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What is Dark Matter?

Baryon asymmetry?

Why three families?

Why those masses?

Grand Unification? SUSY Breaking?

Or direct motivation unknown?
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Super Symmetry
Little Higgs Model

Extra Dimensions

String Theories

Supergravity
Grand Unified Theories
MSSM
Hidden Sector Models
WIMPS
Higgs Doublet
SU(3)3

Axions
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No EVIDENCE ~ No EVIDENCE

No Evidence
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What did we miss?
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Light Particles

Stealth XXX

Long Lived Particles
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)

Communication
Mechanism
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Hidden Sector A gauge group that does not
interact via the SM gauge fields

»» A phenomenology of arbitrary
complexity

% Do interact via gravity (DM)

Hidden Valley Some particles come back!

G.'Watts(UW/Seattle) R =S ' 12



The Higgs as a Communicator

ATLAS and CMS arXiv.: 1606.02266
LHC Run 1

—~

Bgsi=0
— 1o interval
—— 20 interval

Room for a
30% invisible

1 15 2 decay
Parameter value
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Exotic Higgs Decays

Working Group

http: s.physics.sunysb.edu

Home Owverview Theories Producing Exofic Higgs Decays Decay Channels Contact Admin

Exotic Decays of the 125 GeV Higgs Boson
1312.4992v4

David Curtin,' Rouven Essig,! Stefania Gori,>*? Prerit Jaiswal,”

scalars

Andrey Katz,® Tao Liu,” Zhen Liu® David McKeen,™'? Jessie Shelton,®

Matthew Strassler.® Ze'ev Surujon,! Brock Tweedie,® ' and Yi-Ming Zhong'*

_ NMSSM with exotic decays to fermions
SM + Fermion

MSSM Hidden Valleys

SM + 2 Fermions

G. Watts (UW/Seattle) Little nggs
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http://exotichiggs.physics.sunysb.edu/
http://arxiv.org/abs/1312.4992v4

Interaction Strength ——

Hidden Sector

What we want to probe...
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Interaction Strength ——

Hidden Sector

What we want to probe...
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Why haven’t we seen anything yet?
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Energy

Why haven’t we seen anything yet?

LHC (Run 2)

G. Watts (UW/Seattle)

19



Energy

Why haven’t we seen anything yet?

Mixing

LHC (Rupi 2)
Y

Physics of the
Hidden Sector/Valley
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Tunneling/Mixing

Standard
Model
Particles
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Energy

How long it lives
cT

What it decays to, how
many of them will you
expect, kinematics, etc.

G. Watts (UW/Seattle)
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The mixing means the end result will be Standard Model Particles

- Couples to leptons (My small)

“lepton-jets” — jets of leptons

- Couples to heavy fermions

G. Watts (UW/Seattle)
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Many BSM theories accommodate long-lived particles

» Mini split supersymmetry (arXiv:1212.6971)

» Gauge mediation (arXiv:hep-ph/9801271)

» RPV (R-parity violating) SUSY (arXiv:1309.5957)

» Models of Baryogenesis (arXiv:1409.6729)

» Hidden Valleys (arXiv:hep-ph/0605193)

» Dark Photons (arXiv:1604:00044)

» Theories of Neutral Naturalness (arXiv:1512.05782)

» Models generating neutrino masses (arXiv:1604.06099)

G. Watts (UW/Seattle)
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Analysis Strategy

Driven by the production and decay operators in the theory

Have We Covered Them All?

LLP Only Production
¢ - m,m, Often produced in pairs

Hidden Valley
Neutral Naturalness

Associated Production and Decay

LLP is produced in association, or the decay contains other objects

Jets — Colored Object
Leptons — EW interactions
Weak Bosons — Associated production

etc.
G. Watts (UW/Seattle)
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Life-time of the LLP is a free parameter

G. Watts (UW/Seattle)
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Decay Product
[LJ or Hadronic Jets]

Neutral Decays

="

Distance from the Interaction Point
[Detector]

G. Watts (UW/Seattle)
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Decay Product
[LJ or Hadronic Jets]

Jet Appearing in

Prompt .
| P the Calorimeter
Displaced Vertex Jet Appearing in
in a Tracker the Muon
| Spectrometer
>

Distance from the Interaction Point
[Detector]
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Decay Product
[L) or Hadronic Jets]

Jet Appearing in

Prompt )
P the Calorimeter

- |

Displaced Vertex Jet Appearing in
in a Tracker the Muon
| Spectrometer

n
—>

‘é 4 —>
‘é - >

Distance from the Interaction Point
[Detector]
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 Missing Et

Decays

* |nner Detector
e (Calorimeters
* Muon Detectors ﬁ

G. Watts (UW/Seattle) 29



— — — - Neutral Hadron {
Photon

G. Watts (UW/Seattle) 30
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Decays in the Calorimeter

1. Look for the “appearance” of energy the Calorimeter
2. Little or no activity in the tracker

G. Watts (UW/Seattle)
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Tile barrel Tile extended barrel
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LAr electiromagnetic
end-cap (EMEC)

LAr eleciromagnetic

barrel
LAr forward (FCal)
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“CalRatio”

IIII|IIII|IIII|IIII|IIII|IIII|IIIIIIII
L=15nb", \s =8 TeV ATLAS

Multi-jets

Signal: decay in HCal
Signal: decay in ID

Fraction of Jets

-'::E —)

LW e ey | I T —

4
Iog1 O(EH/EEM
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KR KRK 5 ® m, 126 GeV -m,, 10 GeV
K ® m, 126 GeV - m_, 25 GeV

probability t,
I | T T |

— m,, 300 GeV - m_, 50 GeV
— X m, 600 GeV - m,, 150 GeV
m, 900 GeV - m_, 150 GeV

ATLAS
Simulation

barrel

I|IIII|IIII|IIII|IG@|I|IIII|IIII
2 2.5 3 3.5 4 4.5

m

r[m]
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> 1jet passes CalRatio trigger; = 2jets

-
N
o

ATLAS Pre”minary O data 2015 BIB
B + data 2015 cosmic rays
(s=13 TeV,3.2fb"  —— SM multijets
m,=600 GeV; m =150 Ge\t
LF=5m: all jets
m,=600 GeV; m =150 GeV,
LF=5m; jets with 2<L_<4 n

Fraction of jets
o
N

BDT value

G. Watts (UW/Seattle) 36



The events must be written to tape...

G Associated Production/Associated Decay

e.g. WH production
Trigger on isolated muon or missing E
e.g. jets, missing Er, etc.

Q Signature Driven Trigger

ATLAS has 3 signature driven triggers running since the start of 2011:

* Trackless Jet Trigger
 CalRatio trigger

All tri t be below 1 Hz!
* Muon Rol Cluster Trigger } rIEEErs must be below 1 Rz

CMS has made great use of more traditional triggers

* Muon triggers
* Jet triggers

G. Watts (UW/Seattle)
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Acceptance

A single displaced vertex
Displaced vertex + (jet, muon, missing E7, etc.) X %

Two displaced vertices -

Small Backgrounds

G. Watts (UW/Seattle) 38
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Run 2 — Search for two LLP’s
in the calorimeter

SR: p, »150 GeV, p,,>120 GeV; = 2CalRatio jets
ATLAS Preliminary m, =600 GeV
{|-\s=13TeV,3.2 b’ m, = 150 GeV._|

Y AR, Get, tracks)

There are limits for 200 GeV
and 400 GeV as well.
125 coming with next update.

—
<

95% CL Upper Limit on ¢ xBR [pb]

G. Watts (UW/Seattle)

5=13TeV 321
Sy

— m, =150 GeV
m, = 400 GeV

ATLAS Preliminary =~

1 10
s proper decay length [m]
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Run 2 Search for Displaced Lepton-Jets
H - fdzfdz’fdz - )/dHLSP

3 Long Lived Final State Objects:
Muons Only (type 0)

Muons in a jet (type 1)

Jet only (type 2)

LJ TypeO L) Typel LJ Type2

The ABCD Method is
used to determine
the backgrounds.

ATLAS Preliminary

Max £ P, [GeV]

341" (s=13TeV
' : - ATLAS Preliminary
r 34f (5=13TeV

";n+XJ [pb]

o
P
T

95% CL Limit on oxBR(H— 2

Limit is also set for a
800 GeV scalar.
G. Watts (UW/Seattle) 41




Run 2 Search for 4 muonsinn < 2.4
In topology with two pairs of
(closely spaced) muons

yp is the LLP

CMS Preliminary £=2 B [13TeV)

dark SUSY 95% CL upper limits
m:-'l:=|:'.2._'_il::'.|:_-'l'
Ref. modek o(pp—>2y ) = 11 og_ (125 GV

CMS Preliminary
2.8~ (13 TeV)

Kinetic mixing parameter €

1

cT,p [mm]

CMS also has an interesting displaced eu search...
G. Watts (UW/Seattle) 42



CMS Run 1 Displaced Jet Search

H - XX
X = qq (long lived, Higgs Portal)

Jet1(q)

Jet 2(q)

AN Common displaced vertex

G. Watts (UW/Seattle) 43
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Significance

Jet1(q)
Run 1 Displaced Jet Search

Jet 2(q)
H - XX
X = qq (long lived, Higgs Portal)

Common displaced vertex
185 (8 TeV)

CMs

¢ Observed background

18.5 o™ (8 Tev)
CcMS

%ﬂﬁ Predicted background 95% CL limits:
> ' m,, = 200 GeV

—e—m, = 50 GeV

[ Exp. limits (+ 10)

01 0.3 0.5 07 09
Vertex/cluster discriminant
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ATLAS Long-lived Particle Searches* - 95% CL Exclusion

Higgs BR = 10%

=5%

300 GeV Higgs BR
scalar scalar

900 GeV

Other

Model

RF’VXQ — eev/euv/uuy
GGM ! - 2&

AMSB pp - xix x{ x7
AMSB pp — xix? i x7
GMSB

Stealth SUSY

Hidden Valley H — mury
Hidden Valley H — =,
FRVZ H — 2y4 + X

FRVZ H — 4yq + X

Hidden Valley H — mymy
Hidden Valley H — .,

FRVZ H — 4yq + X

Hidden Valley ® — m,m,

Hidden Valley ¢ — m,m,

Hidden Valley ¢ — m,m,

Hidden Valley ® — mymy

HV Z°(1 TeV) — qugy

HV Z/(2 TeV) = quay

Signature

displaced lepton pair
displaced vtx + jets
disappearing track
large pixel dE/dx
non-pointing or delayed ¥
2 ID/MS vertices
2 low-EMF trackless jets
2 ID/MS vertices
2 e—, u—, m—jets
2 e—, pu—, m—jets
2 low-EMF trackless jets
2 ID/MS vertices
2 e—, pu—, m—jets
2 low-EMF trackless jets

2 ID/MS vertices

2 low-EMF trackless jets

2 ID/MS vertices

2 ID/MS vertices

2 ID/MS vertices

fL e[

20.3

20.3

20.3

18.4

20.3

19.5

20.3

19.5

20.3

20.3

20.3

18.5

20.3

20.3

18.5

20.3

19.5

Lifetime limi

ATLAS Preliminary
[Ldt=(184-203) b7 s5=8TeV
Reference

LA |

X? lifetime:
x;' lifetime
xf lifetime
x? lifetime
x? lifetime
§ lifetime

n, lifetime
y lifetime
4 lifetime

vd lifetime

x, lifetime
my lifetime

4 lifetime

ny lifetime

x, lifetime
my lifetime
nr, lifetime

x, lifetime

x, lifetime

1 el

0.22-3.0m

1.31-9.0m

0.08-54m

0.41-7.57 m

0.31-254m

0.43-18.1m

0.19-31:8'm o<BR = 1 pb, m(r,) = 50 GeV

0.11-183 m

0.1-4.9m

0.1-10.1m

T T T T —TT

m(g) = 1.3 TeV, m(x?) = 1.0 TeV| 1504.05162

m(g) = 1.1TeV, m(x?) = 1.0 TeV| 1504.05162

m(y%) = 450 GeV 1310.3675

m(x}) = 450 GeV 1506.05332

SPS8 with A = 200 TeV 1409.5542

0.12-90.6m m(g) = 500 GeV 1504.03634

m(ny) = 25 GeV 1501.04020

m(r,) = 25 GeV 1504.03634
H = 2yy + X, m(yy) = 400 MeV 1400.0746

H o 4y, + X, m(yg) = 400 MoV 1409.0746

m(my) = 25 GeV 1501.04020

m(m,) = 25 GeV 1504.03634

H = 4y, + X, m(yg) = 400 MeV 1409.0746

oxBR = 1 pb, m(x,) = 50 GeV 1501.04020

1504.03634

oxBR = 1 pb, m(m,) = 50 GeV 1501.04020

oxBR = 1 pb, m(x,) = 50 GeV 1504.03634

oxBR = 1 pb, m(r,) = 50 GeV 1504.03634

oxBR = 1 pb, m(r,) = 50 GeV 1504.03634

L

M | L PR

0.01

Vs=8TeV

10
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EX0-15-010

EX0-13-006

EXO-12-036

EX0-12-038

EXO0-12-037

EX0-12.034

EXO-12-026

EXO0-11-035

EXO-11-101

EXO-11-074

EXO-11-067

EXO-11-020

EXO0-11-022

EX0-10-011

EXO-10-003

Search for long-lived charged particles in proton-proton collisions at \/E =13 TeV

Constraints on the pM55M, AMSB model and on other models from the search for long-lived charged particles in
proton-proton collisions at /s =8 TeV

Search for decays of stopped long-lived particles produced in proton-proton collisions at \/5 =5 TeV

Search for long-lived neutral particles decaying to quark-antiquark pairs in proton-proton collisions at x_.f’E =3 TeV

Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton
collisions at /s =8 TeV

Search for disappearing tracks in proton-proton collisions at /s = § TeV

Searches for long-lived charged particles in pp collisions at /s =7 and 8 TeV

Search for long-lived particles in events with photons and missing energy in proton-proton collisions at /s =7
TeV

Search in leptonic channels for heavy resonances decaying to leng-lived neutral particles

Search for fractionally charged particles in pp collisions at /s = T TeV

Search for new physics with long-lived particles decaying to photons and missing energy in pp collisions at \/E =
T TeV

Search for stopped long-lived particles produced in pp collisions at \_.f‘E =7 TeV

Search for heavy long-lived charged particles in pp collisions at ‘/E =7 TeV

Search for Heavy Stable Charged Particles in pp collisions at \/E =T TeV

Search for Stopped Gluinos in pp collisions at /s = 7 TeV/

G. Watts (UW/Seattle)
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Expanding the Program

More final states
Longer ct

G. Watts (UW/Seattle)
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The current strategy works
only for a two (or more)
displaced vertices

Displaced vertex

.—-"‘_-.—' l : : l

Backgrounds?

Look for a second object in the event

Use ABCD method to calculate backgrounds S
* |so/Non-Iso: Displaced object with
nothing else near it
* The uncorrelated Y variable will
depend on the analysis
* Lepton pr, Missing Er, jet pr,
etc.

1S0

G. Watts (UW/Seattle) 48



What about life-time sensitivity?

Lifetime is a free parameter...

But it is constrained by Big Bang Nucleosyntheses - ct~107 m

ATLAS/CMS Detectors can only see to ~100 m

Escaped Particles become missing Er...

-
o

ATLAS Internal Prompt search 1 MSDV + inv
—— 1 DV + prompt VH, H > inv
---VBF + H > inv

Gprod,ggF

—_
o
L -

-
o
o

~
o
o
Q.
o
e}
*
)
Qo
c
©
I
Q
i)
Q
Q
©
8
Q
3
2
(i

10 10° 10°

Proper lifetime (c*t) [m]

Acceptance isn’t great
Can’t tell if they are stable or large ct...

G. Watts (UW/Seattle)
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Increase the base-line: put a detector on the surface M

A new experiment to look at Ultra Long Lived Particles (ULLP)

* Scintillator for 1.5 ns timing resolution
* RPC layers for track reconstruction (and vertex finding)

l Mathusla Detector (~200 sq m)

Surface ]

A

A

»
|

~100 m

SM decay Passing
products SM particle(s) RPC layers

-

20m -
Scintillator

—_—

200m

G. Watts (UW/Seattle) 50



Backgrounds

Cosmic Muons

RPC layers

* Precision timing from scintillators
Tracking from RPC’s
20 m height

e 70 ns travel time ——
May also be some interesting physics
10 MHz (200 m?)

Upward going LHC Muons RPC layers

Cosmic Rays?

* Precision timing from scintillators
e 10 Hz from the LHC

Upward going cosmic neutrinos

* Inelastic interaction in the decay volume
* 10-100 interactions per year

G. Watts (UW/Seattle) 51



Building test stand

* Scintillator from DZERO end-station
muon chambers
* RPC’s from Rome (Argo experiment)

Hoping to run this summer/fall

If GEANT4 model holds, then work towards
a full experiment.

G. Watts (UW/Seattle) 52



Detecting Ultra-Long-Lived Particles: The MATHUSLA Physics Case

Editors:
David Curtin', Matthew MCCulloughQ, Patrick Meade3, Michele Papucci4, Jessie Shelton®

Baryogenesis .
dVr\yfll\gdPyBaryogenesis. Ca Goal IS tO have

Leptogenesis

Neutrinos ComprehenSive

Bottom-Up Considerations . .

Hidden Valleys document finished
Exotic Higgs Decays . . . .
DM and mono-X searches . by ear I y 2 O 1 7
SM + V: Dark Photons . . .
SM + S: Singlet Extensions .
Signatures Contributions from

Possible Extensions

Conclusions broad spectrum of
theory community

Foreword
Introduction
Summary of MATHUSLA Experiment
Letters of Support
Theory Motivation for Ultra-Long Lived Particles .
Naturalness
Supersymmetry
RPV SUSY
Gauge Mediation
Mini-Split SUSY
Stealth SUSY
Neutral Naturalness
Composite Higgs
Dark Matter

Asymmetric Dark Matter
Dynamical Dark Matter . . . . ... ......

Freeze-In Scenarios

Freeze-out-and-decay Scenarios
SIMPs and ELDERs
Decoupled Hidden Sectors

Coannihilation

G. Watts (UW/Seattle) 53
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< \ // \\ Why stop at long lived jets?

—
,.__._:_:

Lepton-Jets

Kinked Tracks
Disappearing Tracks

dA Quirks

Highly lonizing Particles
Emerging Jets

J
[}

G. Watts (UW/Seattle) 55



Conclusions

* The LHC has completed a fairly comprehensive set of searches
for long lived particles decaying to jets!
e SUSY searches not discussed here!

» Substantial parts of phase space for exotic Higgs decays have
been ruled out
* As well as heavier mass scalar decays

* A lot of room for improvement in Run 2
 Combined analyses, better results for theorists
* Include other objects besides displaced vertices
* A huge amount of work already done... just not public. ®

e ULLP Searches
» MATHUSLA detector, test stand
* Initial collaboration of 5 or 6 institutions formed (and
growing)

G. Watts (UW/Seattle)
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Thanks!

And the LHC!

And to ATLAS

57
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curring in
in general a
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