Lattice Field Theory for Pedestrians:
an introductory lecture

N

Karl Jansen ICL

e Motivation
e Introduction to Lattice Field Theory
e Examples of present lattice calculations

— Hadron spectrum
— Dark matter search: scalar quark content of the nucleon
— Vacuum stability of the standard model

e Conclusion




Quarks are the fundamental constituents of nuclear matter
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Fig.7.17 W, (orF,) asatunction of ¢ at x = 0.25. For this choice of x, there is practically no
q¢*-dependence, that is, exact “scaling”. (After Friedman and Kendall 1972.)

Friedman and Kendall, 1972)

f(z, QQ)‘xz0.25,Q2>10Gev independent of Q?

(x momentum of quarks, Q% momentum transfer)

Interpretation (Feynman): scattering on single quarks in a hadron
— (Bjorken) scaling



Quantum Fluctuations and the Quark Picture

analysis in perturbation theory
1 As 2 g 2 2 Qg 2 3
Jo daf(e, Q%) =3 |1 — =8 —a(ny) (ﬁ) —b(ny) ( = )) ]

—a(ny),b(ns) calculable coefficients

deviations from scaling — determination of strong coupling
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Why we need lattice QCD

e situation becomes
incredibly complicated

e value of the coupling
(expansion parameter)
ozstrong(lfm) ~ 1

= need different ( “exact”) method

= has to be non-perturbative
— more than all Feynman graphs

e Wilson's Proposal: Lattice Quantum Chromodynamics



Lattice Gauge Theory had to be invented

— QuantumChromoDynamics

asymptotic confinement
freedom
distances < 1fm distances = 1fm
world of quarks world of hadrons
and gluons and glue balls
perturbative non-perturbative
description methods

Unfortunately, it is not known yet whether the quarks in quantum chromodynamics
actually form the required bound states. To establish whether these bound states
exist one must solve a strong coupling problem and present methods for solving
field theories don’t work for strong coupling.

Wilson, Cargese Lecture notes 1976



Feynman'’s alternative formulation of quantum mechanics

the double slit experiment

superposition principle
— interference pattern
— probability P = |®; + $y|?

®; quantum mechanical amplitude



Adding slits

four possible paths
— probability P = [®1 + ®5 + P35 + Py?

®; quantum mechanical amplitude



Even more ...
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Scl(path)
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Feynman @, = eh

Sci(path) classical action of path



Quantum mechanical oscillator in Euclidean time

Feynman path integral in quantum mechanics

Z = fDxeiZ_iSd

e S classical action, e.g. quantum mechanical oscillator
Sa = [dt|3i*(t) — V(z(t))]

e x(t) are classical paths

perform analytical continuation to imaginary (Euclidean) time 7

t— —it  f(t) — f(7)

1
Z = fD:ce_ﬁSE, Sg = [dr |33%+ V()]




Discretizing

“time lattice” with N =T'/a lattice points

x(7) — x(n) boundary condition: (N + 1) = x(0)
case 1: & — [x(n+a) — z(n)] /a
=2 |z(n) + da + zi%a® + - —z(n)] = &+ O(a)
= linear discretization effects
case 2: & — [r(n+a) —xz(n —a)] /2a
= 5 |z(n) + za + 33%a® + -+ — x(n) + ta — 52%a*| = £+ O0(a?)

= quadratic discretization effects



Lattice version of quantum mechanical oscillator

e discretization provides well defined path integral

N r\nr+—a)—r\n 2
z= / [T dz. / )
n=1

f%w

e measuring observables

— average position (z) = [[[_, dz,ze 5/Z

— average position square (%) = [[]"_, dz,2%e 5/ Z



Monte Carlo Method

(f(@)) = [daf(z)e ™/ [ dze=

— solve numerically:

e generate succesively Gaussian random numbers z;

e do this N-times
= (f(2)) = §5p 2_; f(x:) £ O(1/V/ NoP)

e but, what if distribution ¢=°(*) is much more complicated?



find a transition probality W (x, ") that brings us

{ZC} — {371,5172,---,513]\]} — {ZE/} — {517/1,33/2,,56/]\7}
and which satisfies

o W(x,x") > 0 strong ergodicity (W > 0 is weak ergodicity)
o [da'W(x,2')=1

o W(x,z') = [da"W(x, 2" YW (2", 2") (Markov chain)

o W(x,x") is measure preserving, dz’ = dx

under these conditions, we are guaranteed

— to converge to Boltzmann distribution e=°

— independent from the initial conditions

— proof: (Creutz and Freedman; Liischer, Cargese lectures)



Detailed balance condition

e sufficient condition: detailed balance

W (x,z") _ P(z")
W (z!,x) P(x)

— (most of ) our conditions are fulfilled

e Metropolis algorithm choice
Waet(z, ') = O(S(x) — S(x')) + exp (—AS(2',x)) O(S(2") — S(x))
AS(x',x) = S(2") — S(x), ©() Heavyside function



i) generate uniformly distributed new x’ in a neighbourhood of x
r € [x; — Qx; + Q]

i1) if Spew — Sola = AS(2/,2) < 0) accept 2’

ii1) if AS(2’,x) > 0) accept with probability exp(—AS (2, x))

e steps i) — iii) are repeated MCsteps-times



e very general algorithm, can be used for many physical systems
e shows, however, often very long autocorrelation times

e much too costly for fermionic systems (why?)



Action to be programmed

2
S=a 27{\;1 =My (wz+22 )° s + A}

periodic boundary condition: zn1 =21, 9 = N

e potential V(x)

— u? > 0,\ > 0 : harmonic potential (z) =0
— p* < 0,\ > 0: anharmonic potential {(z) = v # 0

u >0 A>0 <0, A>0

V(o)
V(o)




average position

Observables

_ 1
<.CIZ> ~ MCsteps Z

average position squared

MCsteps

1
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— theoretical value known for ¢ > 0 and p? > 0
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Schwinger model: 2-dimensional Quantum Electrodynamics
(Schwinger 1962)

Quantization via Feynman path integral (in Euclidean time)

Z = [DA, DUDVe Sgauge ™ Sterm
Fermion action

Sterm = [ d*xV(x) [D,, +m] ¥ (x)
gauge covriant derivative

D,V(z) = (0, —190Au(z))V(z)
with A, gauge potential, gy bare coupling

Sgauge = J P Fr , Fu) = 0,A,(2) — 0, A,(2)

equations of motion: obtain classical Maxwell equations



Lattice Schwinger model

Introduce a 2-dimensional lattice with

lattice spacing a
\lj.
U
: = : : >
fields W(xz), W(x) on the lattice sites x
r = (t,x) integers S <
discretized fermion action U;
o

S —a®> Uy0,—r 82 +m| ¥ (x)
N~
A

Op = % [VZ + V]

discrete derivatives
VuU(z) = 2 [W(z +ap) = U(z)] , V;¥(z)=_[U(z) - ¥(z—a)

second order derivative — remove doubler <— break chiral symmetry



Implementing gauge invariance

Wilson's fundamental observation: introduce parallel transporter connecting the
points x and y = = + aji :

Uz, p) = e 4@ ¢ U(1)

= lattice derivative: V,U(z) = L [U(x, p)¥(z + p) — ¥(x)]

1 s Up = Uz, ))U (2 + 1, YU (2 + v, ) U (2, v)

- — F Ft(x) for a—0

o~
—

S =05, {B(= ) [~ ReWup)] + 6 [+ Hou(V,+ V) - aVi9,}] 0}

partition functions (path integral) with Boltzmann weight (action) S

zZ = fﬁelds e "




Physical Observables

expectation value of physical observables O

(0) =% / Oe™?
fields
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| lattice discretization
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From the Schwinger model to quantum chromodynamics

system becomes 4-dimensional:
150 - 50] — [50 - 50] - 2500

gauge field U(x, ) € U(1) — U(zx,n) € SU(3)

quarks receive 4 Dirac and 3 color components:
150 - 50] — [50 - 50] - 30000

theory needs non-perturbative renormalization
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The graph that wrote history: the “Berlin Wall”

see panel discussion in Lattice2001, Berlin, 2001

1000 configurations with L=2fm
[Ukawa (200D]
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“both a 10% increase in computing power
AND spectacular algorithmic advances
before a useful interaction with
experiments starts taking place.”

(Wilson, 1989)

= need of Exaflops Computers



Why are fermions so expensive?

need to evaluate

2 [ DiDpe HORE o den[DPi

lattice

bosonic representation of determinant

det[DPirac | o [ DPIDPe™* { Prattice }?

lattice

need vector X = D L. ®

lattice

solve linear equation D tiiceX = @

Diattice Matrix of dimension 100million @ 100million ~ 12 - 483 - 96
(however, matrix is sparse)

number of such “inversions”: O(1000 — 10000) for one field configuration

want: O(1000 — 10000) such field configurations



A generic improvement for Wilson type fermions

New variants of HMC algorithm
(here (Urbach, Shindler, Wenger, K.J.), see also RHMC, SAP)

e even/odd preconditioning
e (twisted) mass-shift (Hasenbusch trick)

e multiple time steps

1000 configurations with L=2fm
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— comparable to staggered

— reach small pseudo scalar masses ~ 300MeV



Recent pricture

physical point
v

100 EI | UL | LI | LI | T TT UL L LI LI T TT IE
- HMC 01 .
10 — DD-HMC 04 |
— - — deflated DD-HMC ’07 ]
= - i
O - i
o) L A
X
& 1F E
o - 3
= C ]
= - i
é-‘ ~ —
2, 0.1 =
:I | | | | | | | | | 1111 | I | | | | | | | | |:

0 10 20 30 40 50 60 70 80 90
quark mass [MeV]



German Supercomputer Infrastructure

e JUQUEEN (IBM BG/Q)
at Supercompter center Julich
5 Petaflops

" ITUOQUEEN @

e HLRN (Hannover-Berlin)
Gottfried and Konrad
(CRAY XC30)

2.6 Petaflops

e Leibniz Supercomputer center Munich
combined IBM/Intel system SuperMUC
3 Petaflops

Computertime: through local calls, e.g. NIC,
or Europe wide: PRACE — peer reviewed



Strong Scaling

e Test on 72 racks BlueGene/P installation at supercomputer center Jiilich

e using tmHMC code

1000 393564y
643 x 128 —a—
128 x 256 —e—

1283 x 288 O

100 ¢

THop

10 ¢

100 1000

1
# processors [10%]



Computer and algorithm development over the years

Lattice physicists have invested a lot in algorithm development
supercomputer architectures show remarkable speedup

time estimates for simulating 32° - 64 lattice, 5000 configurations

[ TTTTTTTTTTT T T T IT

® Machine

O Machine + Algo

(3y)

real time (days)
w
O
=

0 L A A

1987 1995 2000
year

— algorithm development very important

— typical architectures: BG/L,P,Q, Intel, GPUs






M[MeV]

The lattice QCD benchmark calculation: the spectrum

spectrum for N =2+ 1 and 2+ 1+ 1 flavours
f

22 ‘
2000 ETMC Ni=2+1+1 —¥—
1 BMW
i 27 PACS +—A— } %
i = LHPC 4
15007 N 18 % , A
] N $A A
1000 N z 167 \
, ===K* | = N E _‘i
] =g 2 14 -
500] ——k — oxpe = Bl
R —= widtt L
s 00:3 12 S
—— TI
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N A £ = A ¥ T Q
first spectrum calculation BMW repeated by other collaborations

(ETMC: C. Alexandrou, M. Constantinou,
V. Drach, G. Koutsou, K.J.)

e spectrum for Ny =2, Ny =2+ 1 and Ny =2+ 1+ 1 flavours
— no flavour effects for light baryon spectrum



Even isospin and electromagnetic mass splitting

(BMW collaboration)

1t m BMWec preliminary ﬂ 12000
0
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91
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baryon spectrum with mass splitting

e nucleon: isospin and electromagnetic effects with opposite signs

e nevertheless physical splitting reproduced



Setting the scale

10 : : : : :
O Experiment O a=0.093 fm, Ng=2+1+1
9_ B a=0.089 fm, N¢=2 O a=0.082 fm, Ng=2+1+1 hvs
& a=0070fm N;=2 ¢ a=0.064 fm, Np=2+1+1 grc)}fcon Mll)argﬁcon
8- A a:;;).(g?):lefin,NFZ, — O(p?) fit to Ng=2+1+1 and Ny=2 | tU ne tO Mp.hys p— Mla.dtt pm— 6-95
plon pion
71
3 use proton mass: a - MPWS — pylatt
> 6 P . proton proton
E - L] L]
= determine lattice spacing
4l
3
*

00 0.05 010 045 020 025 030 0.35
m2 [GeV]

= using value of a other quantities have to come out right

up to discretization effects

MDS/MK MDS/MD fK/fW st/fD
lat.  3.96(2) 1.049(4)  1.197(6)  1.19(2)
PDG 3.988 1.0556(02) 1.197(06)  1.26(6)

e with strange, charm quarks — need additional input
e repeat for smaller and smaller a — continuum limit




The strange quark content of the nucleon

X

e scalar candidate particles for dark matter

e interaction with nucleon: scalar quark content
via the Higgs boson exchange diagram

spin independend cross section: A

N

Nlgq|N) .
O_SIOCZ < | | ) ,Q—U,d,S,C

want sigma terms (scalar quark content of nucleon):
oy = (N|uu|N), o4 = (N|dd|N),

= (N|s8s|N), 0. = (N|cc|N),

(N|tuu+dd|N)
InN = “(mytmy) /2




The problem

spin independent cross section strongly dependend on sigma terms
e.g., phenomenological analyses: 48MeV < o,y < 80MeV

= cross section can change by an order of magnitude

want: a first principle, non-perturbative computation of o,

— the lattice



Problem on the lattice

disconnected diagrams:
quarks lines only indirectly conneced via gluons |
= very bad signal to noise ration
= often simply neglected

High statistics analysis
(A. Abdel-Rehim, C. Alexandrou, M. Constantinou, K. Hadjiyiannakou,

Ch. Kallidonis, G. Koutsou, A. Vaquero Avilés-Casco, K.J.)
substantial algorithm development (exact deflation, truncated solver)
(0(200.000) measurements (typical: O(1000) measurements)

dedicated Gauss center project:
~ 50 Million core hours
on Hazel Hen at Stuttgart supercomputer center ( ~ 2.5 Million Euro)



Results for sigma terms

e find signal for all sigma terms:
oxn = 37.22(2.57)(1027) MeV,

0 = 41.05(8.25)(1199) MeV,
0. = 79(21)(F713) MeV

e strange quark content of nucleon: yy = <1\27\<£i8c£i\lfl>\f> = 0.075(16)

e remarks

— o,N compatible with other lattice works
— 04 most precise result so far
— 0. only available result



Higgs boson mass bounds from the lattice

e the Lagrangian of the scalar theory (= Ginzburg-Landau theory)

2
Lylp] = 30,0504 + 5120w + A (0hes)
— 1? bare Higgs boson mass, A\ bare quartic coupling
—  4-component real scalar field

— O(N) invariance of Lagrangian

two phases () = v = 0 symmetric phase
v > 0 spontaneously broken (Higgs) phase

u2>0 A>0 u2<0 A>0

V(o)
V(o)




Predicting your own death: the suicid of the standard model

e 1-loop analysis of broken phase of the scalar theory

A N+8
MR = A2) = Ry = A
1—by Ao log (A—2>
™

Interpretation:

o for A — 00 : A" = () < triviality of the (*-theory (and of the standard-model)

e cut-off cannot be removed from the theory
= standard model only effective theory, valid up to a certain cut-off value A

e intrinsic relation between cut-off and Higgs-boson mass

e interpretation of cut-off: energy scale of yet to be discovered
physics beyond the standard model



Consequences of triviality

)\ren(pQ — A2) — AQ

) 7bN —
1—-byAg log (A—2>
m

singularity (Landau pole): log ( A ) 1

m2, ) — byXo

— avoid Landau pole — bound on A™"

— since m%, = 2v°\'*™ = bound on Higgs boson mass



Effects of adding quarks
o effective potential
Ut =V +1/2 [, In[k® + m?] — 2Np [, In[k* + y°¢?]

= negative contribution for fermions — theory becomes unstable

0.20 T T T T T T T T T T T

e to avoid instability
— (lower) bound on Higgs boson mass ©

0.00

—0.05

0 200 400 600 800 1000 1200
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The holy grail: exact chiral invariant Higgs-Yukawa lattice action (Liischer)

e the lattice fermionic and Yukawa parts <— exactly same form as in continuum
= breakthrough in lattice field theory

(LF + LY)[&) ¢] — &Dovw + Yb (t_a E>L Qpr + Yt (Ea E)L @tR + c.cC.

e change from continuum:

— 17,0, — Doy

- Py = 1j:2W5 AP:I: — 1:2’3/57/3/5:,}/5(1_0’DOV)

e exact lattice SU(2) x U(1)g chiral symmetry

W — UpPytp + QP o, — oP.QL +P_UL

¢ — UrpQl, ¢t — QLoTUL,.

with Qp € SU(2), Ugr € U(1)



The algorithm

improvements (Philipp Gerhold, K.J.):

special preconditioning techniques for fermion matrix:
— factors of O(10)-O(100) improvement for condition number

Fourier acceleration

FACC | traLength | Nconf ACtime cost
r = 0.12313 No 2.0 2020 | 132.1+6.4 | 2662 + 129
kr=0.12313 | Yes 2.0 21780 | 1.1 +0.1 37+ 1
x = 0.30400 No 1.0 2580 | 34.9+ 2.1 450 + 28
r = 0.30400 | Yes 1.0 22360 | 3.8 +0.2 171 £8

exact Krylow space reweighting

multiple time scale integrators




Higgs boson mass bounds in GeV

(J
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Bounds on Higgs boson mass from the lattice
. Bulava, D. Chu, P. Gerhold, J. Kallarackal, B. Knippschild, D. Lin, K. Nagai, A. Nagy, K.J.)

I upper bound + 5
lower bound

1 M = 125GeV
500 1000 1500 2000 2500 3000
Cutoff in GeV

e Higgs boson mass right in the funnel of mass bounds

e validity scale of the standard model



Lattice: Fermion mass dependence of Higgs boson mass bounds

800 . . . . T .
—oc— upper bound
—&— lower bound (preliminary) g
700 - o Jower bound ]
600 |- 0 2 1
®
500 ® .
>
)
O, 400 b ]
A i
300 | -
200 .
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100 ) N
@
0 1 1 1 1 1 1

100 200 300 400 500 600 700 800
MMy [GEV]

e strong dependence on fermion mass

e exclude 4th generation quarks



Effect of adding a \¢®° term

e Higher dimensional operators

— are allowed since theory is only defined with cutoff
— can mimic extensions of standard model, e.g. a second scalar particle
— with A\g > 0, quartic coupling can be negative

my in GeV
o @
o o
T T
4.4.4,‘.‘.
S AR ]
]
:‘ -_. .o 4 ¢« =
s
. .
° [
| |

0 | | | | | | |
1000 2000 3000 4000 5000 6000 7000 8000

A in GeV

o

e already a simple \¢®° term can change bound



Further lattice QCD activities

e obtain precision results
(e.g. strong coupling, quark masses, decay constants)

e better understanding of QCD
(e.g. chiral symmetry breaking, topology)

e understanding hadrons
(e.g. hadronic form factors, proton spin puzzle, PDFs)

e help to uncover BSM physics
(e.g. B-system, electroweak observables, anomalous magnetic lepton moments)

e conceptual and algorithmic developmens

= grand challenges for the future






Exercise after coffee

e programme action of quantum mechanical oscillator
e evaluate path integral by Metropolis algorithm
e compute observables (x), (%) with error

e compare (x?) to theoretically known value

= have fun (we, J. Volmer and K.J. will help)



