Lattice Field Theory for Pedestrians: an introductory lecture

Karl Jansen

- Motivation
- Introduction to Lattice Field Theory
- Examples of present lattice calculations
 - Hadron spectrum
 - Dark matter search: scalar quark content of the nucleon
 - Vacuum stability of the standard model
- Conclusion

Quarks are the fundamental constituents of nuclear matter

Fig. 7.17 $_{\rm V}W_2$ (or F_2) as a function of q^2 at x=0.25. For this choice of x, there is practically no q^2 -dependence, that is, exact "scaling". (After Friedman and Kendall 1972.)

Friedman and Kendall, 1972)

$$f(x,Q^2)|_{x\approx 0.25,Q^2>10 {
m GeV}}$$
 independent of Q^2

(x momentum of quarks, Q^2 momentum transfer)

Interpretation (Feynman): scattering on single quarks in a hadron \rightarrow (Bjorken) scaling

Quantum Fluctuations and the Quark Picture

analysis in perturbation theory

$$\int_0^1 dx f(x, Q^2) = 3 \left[1 - \frac{\alpha_s(Q^2)}{\pi} - a(n_f) \left(\frac{\alpha_s(Q^2)}{\pi} \right)^2 - b(n_f) \left(\frac{\alpha_s(Q^2)}{\pi} \right)^3 \right]$$

 $-a(n_f), b(n_f)$ calculable coefficients

deviations from scaling \rightarrow determination of strong coupling

Why we need lattice QCD

 situation becomes incredibly complicated

- value of the coupling (expansion parameter) $\alpha_{\rm strong}(1 {\rm fm}) \approx 1$
- \Rightarrow need different ("exact") method
- \Rightarrow has to be non-perturbative \rightarrow more than all Feynman graphs
- Wilson's Proposal: Lattice Quantum Chromodynamics

Lattice Gauge Theory had to be invented

 \rightarrow QuantumChromoDynamics

Unfortunately, it is not known yet whether the quarks in quantum chromodynamics actually form the required bound states. To establish whether these bound states exist one must solve a strong coupling problem and present methods for solving field theories don't work for strong coupling. Wilson, Cargese Lecture notes 1976

Feynman's alternative formulation of quantum mechanics

the double slit experiment

superposition principle

 \rightarrow interference pattern

ightarrow probability $P = |\Phi_1 + \Phi_2|^2$

 Φ_i quantum mechanical amplitude

Adding slits

four possible paths

- \rightarrow probability $P = |\Phi_1 + \Phi_2 + \Phi_3 + \Phi_4|^2$
- Φ_i quantum mechanical amplitude

Even more ...

$$ightarrow$$
 probability $P = |\sum_i \Phi_i|^2 \equiv |\sum_{\text{paths}} \Phi_{\text{path}}|^2$

Feynman $\Phi_{\rm path} = e^{rac{i}{\hbar}S_{\rm cl}({
m path})}$

 $S_{\rm cl}({\rm path})$ classical action of path

Quantum mechanical oscillator in Euclidean time

Feynman path integral in quantum mechanics

$$\mathcal{Z} = \int \mathcal{D}x e^{rac{i}{\hbar}S_{\mathrm{cl}}}$$

• S_{cl} classical action, e.g. quantum mechanical oscillator

$$S_{\rm cl} = \int dt \left[\frac{1}{2} \dot{x}^2(t) - V(x(t)) \right]$$

• x(t) are *classical* paths

perform analytical continuation to imaginary (Euclidean) time au

$$t \to -i\tau \qquad f(t) \to f(\tau)$$

$$\mathcal{Z} = \int \mathcal{D}x e^{-\frac{1}{\hbar}S_{\rm E}}, \ S_E = \int d\tau \left[\frac{1}{2}\dot{x}^2 + V(x)\right]$$

Discretizing

"time lattice" with N = T/a lattice points

 $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & & & T \\ a & & T \\ x(\tau) \to x(n) \text{ boundary condition: } x(N+1) = x(0) \\ \text{case 1: } \dot{x} \to [x(n+a) - x(n)]/a \\ & 1 \left[x(n) + \dot{x}n + 1 \dot{x}^2 n^2 + \dots + x(n) \right] - \dot{x} \end{bmatrix}$

$$= \frac{1}{a} \left[x(n) + \dot{x}a + \frac{1}{2}\dot{x}^2a^2 + \dots - x(n) \right] = \dot{x} + O(a)$$

 \Rightarrow linear discretization effects

case 2: $\dot{x} \to [x(n+a) - x(n-a)]/2a$ = $\frac{1}{2a} [x(n) + \dot{x}a + \frac{1}{2}\dot{x}^2a^2 + \dots - x(n) + \dot{x}a - \frac{1}{2}\dot{x}^2a^2] = \dot{x} + O(a^2)$

 \Rightarrow quadratic discretization effects

Lattice version of quantum mechanical oscillator

• discretization provides well defined path integral

$$\mathcal{Z} = \underbrace{\int \prod_{n=1}^{N} dx_n}_{\int \mathcal{D}x} \int e^{-a \sum_{n=1}^{N} \frac{(x(n+a)-x(n))^2}{a^2} + V(x(n))}$$

- measuring observables
 - average position $\langle x \rangle = \int \prod_{n=1}^{N} dx_n x e^{-S} / \mathcal{Z}$
 - average position square $\langle x^2 \rangle = \int \prod_{n=1}^N dx_n x^2 e^{-S} / \mathcal{Z}$

Monte Carlo Method

$$\langle f(x) \rangle = \int dx f(x) e^{-x^2} / \int dx e^{-x^2}$$

- \rightarrow solve numerically:
- generate succesively Gaussian random numbers x_i
- $\bullet\,$ do this $N\text{-times}\,$

$$\Rightarrow \langle f(x) \rangle \approx \frac{1}{NoP} \sum_{i} f(x_i) \pm O(1/\sqrt{NoP})$$

• but, what if distribution $e^{-S(x)}$ is much more complicated?

find a transition probality W(x, x') that brings us

 $\{x\} = \{x_1, x_2, \cdots, x_N\} \rightarrow \{x'\} = \{x'_1, x'_2, \cdots, x'_N\}$ and which satisfies

- W(x, x') > 0 strong ergodicity ($W \ge 0$ is weak ergodicity)
- $\int dx' W(x, x') = 1$
- $W(x, x') = \int dx'' W(x, x'') W(x'', x')$ (Markov chain)
- W(x, x') is measure preserving, dx' = dx

under these conditions, we are guaranteed

- to converge to Boltzmann distribution e^{-S}
- independent from the initial conditions

→ proof: (Creutz and Freedman; Lüscher, Cargese lectures)

Detailed balance condition

• sufficient condition: detailed balance

$$\frac{W(x,x')}{W(x',x)} = \frac{P(x')}{P(x)}$$

 \rightarrow (most of) our conditions are fulfilled

• Metropolis algorithm choice

 $W_{\text{Met}}(x, x') = \Theta(S(x) - S(x')) + \exp(-\Delta S(x', x)) \Theta(S(x') - S(x))$ $\Delta S(x', x) = S(x') - S(x), \ \Theta() \text{ Heavyside function}$

Metropolis Algorithms

- i) generate uniformly distributed new x' in a neighbourhood of x $x'_i \in [x_i \Omega, x_i + \Omega]$
- ii) if $S_{\text{new}} S_{\text{old}} \equiv \Delta S(x', x) \leq 0)$ accept x'
- *iii*) if $\Delta S(x', x) > 0$) accept with probability $\exp(-\Delta S(x', x))$
 - steps i) iii) are repeated MCsteps-times

Metropolis Algorithms

- very general algorithm, can be used for many physical systems
- shows, however, often very long autocorrelation times
- much too costly for fermionic systems (why?)

Action to be programmed

$$S = a \sum_{i=1}^{N} \frac{1}{2} M_0 \frac{(x_{i+1} - x_i)^2}{a^2} + \frac{1}{2} \mu^2 x_i^2 + \lambda x_i^4$$

periodic boundary condition: $x_{N+1} = x_1$, $x_0 = x_N$

- potential V(x)
 - $\begin{array}{ll} & \mu^2 > 0, \lambda > 0: \text{ harmonic potential } \langle x \rangle = 0 \\ & \mu^2 < 0, \lambda > 0: \text{ anharmonic potential } \langle x \rangle = \pm v \neq 0 \end{array}$

Observables

• average position

$$\langle x \rangle = \frac{1}{\text{MCsteps}} \sum_{\text{MCsteps}} \left[\frac{1}{N} \sum_{i=1}^{N} x_i \right] ,$$

• average position squared

 \rightarrow theoretical value known for a>0 and $\mu^2>0$

$$\langle x^2 \rangle = \frac{1}{\text{MCsteps}} \sum_{\text{MCsteps}} \left[\frac{1}{N} \sum_{i=1}^N x_i^2 \right]$$

- acceptance rate, should be $\approx 50\%$
- error for observable *O*

$$\Delta O = \sqrt{\frac{1}{(\text{MCsteps})(\text{MCsteps}-1)}} \sum_{\text{MCsteps}} \left[\langle O^2 \rangle - \langle O \rangle^2 \right]$$

Schwinger model: 2-dimensional Quantum Electrodynamics

(Schwinger 1962)

Quantization via Feynman path integral (in Euclidean time)

 $\mathcal{Z} = \int \mathcal{D}A_{\mu} \mathcal{D}\Psi \mathcal{D}\bar{\Psi} e^{-S_{\text{gauge}}-S_{\text{ferm}}}$

Fermion action

$$S_{\text{ferm}} = \int d^2 x \bar{\Psi}(x) \left[D_{\mu} + m \right] \Psi(x)$$

gauge covriant derivative

$$D_{\mu}\Psi(x) \equiv (\partial_{\mu} - ig_0 A_{\mu}(x))\Psi(x)$$

with A_{μ} gauge potential, g_0 bare coupling

$$S_{\text{gauge}} = \int d^2 x F_{\mu\nu} F_{\mu\nu} , \ F_{\mu\nu}(x) = \partial_{\mu} A_{\nu}(x) - \partial_{\nu} A_{\mu}(x)$$

equations of motion: obtain classical Maxwell equations

Lattice Schwinger model

discrete derivatives

 $\nabla_{\mu}\Psi(x) = \frac{1}{a} \left[\Psi(x + a\hat{\mu}) - \Psi(x) \right], \quad \nabla^{*}_{\mu}\Psi(x) = \frac{1}{a} \left[\Psi(x) - \Psi(x - a\hat{\mu}) \right]$

second order derivative \rightarrow remove doubler \leftarrow break chiral symmetry

Implementing gauge invariance

Wilson's fundamental observation: introduce parallel transporter connecting the points x and $y=x+a\hat{\mu}$:

$$U(x,\mu) = e^{iaA_{\mu}(x)} \in U(1)$$

 \Rightarrow lattice derivative: $\nabla_{\mu}\Psi(x) = \frac{1}{a} \left[U(x,\mu)\Psi(x+\mu) - \Psi(x) \right]$

$$S = a^2 \sum_x \left\{ \beta(=\frac{1}{g_0^2}) \left[1 - \operatorname{Re}(U_{(x,p)}) \right] + \overline{\psi} \left[\frac{m}{2} + \frac{1}{2} \{ \gamma_\mu (\nabla_\mu + \nabla_\mu^\star) - a \nabla_\mu^\star \nabla_\mu \} \right] \psi \right\}$$

partition functions (path integral) with Boltzmann weight (action) S

$$\mathcal{Z} = \int_{\text{fields}} e^{-S}$$

Physical Observables

expectation value of physical observables $\ensuremath{\mathcal{O}}$

$$\underbrace{\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int_{\text{fields}} \mathcal{O}e^{-S}}_{\text{fields}}$$

 \downarrow lattice discretization

01011100011100011110011

From the Schwinger model to quantum chromodynamics

- system becomes 4-dimensional: $[50 \cdot 50] \rightarrow [50 \cdot 50] \cdot 2500$
- gauge field $U(x,\mu) \in U(1) \rightarrow U(x,\mu) \in SU(3)$
- quarks receive 4 Dirac and 3 color components: $[50 \cdot 50] \rightarrow [50 \cdot 50] \cdot 30000$
- theory needs *non-perturbative* renormalization

The graph that wrote history: the "Berlin Wall"

see panel discussion in Lattice2001, Berlin, 2001

formula
$$C \propto \left(\frac{m_{\pi}}{m_{\rho}}\right)^{-z_{\pi}} (L)^{z_L} (a)^{-z_a}$$

 $z_{\pi} = 6, \ z_L = 5, \ z_a = 7$

"both a 10^8 increase in computing power AND spectacular algorithmic advances before a useful interaction with experiments starts taking place." (Wilson, 1989)

 \Rightarrow need of **Exaflops Computers**

Why are fermions so expensive?

need to evaluate

 $\mathcal{Z} = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi e^{-\bar{\psi}\left\{D_{\text{lattice}}^{\text{Dirac}}\right\}\psi} \propto \det[D_{\text{lattice}}^{\text{Dirac}}]$

bosonic representation of determinant

det $[D_{\text{lattice}}^{\text{Dirac}}] \propto \int \mathcal{D}\Phi^{\dagger} \mathcal{D}\Phi e^{-\Phi^{\dagger} \{D_{\text{lattice}}^{-1}\}\Phi}$

- need vector $X = D_{\text{lattice}}^{-1} \Phi$
- solve linear equation $D_{\text{lattice}}X = \Phi$

 D_{lattice} matrix of dimension 100million \otimes 100million \approx 12 \cdot 48³ \cdot 96 (however, matrix is sparse)

- number of such "inversions": O(1000 10000) for one field configuration
- want: O(1000 10000) such field configurations

A generic improvement for Wilson type fermions

New variants of HMC algorithm (here (Urbach, Shindler, Wenger, K.J.), see also RHMC, SAP)

- even/odd preconditioning
- (twisted) mass-shift (Hasenbusch trick)
- multiple time steps

- comparable to staggered
- reach small pseudo scalar masses $\approx 300 \text{MeV}$

Recent pricture

German Supercomputer Infrastructure

 JUQUEEN (IBM BG/Q) at Supercompter center Jülich
 5 Petaflops

- HLRN (Hannover-Berlin) Gottfried and Konrad (CRAY XC30)
 2.6 Petaflops
- Leibniz Supercomputer center Munich combined IBM/Intel system SuperMUC
 3 Petaflops

Computertime: through local calls, e.g. NIC, or Europe wide: PRACE \rightarrow peer reviewed

Strong Scaling

• Test on 72 racks BlueGene/P installation at supercomputer center Jülich

Computer and algorithm development over the years

Lattice physicists have invested a lot in algorithm development

supercomputer architectures show remarkable speedup

time estimates for simulating $32^3 \cdot 64$ lattice, 5000 configurations

 \rightarrow algorithm development very important

→ typical architectures: **BG/L,P,Q, Intel, GPUs**

The lattice QCD benchmark calculation: the spectrum

spectrum for $N_f = 2 + 1$ and 2 + 1 + 1 flavours

(ETMC: C. Alexandrou, M. Constantinou, V. Drach, G. Koutsou, K.J.)

• spectrum for $N_f = 2$, $N_f = 2 + 1$ and $N_f = 2 + 1 + 1$ flavours \rightarrow no flavour effects for light baryon spectrum

Even isospin and electromagnetic mass splitting

baryon spectrum with mass splitting

- nucleon: isospin and electromagnetic effects with opposite signs
- nevertheless physical splitting reproduced

Setting the scale

	M_{Ds}/M_K	M_{Ds}/M_D	f_K/f_π	f_{Ds}/f_D
lat.	3.96(2)	1.049(4)	1.197(6)	1.19(2)
PDG	3.988	1.0556(02)	1.197(06)	1.26(6)

• with strange, charm quarks \rightarrow need additional input

• repeat for smaller and smaller $a \rightarrow$ continuum limit

The strange quark content of the nucleon

- scalar candidate particles for dark matter
- interaction with nucleon: scalar quark content via the Higgs boson exchange diagram

spin independend cross section:

$$\sigma_{\rm SI} \propto \sum_{q} \frac{\langle N | \bar{q}q | N \rangle}{m_N} \; ; q = u, d, s, c$$

want *sigma terms* (scalar quark content of nucleon):

$$\sigma_{u} = \langle N | \bar{u}u | N \rangle, \ \sigma_{d} = \langle N | \bar{d}d | N \rangle,$$

$$\sigma_{s} = \langle N | \bar{s}s | N \rangle, \ \sigma_{c} = \langle N | \bar{c}c | N \rangle,$$

$$\sigma_{\pi N} = \frac{\langle N | \bar{u}u + \bar{d}d | N \rangle}{(m_{u} + m_{d})/2}$$

The problem

spin independent cross section strongly dependend on sigma terms

- e.g., phenomenological analyses: $48 \text{MeV} < \sigma_{\pi N} < 80 \text{MeV}$
- \Rightarrow cross section can change by an order of magnitude

want: a first principle, non-perturbative computation of σ_q

 \rightarrow the lattice

Problem on the lattice

 disconnected diagrams: quarks lines only indirectly conneced via gluons
 ⇒ very bad signal to noise ration
 ⇒ often simply neglected

• High statistics analysis

(A. Abdel-Rehim, C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, Ch. Kallidonis, G. Koutsou, A. Vaquero Avilés-Casco, K.J.)

- substantial algorithm development (exact deflation, truncated solver)
- O(200.000) measurements (typical: O(1000) measurements)
- dedicated Gauss center project: ≈ 50 Million core hours on Hazel Hen at Stuttgart supercomputer center (≈ 2.5 Million Euro)

• find signal for all sigma terms:

 $\sigma_{\pi N} = 37.22(2.57) \begin{pmatrix} +0.99\\ -0.6 \end{pmatrix} \text{ MeV},$ $\sigma_s = 41.05(8.25) \begin{pmatrix} +1.09\\ -0.69 \end{pmatrix} \text{ MeV},$ $\sigma_c = 79(21) \begin{pmatrix} +2.1\\ -1.3 \end{pmatrix} \text{ MeV}$

- strange quark content of nucleon: $y_N \equiv \frac{2\langle N|\bar{s}s|N\rangle}{\langle N|\bar{u}u+\bar{d}d|N\rangle} = 0.075(16)$
- remarks
 - $\sigma_{\pi N}$ compatible with other lattice works
 - σ_s most precise result so far
 - σ_c only available result

Higgs boson mass bounds from the lattice

• the Lagrangian of the scalar theory (\approx Ginzburg-Landau theory)

 $L_{\varphi}[\varphi] = \frac{1}{2} \partial_{\mu} \varphi_{x}^{\dagger} \partial_{\mu} \varphi_{x} + \frac{1}{2} \mu^{2} \varphi_{x}^{\dagger} \varphi_{x} + \lambda \left(\varphi_{x}^{\dagger} \varphi_{x}\right)^{2},$

- μ^2 bare Higgs boson mass, λ bare quartic coupling
- φ 4-component real scalar field
- O(N) invariance of Lagrangian

two phases $\langle \varphi \rangle \equiv v = 0$ symmetric phase v > 0 spontaneously broken (Higgs) phase

Predicting your own death: the suicid of the standard model

• 1-loop analysis of broken phase of the scalar theory

$$\lambda^{\mathrm{ren}}(p^2 = \Lambda^2) = \frac{\lambda_0}{1 - b_N \lambda_0 \log\left(\frac{\Lambda^2}{m_H^2}\right)}, b_N = \frac{N+8}{8\pi^2}$$

Interpretation:

- for $\Lambda \to \infty : \lambda^{ren} = 0 \leftarrow triviality$ of the φ^4 -theory (and of the standard-model)
- cut-off cannot be removed from the theory \Rightarrow standard model only effective theory, valid up to a certain cut-off value Λ
- intrinsic relation between cut-off and Higgs-boson mass
- interpretation of cut-off: energy scale of yet to be discovered physics beyond the standard model

Consequences of triviality

$$\lambda^{\rm ren}(p^2 = \Lambda^2) = \frac{\lambda_0}{1 - b_N \lambda_0 \log\left(\frac{\Lambda^2}{m_H^2}\right)}, b_N = \frac{N+8}{8\pi^2}$$

singularity (Landau pole): $\log\left(\frac{\Lambda^2}{m_H^2}\right) = \frac{1}{b_N \lambda_0}$

– avoid Landau pole ightarrow bound on λ^{ren}

– since $m_{H}^{2}=2v^{2}\lambda^{\mathrm{ren}}\Rightarrow$ bound on Higgs boson mass

Effects of adding quarks

• effective potential

$$U_{\rm eff} = V + 1/2 \int_k \ln[k^2 + m^2] - 2N_{\rm F} \int_k \ln[k^2 + y^2 \varphi^2]$$

 \Rightarrow negative contribution for fermions \rightarrow theory becomes unstable

The holy grail: exact chiral invariant Higgs-Yukawa lattice action (Lüscher)

the lattice fermionic and Yukawa parts ← exactly same form as in continuum
 ⇒ breakthrough in lattice field theory

$$(L_F + L_Y)[\bar{\psi}, \psi] = \bar{\psi} D_{\rm ov} \psi + y_b \left(\bar{t}, \bar{b}\right)_L \varphi b_R + y_t \left(\bar{t}, \bar{b}\right)_L \tilde{\varphi} t_R + c.c.$$

• change from continuum:

$$- i\gamma_{\mu}\partial_{\mu} \to D_{\text{ov}} \\ - P_{\pm} = \frac{1\pm\gamma_5}{2} \to \hat{P}_{\pm} = \frac{1\pm\hat{\gamma}_5}{2}, \hat{\gamma}_5 = \gamma_5 \left(1 - aD_{\text{ov}}\right)$$

• exact *lattice* $SU(2)_L \times U(1)_R$ chiral symmetry

$$\psi \to U_R \hat{P}_+ \psi + \Omega_L \hat{P}_- \psi, \bar{\psi} \to \bar{\psi} P_+ \Omega_L^\dagger + \bar{\psi} P_- U_R^\dagger$$

$$\phi \to U_R \phi \Omega_L^{\dagger}, \phi^{\dagger} \to \Omega_L \phi^{\dagger} U_R^{\dagger}.$$

with $\Omega_L \in SU(2)$, $U_R \in U(1)$

The algorithm

improvements (Philipp Gerhold, K.J.):

- special preconditioning techniques for fermion matrix:
 - \rightarrow factors of O(10)-O(100) improvement for condition number
- Fourier acceleration

	FACC	traLength	Nconf	ACtime	cost
$\kappa = 0.12313$	No	2.0	2020	132.1 ± 6.4	2662 ± 129
$\kappa = 0.12313$	Yes	2.0	21780	1.1 ± 0.1	37 ± 1
$\kappa = 0.30400$	No	1.0	2580	34.9 ± 2.1	450 ± 28
$\kappa = 0.30400$	Yes	1.0	22360	3.8 ± 0.2	171 ± 8

- exact Krylow space reweighting
- multiple time scale integrators

Bounds on Higgs boson mass from the lattice

(J. Bulava, D. Chu, P. Gerhold, J. Kallarackal, B. Knippschild, D. Lin, K. Nagai, A. Nagy, K.J.)

Higgs boson mass right in the funnel of mass bounds

validity scale of the standard model

Lattice: Fermion mass dependence of Higgs boson mass bounds

- strong dependence on fermion mass
- exclude 4th generation quarks

Effect of adding a $\lambda_6 \Phi^6$ term

- Higher dimensional operators
 - are allowed since theory is only defined with cutoff
 - can mimic extensions of standard model, e.g. a second scalar particle
 - with $\lambda_6 > 0$, quartic coupling can be negative

• already a simple $\lambda_6 \Phi^6$ term can change bound

Further lattice QCD activities

- obtain precision results (e.g. strong coupling, quark masses, decay constants)
- better understanding of QCD (e.g. chiral symmetry breaking, topology)
- understanding hadrons (e.g. hadronic form factors, proton spin puzzle, PDFs)
- help to uncover BSM physics (e.g. B-system, electroweak observables, anomalous magnetic lepton moments)
- conceptual and algorithmic developmens
- \Rightarrow grand challenges for the future

Exercise after coffee

- programme action of quantum mechanical oscillator
- evaluate path integral by Metropolis algorithm
- compute observables $\langle x \rangle$, $\langle x^2 \rangle$ with error
- compare $\langle x^2 \rangle$ to theoretically known value
- \Rightarrow have fun (we, J. Volmer and K.J. will help)