Neutrinoless double beta decay with ⁷⁶Ge

Bernhard Schwingenheuer Max-Planck-Institut für Kernphysik, Heidelberg

Standard Model

no new physics found at the LHC so far, SM could be valid up to Planck scale BUT

- no dark matter candidate
- baryon asymmetry of the universe not explained
- dark energy not understood
- origin of (tiny) neutrino mass unknown

DESY, 7+8 June 2016

Neutrino mass: non-SM effect?

weak interactions: W/Z bosons couple only to left-handed fermions mass generation: Higgs couples to left- and right-handed fermions

v oscillations (Nobel prize 2015) $\rightarrow v_L$ have (tiny) mass (< m_e / 10⁶) same mass mechanism like for other fermions?

Neutrino mass: non-SM effect?

possible neutrino mass terms (v has no electric charge)

$$L_{Yuk} = m_D \bar{v}_L v_R + m_L \bar{v}_L (v_L)^C + m_R (\bar{v}_R)^C v_R + h.c.$$

$$H + M_L + M_$$

 v_L couples to Standard Model W,Z bosons, $v_R\,$ does not (SM singlet) $m_D\,\sim\,$ normal Dirac mass term

m_L, m_R new physics

eigen vector
$$N \sim v_R + (v_R)^C$$
 $v \sim v_L + (v_L)^C$
mass (m_L ~0) m_R m_D² / m_R

Majorana particles

N mass range

possible N mass ranges (little guidance on scale available!)

 $10^9 - 10^{14}$ GeV: motivated by GUT, can explain baryon asymmetry (lepton asymmetry by CP violation converted via sphaleron to BAU), see-saw: light neutrino mass ~ m_D^2 / M_R

0.1-few TeV: can explain baryon asymmetry, no hierarchy problem (see below), accessible by LHC

- GeV: can explain baryon asymmetry if <5 GeV observation e.g. D \rightarrow N μ X with N $\rightarrow \mu \pi$ by SHIP (200 MCHF)
- 10 keV: (warm+cold) dark matter candidate, $N \rightarrow \gamma v$ decay ~ U² m_R⁵ hint for 3.5 keV line ?? (arXiv:1402.2301, arXiv:1402.4119)

eV range: LSND oscillation signal, reactor anomaly, $\dots \rightarrow$ SOX, Stereo, \dots contribute to number of relativistic neutrinos measured by PLANCK

neutrino minimal SM (vMSM): 1x 10 keV N for DM and 2x ~GeV N for baryon asymmetry, minimal extension of SM

SHIP proposal @ SPS

arXiv:1504.04956 arXiv:1504.04855

uses CNGS beam line, total 2 10²⁰ pot ~8 10¹⁷ D mesons

cost for beam+exp 200 MCHF

DESY, 7+8 June 2016

How to observe $\Delta L=2?$

Look for a process which can only occur if neutrino is Majorana particle

coupling strength ~ $m_{\beta\beta} = \sum_{i=1}^{3} U_{ei}^{2} m_{i}$ function of - neutrino mixing parameters - lightest neutrino mass - 2 Majorana phases

also possible: heavy N exchange \rightarrow coupling strength $\sim \sum_{i=1}^{3} V_{ei}^2 / M_i$

How to observe $\Delta L=2?$

"single" beta decay not allowed \rightarrow only "double beta decay" (A,Z) \rightarrow (A,Z+2) + 2 e⁻ + 2 \overline{v} $\Delta L=0$ (A,Z) \rightarrow (A,Z+2) + 2 e⁻ $\Delta L=2$

experimental signature for $\beta\beta$

Note: similar process in principle also observable at accelerator or reactor or ... but for light Majorana neutrino:

- background too high
- flux too low compared to Avogadro N_A

 $0\nu\beta\beta$: search for a line at Q value of decay

Light Majorana neutrino exchange

scan of $m_{\beta\beta}(\Delta m_{atm}^2, \Delta m_{sol}^2, m_{min}, \theta_{atm}, \theta_{sol}, \theta_{13}, 2 \text{ Majorana } \Phi)$ according to measurements or random (2 Maj. phases)

including cosmological bound Σ = (22±62) meV¹ ¹ true for flat Λ CDM only

unless Majorana phases are "aligned" high $m_{\beta\beta}$ values are more likely to occur

DESY, 7+8 June 2016

LHC vs $0v\beta\beta$: other mechanics

extensions of SM \rightarrow other contributions to $0\nu\beta\beta$ possible, example LRSM LHC might find W_R and/or Δ L=2 process

LHC vs $0v\beta\beta$: other mechanics

Leptoquark patterns unifying neutrino masses, flavor anomalies and the diphoton excess

F. F. Deppisch,¹ S. Kulkarni,² H. Päs,³ and E. Schumacher³

¹Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom ²Institute of High Energy Physics, Austrian Academy of Sciences, Nikolsdorfergasse 18, 1050 Vienna, Austria ³Fakultät für Physik, Technische Universität Dortmund, 44221 Dortmund, Germany

Vector leptoquarks provide an elegant solution to a series of anomalies and at the same time generate naturally light neutrino masses through their mixing with the standard model Higgs boson. We present a simple Froggatt-Nielsen model to accommodate the B physics anomalies R_K and R_D , neutrino masses, and the 750 GeV diphoton excess in one cohesive framework adding only two vector leptoquarks and two singlet scalar fields to the standard model field content.

v Majorana mass term

Figure 5: Dominating diagrams contributing to $\sigma(pp \to \chi)$.

Figure 6: Diagrams contributing to $\Gamma(\chi \to \gamma \gamma)$.

preferential coupling to gluon + photon → 750 GeV γγ @ LHC

Schwingenheuer, 0vββ with 76Ge

From $T_{1/2}$ to $m_{\beta\beta}$

$$\frac{1}{T_{1/2}^{0\nu}} = g_A^4 G^{0\nu} |M^{0\nu}|^2 \frac{\langle m_{\beta\beta} \rangle^2}{m_e^2}$$

 $T_{1/2}^{0\nu}$ = measured experimentally

 g_A = axial vector coupl. = 1.25

$$G^{0\nu}$$
 = phase space factor ~ Q⁵

- $M^{0\nu}$ = nuclear matrix element
- m_e = electron mass

need M^{0v} to understand physics mechanism Experiment observes $N^{0v} = \ln 2 \frac{N_A}{A} \cdot a \cdot \epsilon \cdot M \cdot t / T_{1/2}$ and Experimental sensitivity $T_{1/2}(90\% CL) > \begin{cases} \frac{\ln 2}{2.3} \frac{N_A}{A} a \cdot \epsilon \cdot M \cdot t & \text{for } N^{bkg} = 0\\ \frac{\ln 2}{1.64} \frac{N_A}{A} a \cdot \epsilon \sqrt{\frac{M \cdot t}{B \cdot \Delta E}} & \text{for large } N^{bkg} \end{cases}$

selected $0\nu\beta\beta$ isotopes from PRD 83 (2011) 113010							
Isotope	G ^{0v} [10 ⁻¹⁴ y]	Q[keV]	nat. abund.[%]				
⁴⁸ Ca	2.5	4273.7	0.187				
⁷⁶ Ge	0.23	2039.1	7.8				
⁸² Se	1.0	2995.5	9.2				
¹⁰⁰ Mo	1.6	3035.0	9.6				
¹³⁰ Te	1.4	2530.3	34.5				
¹³⁶ Xe	1.5	2461.9	8.9				
¹⁵⁰ Nd	6.6	3367.3	5.6				

enrichment required except for ¹³⁰Te, not (yet) possible for all, costs differ

 $N^{bkg} = M \cdot t \cdot B \cdot \Delta E$

- M = mass of detector
- t = measurement time
- A = isotope mass per mole
- N_A = Avogadro constant
- a = fraction of $0\nu\beta\beta$ isotope
- ϵ = detection efficiency
- B = background index in units cnt/(keV kg y)
- ΔE = energy resolution = energy window size

Expected $T_{1/2}$ for different matrix elements

DESY, 7+8 June 2016

How to reduce background

sources: cosmic rays (p,n, μ , γ) \rightarrow underground like Homestake mine neutrons from (α ,n) and spallation induced by μ α , β , γ from radioactive decay chains ²³⁸U, ²³²Th

- \rightarrow avoid contamination \rightarrow screen & select materials like cables, holders
- → shield (external) radioactivity → example 232 Th activities [µBq/kg] 1000 - steel, <1 - Cu, <1 - water, ~0 liquid argon / org. scintillator
- → identify background events (multi-dim. selection) → localize interactions (surface events, multiple interactions) identify particle type (α versus β/γ) 'measure' all energy depositions (active veto)

GERDA: Ge in LAr @ Gran Sasso

Schwingenheuer, 0vββ with 76Ge

Phase I (2011-13): $T_{1/2}^{0\nu}$ >2.1·10²⁵ yr (90% C.L.) ⁷⁶Ge 0vββ decay, PRL 111 122503

Phase II:

2x Ge mass (30 BEGe det.)

LAr scint. light readout

started end 2015

DESY, 7+8 June 2016

GERDA phase I results

events ±20 keV blinded

after calibration+selection finished → unblinding at meeting in Dubna in June 2013

exposure 21.6 kg yr backgr. 0.01 cnt/(keV kg yr) after pulse shape cut

$$T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \,\mathrm{yr} \ (90\% \ \mathrm{C.L.})$$

(sensitivity = 2.4 10²⁵ yr) PRL 111 (2013) 122503.

claimed signal: GERDA should see $5.9\pm1.4 \ 0\nu\beta\beta$ events in $\pm 2\sigma$ interval above background of 2.0 ± 0.3 probability p(N⁰v=0 | H₁=signal+bkg) = 1%, claim ruled out @ 99% (GERDA best fit signal count N⁰v = 0)

Argon veto performance

²²⁶Ra calibration source

veto suppression factor5.1±0.2combined with pulse shape25±2.2

veto suppression factor 85±3 combined with pulse shape & anti-coincidence 390±28

²²⁸Th calibration source

>5 background suppression for ²²⁶Ra & ²²⁸Th by LAr veto

Phase II status

all detectors mounted & biased in Dec 2015 LAr veto working

Phase II data taking started current sensitivity ~ $4.5 \ 10^{25}$ yr (90% CL) final ~ $1.5 \ 10^{26}$ yr (90% CL)

Majorana Demonstrator @ SURF

29 kg ⁷⁶Ge detectors (87% enr) in conventional copper/lead shield (+15 kg ^{nat}Ge detectors)

point-contact detectors → rejection surface evt + multiple int.

ultra-clean copper ("home made") + cables + ...

goal: prove design for ton scale

proto-type module: 10 detectors, 2014-2015

Module 1

29 detectors, 2015 first installation running since Jan 2016

Module 2: 29 detectors, in few months complete

DESY, 7+8 June 2016

SNO+

default: 0.5% loading \rightarrow 3900 kg ^{nat}Te / 1300 kg ¹³⁰Te

SNO+

- \rightarrow more light
- Te loading system design in 2016
- loading Te end 2017
 - → start physics data taking

Kamland-Zen

start 2011 (phase I): fall out of ^{110m}Ag from Fukushima on inner balloon 2012-13: purifications of scintillator and Xe Dec 2013 – Oct 2015: phase II \rightarrow ^{110m}Ag bkg factor 10 reduced, Xe loading 2.44% --> 2.96% now: larger & cleaner balloon, loading 380 kg \rightarrow 750 kg, restart now, sensitivity T_{1/2} > 2 10²⁶ yr current limit for $0\nu\beta\beta$ of ¹³⁶Xe: $T_{1/2}^{0\nu}$ >11·10²⁵ yr (90% C.L.) sensitivity ~5 10²⁵ yr

DESY, 7+8 June 2016

EXO-200 @ WIPP

light+ionization FWHM for $0\nu\beta\beta$ ~88 keV @ $Q_{\beta\beta}$

total/fiducial mass 160/100 kg, ¹³⁶Xe fraction 80.6%

start physics data May 2011, fire & radiation problem at WIPP \rightarrow interrupt 2014-15

Phase II: Nature 510 (2014) 229-234 find/expect 39/31.1 evt @ $Q_{\beta\beta}$ ±2 σ

 $T_{1/2}^{0\nu} > 1.1 \cdot 10^{25} yr (@ 90 C.L.)$

(sensitivity 1.9 10²⁵ yr)

DESY, 7+8 June 2016

EXO-200 restart

lower noise electronics \rightarrow FWHM improves to ~60 keVlower Rn level \rightarrow expect lower background

after 3 yr running: sensitivity for 90% limit $T_{1/2} > 5.7 \ 10^{25}$ yr

Cuore: ¹³⁰Te

988 ^{nat}TeO₂ crystals 206 kg ¹³⁰Te,

calorimeter with Ge NTD readout, $\Delta T \sim 0.1 \text{ mK}$ / MeV $\sim 5 \text{ keV FWHM}$

all towers are assembled! test cool down of cryostat ok, next: step mount towers + commissioning physics run start end 2016, sensitivity 90% limit ~ $1 \ 10^{26} \ yr_{25}$

DESY, 7+8 June 2016

NEXT @ Canfranc

- 100 kg gas Xe TPC @ 15 bar
- measure scintillation light
- measure ionization w/ Electro Luminescence
- energy resolution FWHM <1% demonstrated
- reconstruction of event topology
 - \rightarrow background reduction

DESY, 7+8 June 2016

x-y position

Schwingenheuer, $0\nu\beta\beta$ with 76Ge

0.02

100

X (MH)

⁷⁶Ge sensitivity limit + discovery

200 kg in GERDA

- Cryostat large enough: current Ø 500 can be enlarge to Ø 630
- more cables and feedthroughs
- improve detection of LAr scintillation light
- bigger Ge detectors \rightarrow few channel ?

Background reduction by ~5 relative to Phase II should be possible:

- intrinsic bkg: Th/U not found in Ge detectors, cosmogenic 68 Ge/ 60 Co: limit time above GND, PSD \rightarrow ok

- external Th/U: cleaner materials (levels like for Majorana are ok), LAr veto powerful (>90% rejection in comb. w/ PSD)
- surface events: alpha on p⁺ contact rejected by PSD beta from ⁴²K most critical, on n⁺ contact
- muon induced: prompt events rejected by muon veto delayed by decay chain (→ dead time), simulation → ok for 200 kg setup

 $cost \sim 15M$ Euro – mainly depending on price for enrichment

comparison experiments

		mass [kg]* (total/FV)	FWHM [keV]	background& [cnt/t yr FWHM]	T _{1/2} limit [10 ²⁵ yr] after 4 yr	m _{ee} limit [meV]
Gerda II	Ge	35/27	3	5	15	80-190
MajoranaD	Ge	30/24	3	5	15	80-190
EXO-200	Xe	170/80	88	220	6	80-220
Kamland-Z	Xe	383/88 750/??	250	40 ?	20	44-120
Cuore	Те	600/206	5	300	9	50-200
NEXT-100	Xe	100/80	17	30	6	80-220
SNO+	Те	2340/260	190	60	17	36-150
nEXO	Xe	5000/4300	58	5	600	8-22
Ge-200	Ge	200/155	3	1	100	35-75
Ge-1000	Ge	1000/780	3	0.2	1000	10-23

* total= element mass, FV= 0vββ isotope mass in fiducial volume (incl enrichment fraction)
 & mol of 0vββ isotope in active volume and divided by 0vββ efficiency
 Note: values are design numbers except for EXO-200 and Kamland-Zen

DESY, 7+8 June 2016

Summary

strong prejudice: 0vββ exists, ΔL=2 process, possibly our only observable ΔL, (reminder: from cosmology we know B is violated)
T_{1/2} unknown (no real guidance from theory), discovery can be around the corner, experimental input is desperately needed (0vββ, LFV, LHC, ...)
4 Nobel Prices in last 30 years for neutrino physics, I expect more to come

⁷⁶Ge detector features:

- well known technology (enrichment + diode production)
- best energy resolution
- lowest bkg in ROI
- flat background at Q value
- \rightarrow all are important features for discovery

GERDA Phase II & Majorana Demonstrator are taking first data, I expect experiments meet specifications

 $\rightarrow\,$ next step new collaboration for "200 kg" and "1000 kg" $\,$ Ge $\,$

In US: $0\nu\beta\beta$ highest priority of any new projects for DOE nuclear physics