

Henry Chapman Center for Free-Electron Laser Science DESY and University of Hamburg

DESY Physics Seminar, May 2017

ASSOCIATION

European Research Council

YourGenome.com

OpenStax Anatomy and Physiology

wehi.edu.au

Walter & Eliza Hall Institute

wehi.edu.au

Walter & Eliza Hall Institute

Walter & Eliza Hall Institute Yonath group, Weizmann Institute & Max Planck group Hamburg

X-ray diffraction led to the discovery of the double helix

Rosalind Franklin

James Watson & Francis Crick

hys.org/list/watson-and-cricks-3d-model-of-dna/

http

Photograph 51, the X-ray image produced by Rosalind Franklin and her PhD student Raymond Gosling in 1952. The cross pattern visible on the Xray highlights the helical structure of DNA.

Wellcome Images

The first protein structure to be determined was haemoglobin, in 1959

Over 100,000 macromolecular structures have been solved using synchrotron sources

High radiation dose causes changes in molecular structure

Crystal of Bovine enterovirus 2 (BEV2) after subsequent exposures of 0.5 s, 6 x 10⁸ ph/µm² 300 kGy dose Room temperature

Cryogenic cooling gives 30 MGy tolerance

Axford et al. Acta Cryst. D68 592 (2012) Diamond Light Source (courtesy Robin Owen & Elspeth Garman)

X-ray free-electron lasers may enable atomic-resolution imaging of biological macromolecules

R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, J. Hajdu, Nature 406 (2000)

X-ray free-electron lasers may enable atomic-resolution imaging of biological macromolecules

Single particles give continuous diffraction patterns

Over-constrained: more knowns than unknowns

Crystals give Bragg spots

 $I(\mathbf{q}) = \left|\hat{\rho}(\mathbf{q})\right|^2$ $\rho(\mathbf{x})$ 2 2 2 2 2 2 2 2 1. 1. 1. 1. 1. 1. 1. 222222 2 2 2 2 2 2 2 2 2 2 2 2 2 L. L. L. L. L. L. 2 2 2 2 2 2 2

Crystals give Bragg spots

 $I(\mathbf{q}) = \left|\hat{\rho}(\mathbf{q})\right|^2$ $\mathcal{F}^{-1}\{I(\mathbf{q})\} = \rho(\mathbf{x}) \otimes \rho^*(-\mathbf{x})$

Under-constrained: fewer knowns than unknowns

Phasing is achieved using iterative algorithms

nitride membrane

Chapman et al. Nature Physics 2 839 (2006)

Recent hard X-ray experiments show high-resolution diffraction

Photosystem I 9.3 keV Single shot pattern ~1 mJ (5 × 10¹¹ photons) 40 fs $2 \times 10^{17} \text{ W/cm}^2$ 25 GW X-ray pulse

crystals by Petra

Fromme

Serial crystallography is made possible by four key technologies

Intensities are merged into a "3D powder" pattern

Structures have been obtained by in vivo grown crystals

Trypanosoma brucei cathepsin B obtained from in vivo grown crystals

Redecke, Nass et al. Science (2013)

We have obtained time-resolved SFX structures of photoactive yellow protein (PYP)

Difference electron density map 1.6 Å resolution

> 250,000 patterns R = 15 to 20%

Reaction initiaion: 40% (18% pR₁, 22% pR₂)

crystals <3 µm

Experiments led by Marius Schmidt, U. Wisconsin

Tenboer et al *Science* **346** 1242 (2014)

Pande et al *Science* **352** 725 (2016)

Solution scattering gives single-molecule diffraction, but orientationally averaged

Aligned molecules yield a single-molecule pattern

Crystals provide a very high degree of alignment

ととととととと 2222222 ととととととと . ととととととと . ととととととと . and a second second second ととととととも 2222222 $\langle I(\mathbf{q}) \rangle = \left| \sum_{i} \hat{\rho}_{i}(\mathbf{q}) \right|^{2} \exp(-q^{2}\sigma^{2}) + \sum_{i} |\hat{\rho}_{i}(\mathbf{q})|^{2} (1 - \exp(-q^{2}\sigma^{2})) \\ \sigma^{2} = \langle D^{2} \rangle$

You can see a lot just by looking

By averaging thousands of patterns a strong single molecule diffraction pattern emerges

The orientational symmetry of the crystal is preserved, but not the translational symmetry

Electron density map from Bragg peaks alone (4.5 Å)

The low-resolution support constrains the phases

Obtained by convolving 4.5 Å MR map with Gaussian of width 4.4 Å (i.e. 8.9 Å resolution)

Electron density map including continuous diffraction

The extended-resolution structure is superior

Higher diffraction sampling — model free phasing — more reliable structure determination

Resolution not limited by the crystal, just detector extent and shots

Number of molecules per shot: $1 \mu m^3 \times 4 / (9.2 \times 10^6 \text{ Å}^3) = 4 \times 10^5$

The extended-resolution structure is superior

The continuous diffraction agrees with the simulated diffraction from the atomic model

Cross Correlation = 75%

There are many opportunities for extending imaging concepts to X-ray diffraction at the atomic scale

Measurements require care to eliminate background and record weak continuous diffraction

Poorly diffracting crystals are better!

- More information than required to describe the object
- model free phasing
- more reliable structure determination
- first new phasing since MAD
- resolution better than you think

We can reconstruct images of soot, viruses, and nanoparticles

Reconstructions: Andrew Martin

Ekeberg et al PRL **114** (2015)

Coherent X-ray Imaging at CFEL

