

Walter \& Eliza Hall Institute

wehi.edu.au"

Walter \& Eliza Hall Institute
Yonath group, Weizmann Institute \& Max Planck group Hamburg

X-ray diffraction led to the discovery of the double helix

The first protein structure to be determined was haemoglobin, in 1959

Over 100,000 macromolecular structures have been

 solved using synchrotron sources

High radiation dose causes changes in molecular structure

Crystal of Bovine enterovirus 2 (BEV2) after subsequent exposures of $0.5 \mathrm{~s}, 6 \times 10^{8} \mathrm{ph} / \mu \mathrm{m}^{2}$ 300 kGy dose Room temperature

Cryogenic cooling gives 30 MGy tolerance

Axford et al. Acta Cryst. D68 592 (2012)
Diamond Light Source (courtesy Robin Owen \&
Elspeth Garman)

X-ray free-electron lasers may enable atomic-resolution imaging of biological macromolecules

10 fs
20 fs 50 fs
R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, J. Hajdu, Nature 406 (2000)

X-ray free-electron lasers may enable atomic-resolution imaging of biological macromolecules

Imaging can be achieved with a lens

Resolution: $\delta=\lambda / \sin \alpha$

Imaging can be achieved with a lens

Resolution: $\delta=\lambda / \sin \alpha$

Imaging can be achieved with a lens

Resolution: $\delta=\lambda / \sin \alpha$

Imaging can be achieved with a lens

Resolution: $\delta=\lambda / \sin \alpha$

Imaging can be achieved with a lens

Resolution: $\delta=\lambda / \sin \alpha$

Imaging can be achieved with a lens

Imaging can be achieved with a lens

Resolution: $\delta=\lambda / \sin \alpha$

Imaging can be achieved with a lens

$$
\hat{\rho}(\mathbf{q})=-r_{e} \int \rho(\mathbf{x}) \exp (i \mathbf{q} \cdot \mathbf{x}) d \mathbf{x} \quad I(\mathbf{q})=|\hat{\rho}(\mathbf{q})|^{2}
$$

Single particles give continuous diffraction patterns

$$
\mathcal{F}^{-1}\{I(\mathbf{q})\}=\rho(k) \otimes \rho^{*}(-\mathbf{x}) \quad I(\mathbf{q})=|\hat{\rho}(\mathbf{q})|^{2}
$$

Over-constrained: more knowns than unknowns

Crystals give Bragg spots

$$
\rho(\mathbf{x}) \quad I(\mathbf{q})=|\hat{\rho}(\mathbf{q})|^{2}
$$

222222 222222 222222 222222 222222 222222 222222

Crystals give Bragg spots

$$
\mathcal{F}^{-1}\{I(\mathbf{q})\}=\rho(\mathbf{x}) \otimes \rho^{*}(-\mathbf{x}) \quad I(\mathbf{q})=|\hat{\rho}(\mathbf{q})|^{2}
$$

Under-constrained: fewer knowns than unknowns

Phasing is achieved using iterative algorithms

Recent hard X-ray experiments show high-resolution diffraction

Photosystem 1

9.3 keV

Single shot pattern
$\sim^{\sim} \mathrm{mJ}$ (5×10^{11} photons)
40 fs
$2 \times 10^{17} \mathrm{~W} / \mathrm{cm}^{2}$

- 25 GW X-ray pulse
$3.0 \AA$ Å resolution
crystals by Petya

Serial crystallography is made possible by four key technologies

1. Bright source
 2. Sample delivery
 3. Integrating detector
 4. Software

Intensities are merged into a "3D powder" pattern

Structures have been obtained by in vivo grown crystals

We have obtained time-resolved SFX structures of photoactive yellow protein (PYP)

Solution scattering gives single-molecule diffraction, but orientationally averaged

Aligned molecules yield a single-molecule pattern

Crystals provide a very high degree of alignment
そともそともと
ともももももと どももももとて ともももももも そとももももと ともももともも ともももももも

$$
\langle I(\mathbf{q})\rangle=\left|\sum_{i} \hat{\rho}_{i}(\mathbf{q})\right|^{2} \exp \left(-q^{2} \sigma^{2}\right)+\sum_{i}\left|\hat{\rho}_{i}(\mathbf{q})\right|^{2}\left(1-\exp \left(-q^{2} \sigma^{2}\right)\right)
$$

You can see a lot just by looking

By averaging thousands of patterns a strong single molecule diffraction pattern emerges

The orientational symmetry of the crystal is preserved, but not the translational symmetry

Electron density map from Bragg peaks alone ($4.5 \AA$)

The low-resolution support constrains the phases

Electron density map including continuous diffraction

The extended-resolution structure is superior

Bragg only (4.5 A)

Higher diffraction sampling

Bragg and continuous (3.5 Å)

- model free phasing
- more reliable structure determination

Resolution not limited by the crystal, just detector extent and shots
Number of molecules per shot: $1 \mu \mathrm{~m}^{3} \times 4 /\left(9.2 \times 10^{6} \AA^{3}\right)=4 \times 10^{5}$

The extended-resolution structure is superior

The continuous diffraction agrees with the simulated diffraction from the atomic model

Measurement

Difference

There are many opportunities for extending imaging concepts to X-ray diffraction at the atomic scale

Measurements require care to eliminate background and record weak continuous diffraction

Poorly diffracting crystals are better!

- More information than required to describe the object
- model free phasing
- more reliable structure determination
- first new phasing since MAD
- resolution better than you think

We can reconstruct images of soot, viruses, and nanoparticles

Reconstructions: Andrew Martin
Ekeberg et al PRL 114 (2015)

Coherent X-ray Imaging at CFEL

Funding:
HELMHOLTZ

