Laser-driven proton acceleration from cryogenic hydrogen jets

new prospects in tumor therapy and laboratory astroparticle physics

<u>C. Roedel</u> SLAC National Accelerator Laboratory & Friedrich-Schiller-University Jena

S. Goede, M. Gauthier, J. Kim, M. MacDonald, W. Schumaker, S. Glenzer HED Science Dept., SLAC National Accelerator Laboratory

R. Mishra, C. Ruyer, F. Fiuza HED Theory Group, SLAC National Accelerator Laboratory

K. Zeil, L.Obst, M. Rehwald, F. Brack, R. Gebhardt, U. Helbig, J. Metzkes, H.-P. Schlenvoigt, P. Sommer, T. Cowan, U. Schramm *Helmholtz-Zentrum Dresden-Rossendorf, Germany*

SL

Volkswagen Stiftung

Motivation – laser driven proton acceleration

TRADITIONAL X-RAY THERAPY Smaller doses of radiation are used to reduce damage to healthy tissue due to the inability to restrict radiation pattern to cancerous tissue Exit dose with potential to damage healthy tissue

- Ion beam therapy
 - Bragg peak
 - 200 MeV protons are stopped in 25 cm

Motivation – laser driven proton acceleration

- Ion beam therapy
 - Bragg peak
 - 200 MeV protons are stopped in 25 cm

Small bandwidth, 200 MeV protons beams are required

Motivation – laser driven proton acceleration

- Proton therapy using conventional ion accelerators
 - Large scale facilities
 - Cost: 120 M€
- Laser-driven proton acceleration
 - Target Normal Sheath Acceleration (TNSA)

compact laser system reduced costs proton energies are too low broadband spectrum single shot proton source multispecies ion acceleration

SLAC

K. Zeil U. Schramm

Motivation – High Energy Density Science at SLAC

Particle Acceleration

Laboratory Fusion

Laboratory Astrophysics

SLAC

C. Roedel

M. Gauthier

S. Glenzer

F. Fiuza

Pure hydrogen target of solid density would be perfect !!!

A cryogenic hydrogen jet for HED experiments

A cryogenic hydrogen jet for proton acceleration experiments

K. Zeil U. Schramm

-SLAC

S. Goede C. Roedel M. Gauthier

Proton acceleration from solid-density hydrogen jets

Hydrogen jet

Proton acceleration from solid-density hydrogen jets

Proton Beams

Target Normal Sheath Acceleration (TNSA)

Experiment at HZDR: Proton acceleration using a solid-density hydrogen jet

Experiment at HZDR: Proton acceleration using a solid-density hydrogen jet

Quick summary of laser proton acceleration

- Solid density hydrogen jet as a target for laser proton acceleration
- Pure proton beams accelerated by TNSA
- ~10 MeV protons with 1 Hz

<0.002 mm mrad which is at least 100 times smaller than the emittance of thermal ion sources [T. Cowan et al. Phys. Rev. Lett. 92, 204801 (2004)]

Emittance is compelling for a novel injector scheme

SLAC

T. Cowan

Motivation – Collisionless Shock Acceleration for Monoenergetic Proton Acceleration


```
F. Fiuza et al. Phys. Rev. Lett. 109, 215001 (2012)
F. Fiuza et al. Phys. Rev. Lett. 108, 235004 (2012)
```

Collisionless Shock Acceleration and the role of the Weibel instability

 $\mathbf{x}_{1} [c / \omega_{pi}]$

F. Fiuza *et al.* Phys. Rev. Lett. 108, 235004 (2012)

Motivation – Collisionless Shock Acceleration and Laboratory Astroparticle Physics

N. Gehrels, L. Piro, and P.J.T. Leonard, Scientific American (2002) R. Blandford & D. Eichler, Physics Reports 154, 1 (1987)

Scientific American, (c) 1998

Radiochromic film shows bubble-like structure in forward-accelerated beam

Optical probe provides estimate of the length of the plasma density gradient

Length of plasma density gradient: $L_p=5 \mu m$

2D PIC simulation using experimental parameters reveals Weibel instability

proton density

Quosistatic Magnetic Field (Bz)

Modulation of the proton density in the rear side density gradient

Modulation in the B-field might be due to the Weibel instability

2D PIC simulation using experimental parameters reveals Weibel instability

Current density at early times (100 fs)

Counter streaming currents go Weibel unstable

Weibel filament size is local plasma wavelength

2D PIC simulation using experimental parameters reveals Weibel instability

Agreement between simulations and experimental results

3D PIC simulations reproduce experimental results

Experiment at Titan laser at LLNL

Lawrence Livermore National Laboratory

- Monoenergetic features in laser-forward direction that cannot be explained by TNSA
- Radiation pressure driven shock velocity matches 1 MeV peak

Quasi-monoenergetic features in the proton spectrum appear to be from Collisionless Shockwave Acceleration

- Shock front reflects ions, producing a quasi-monoenergetic MeV peak
- A second peak appears to due to the accumulation of protons along the shock front

Onset of Collisionless Shock Acceleration might be observed in addition to Weibel radiograph

Laser particle acceleration for medical applications

- proton acceleration up to 10 MeV by TNSA from cryogenic solid-density hydrogen plasma
- laser-driven proton accelerator with 1 Hz

Laboratory astroparticle physics

- proton radiography of magnetic fields due to Weibel instability
- quasi-monoenergetic spectral features may reveal onset of Weibel-mediated Collisionless Shock Acceleration
- experimental platform for studies of magnetic field amplification and Collisionless Shock Acceleration using femtosecond high intensity lasers

Outlook: Observation of collisionless shock acceleration and Weibel instabilities using x-ray free-electron lasers Observation of Weibel instabilities using x-ray free-electron lasers

Laser target

Observation of Weibel instabilities using x-ray free-electron lasers

B-field

Density

Observation of Weibel instabilities using x-ray free-electron lasers

Phase-contrast imaging

Reconstructed density profile

Phase-contrast imaging

Cryogenic hydrogen jets and high power lasers provide new opportunities to investigate magnetic field amplification and Collision Shock Acceleration in the laboratory

Thank you for your attention!