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	$m_{\rm T}$	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	$m_{\rm T}$
Smar [MoV]			~ 1		- 1		~ 1		~ 1	
Energy scale			10.4	10.3	10.8	10.1	16.1	171	81	8.0
Energy scale			5.0	6.0	73	67	10.1	15.5	35	5.0
Energy linearity			0.0 2.2	0.0 4.2	7.5 5.8	8.9	86	10.0	3.0	55
Energy theatity			2.2	33	0.0 2 3	33	23	33	0.4 9.3	33
Beconstruction efficiency			10.5	5.5 8.8	2.5 9.9	$\frac{5.5}{7.8}$	$\frac{2.5}{14.5}$	11.0	$\frac{2.5}{7.2}$	5.5 6.0
Identification efficiency			10.0	77	11 7	8.8	14.0 16.7	12.1	7.3	5.6
Trigger and isolation efficiencies			0.2	0.5	0.3	0.5	2.0	2.2	0.8	0.0
Charge mis-measurement			0.2	0.2	0.2	0.2	1.5	1.5	0.1	0.1
T-t-1				17.5	21.1	10.4	30.7	30.5	14.2	14.3
1004			19.0	17.0	21.1	13.4	50.7	30.5	14.2	14.0
W-boson charge					И	7+	W		Com	bined
Kinematic distribution					p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}
δm_W [MeV]										
$\langle \mu \rangle$ scale factor					0.2	1.0	0.2	1.0	0.2	1.0
$\Sigma E_{\rm T}$ correction					0.9	12.2	1.1	10.2	1.0	11.2
Residual corrections (statistics)					2.0	2.7	2.0	2.7	2.0	2.7
Residual corrections (interpolation)					1.4	3.1	1.4	3.1	1.4	3.1
Residual corrections $(Z \to W \text{ extrapolation})$				ation)	0.2	5.8	0.2	4.3	0.2	5.1
Total					2.6	14.2	2.7	11.8	2.6	13.0

W Boson Analysis

Control Distributions (non m_w sensitive)

JProf. Dr. M. Schott (Johannes Gutenberg University, Mainz)

Page 30

- Remember the problem with the p_T(W) description?
 - How do we know, which MC generator to trust?
 - How do we know, that our assigned uncertainty makes sense?
- The u_{||}(I) distribution is very sensitive to the underlying p_T(W) distribution
 Can exploit this feature to verify the accuracy of our baseline model, and compare to alternative calculations

JProf. Dr. M. Schott (Johannes Gutenberg University, Mainz)

W-Mass Distributions: Electrons

- Predictions set to final combined m_w value
- Dip at 40GeV was studied thoroughly
 - No striking effects: stays at 2σ
 - Only mild impact on final m_w

W-Mass Distributions: Muons

- Very good agreement for muons
- Overall:χ²/n_{dof} probability distribution from 84 data/ prediction comparison

A Little Bit of History

- Over many years we investigated differences in blinded m_w mass-fits in different channels, templates, categories
 - Only after all corrections applied (and all bugs where found), we achieved consistent results

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Final Measurement

m_w Fit Results in Various Categories

- Illustration of fit-results in all measurement categories based on p_T and m_T templates for W⁺ and W⁻ in the electron and muon channel
- Compatibility tests performed before unblinding: $\chi^2/n_{dof} = 29 / 27$

Testing stability for different Fit-Ranges

- The fitting ranges have been optimized on MC predictions for reducing overall systematic uncertainty
- Stability of fit-results was studied, taking into account (de-)correlations

m_w Fit Results in Various Combinations

- = 80.370±0.007(stat.)±0.011(exp.)±0.014 (mod) GeV = 80.370±0.019 GeV
- JProf. Dr. M. Schott (Johannes Gutenberg University, Mainz)

Comparison to previous measurements and the Global Electroweak Fit

- Good news: New measurement reaches precision of CDF and is now the world leading measurement
- Bad news: We are even more Standard Model ...

JProf. Dr. M. Schott (Johannes Gutenberg University, Mainz)

Outlook

LHC

CMS will hopefully also publish soon a m_w measurement ATLAS still has data-sets of 2012/2015/2016

Room for improvements on the theory and calibration

IMHO: <10 MeV is feasible</p>

Tevatron

 x2-5 more statistics available (+ forward detectors)
 Use improved PDFs based on LHC measurements

Summary

- Five years effort from a large team and the full collaboration comes to an end
 Many important discussions with
 - colleagues from Theory and CMS
- First W mass measurement at the LHC unfortunately shows no signs of BSM
- Need some "break-through" in the MC event generator developments
 - We have quite some ideas to improve the achieved precision significantly!

