Search for new physics in high mass diphoton events: CMS results.

Riccardo Paramatti INFN Roma

750 GeV Forum at DESY

Hamburg – 2nd February 2016 Zeuthen – 3rd February 2016

Motivation

Looking for fully reconstructed resonances at higher center-of-mass energy is the golden way to new particle discoveries.

• LHC Run2: new data taken at \sqrt{s} = 13 TeV

Statistically significant peak over a smooth background.

- Very clear signature
- Experimentally robust
- Small systematic effects
- Model independent probe to new physics

INFN

The CMS Collaboration

1700 physicists, 700 students, 950 engineers/technicians, 180 institutions from 43 countries

Diphoton bump search

Clean final state at hadron colliders

event

#

Define the event selection: 2 isolated photons
 ✓ must be loose and model-independent

2) Reconstruct the yy invariant mass

$$M = \sqrt{2E_1E_2(1 - \cos\theta)}$$

- \checkmark photon reconstruction
- \checkmark energy resolution and scale
- ✓ dedicated vertex identification technique

3) Signal extraction

CMS Electromagnetic Calorimeter

Lead Tungstate (PbWO₄) homogeneous crystal calorimeter

Crystal transparency loss

Relative crystals response to laser light vs time

Stable energy scale achieved after laser correction

in prompt reconstruction Barrel:

✓ average signal loss ~6%
✓ RMS stability ~0.15%

Energy scale and resolution

Prompt reconstruction used for the analysis. New calibration coefficients (2015 data) available.

Significant improvement in energy resolution with new calibrations:

- ✓ barrel: resolution ~Run1
- ✓ endcaps: still worse (statistical precision)

Energy scale and resolution checked in data => analysis-level corrections applied

INFN

√s = 13 TeV. L = 2.2 fb⁻¹

Photon clustering

- Photon = energy deposits in clusters of ECAL crystals
- clustering optimized to have the best energy resolution

CMS Preliminary

Reconstruction and selection strategies:

- $\checkmark\,$ tuned on simulation and validated in data
- ✓ main control samples: Z->ee and Z-> $\mu\mu\gamma$

INFN

 $m(\gamma\gamma) = 745 \text{ GeV}$

High mass diphoton searches

Ref	Title	M _X [GeV]	\sqrt{s} [TeV]	\mathcal{L} [fb ⁻¹]
CMS-PAS- EXO-15- 004	Search for new physics in high mass diphoton events in proton-proton collisions at $\sqrt{s} = 13$ TeV	500- 4500	13	2.6
PLB 750 (2015) 494–519	Search for diphoton resonances in the mass range from 150 to 850 GeV in pp collisions at $\sqrt{s} = 8$ TeV	150- 850	8	19.7
CMS-PAS- EXO-12-045	Search for high-mass diphoton resonances in pp collisions at √s = 8 TeV with the CMS Detector	500- 3000	8	19.7

Analysis in a nutshell

- 1) Define the event selection: 2 isolated photons
- 2) Reconstruct the $\gamma\gamma$ invariant mass:
- 3) Signal extraction

Some considerations:

- ✓ Analysis built on SM Higgs search experience
 ✓ same methods used
- ✓ Only solid techniques exploited
 ✓ nothing very fancy for this first round
- \checkmark Selection developed before looking to the data:
 - ✓ cut based selection
 - ✓ fully blind analysis

=> Goal: have a robust analysis up to high p_T

Event selection

Simple event selection

- ✓ HLT: 2 photons, p_T >60 GeV
- \checkmark Offline selection:
 - ✓ $p_T > 75 \text{ GeV}$
 - ✓ ECAL fiducial region
 - ✓ dedicated photon selection (isolation, H/E, shower shape)
- \checkmark 2 event categories:
 - $\checkmark\,$ EBEB: both γ in the barrel
 - $\checkmark\,$ EBEE: one γ in EB, one in EE
 - $\checkmark\,$ events with 2γ in EE discarded

Zee to check efficiencies

✓ data/MC scale factors compatible with 1, constant at high p_T Zee and high mass DY to check scale and resolution

✓ results compatible within 0.5%

Backgrounds

Direct yy SM production irreducible

 $\begin{array}{c} \text{CMS Preliminary} & 2.6 \text{ fb}^{-1}(13 \text{ TeV}) \\ & -\gamma \gamma \\ & -\gamma j \\ & -j j \\ 0.5 \\ & 0.5 \\ & 0.4 \\ & 0.6 \\ & 0.8 \\ & 1 \\ & 1.2 \\ & 1.4 \\ & 1.6 \\ & m_{\gamma \gamma} (\text{GeV}) \end{array}$

Dijet and γ+jet production reducible

Background composition measured in data using template fits

Dominant contribution: 2 prompt photons QCD and photon+jets: <10% (20%) in EBEB (EBEE)

Mass spectra

Selected event $m_{\gamma\gamma}$ spectra in the two categories

Signal modelling

- Shape of the signal: combination of the intrinsic width of the resonance and the ECAL detector response.
- Benchmark model: spin2 RS Graviton
 - scan of two parameters (mass and effective coupling) chosen a priori
 - o mass range: 500-4500 GeV
 - o scan of the coupling: 0.01-0.2 $\rightarrow \Gamma_G/m_G$ = 0%-6%
- Detector response modeled on fully simulated signal sample with negligible intrinsic width

$m_{\rm G}~({\rm GeV})$	category	$ ilde{\mathcal{K}}$	FWHM (GeV)	$\widetilde{\mathcal{K}}$	FWHM (GeV)
500	EBEB	0.01	14	0.2	36
500	EBEE	0.01	22	0.2	42
1000	EBEB	0.01	27	0.2	74
1000	EBEE	0.01	43	0.2	85

Background modelling

Background $m_{\gamma\gamma}$ shape:

- ✓ parametric fit to data $f(m_{\gamma\gamma}) = m_{\gamma\gamma}^{a+b \cdot \log(m_{\gamma\gamma})}$ (several function tested)
- \checkmark model coefficients: nuisance parameters in the hypothesis test

Background fit accuracy determined using MC

- ✓ possible mis-modelling: <1/2 of background statistical uncertainty
- ✓ extra uncertainty: signal-like component added to the model

Interpretation: exclusion limits

Expected and observed limits on Graviton cross section x diphoton BR (<u>ATL-PHYS-PUB-2011-11 / CMS NOTE-2011/005</u>):

- ✓ $m_G < 1.3/3.8$ TeV excluded (k = 0.01/0.2)
- $\checkmark\,$ Excluded range in agreement with expectations
- $\checkmark\,$ Observed limit deviation from expected due to excess in data

Interpretation: p value

$\checkmark\,$ Largest excess for $m_G = 760$ GeV in the narrow width hypothesis

- ✓ Local significance 2.6 σ
 - significance reduced to 1.2 σ when accounting for Look
 Elsewhere Effect in m_G (E. Gross and O. Vitells, <u>arXiv:1005.1891v3</u>)
 - ✓ LEE in k further decreases significance

Spin hypothesis

Spin 2 vs Spin 0: different acceptance and categories weight but **analysis not much sensitive to these differences**

8 TeV analysis: limit shape is quite similar

22

Comparison to 8 TeV search

Combination with 8 TeV results in narrow width hypothesis

- ✓ different acceptance and categorizations
- ✓ most sensitive 8 TeV analysis in each mass range considered

Likelihood of fits to S+B hypothesis vs 13 TeV equivalent cross-section:

- \checkmark 8 TeV limits scaled by xsec ratio
- ✓ S=RS Graviton, m_G =750 GeV, k=0.01
 - ✓ production: 90% gg, 10% qqbar
 - ✓ xsec(8TeV)/xsec(13TeV)=1/4.2=0.24
- Compatible equivalent crosssections within uncertainties
- 13 TeV result not in contradiction with 8 TeV

8-13 TeV combination

m_G<~1.5 TeV: combined limits 20-30% better than single inputs

Largest excess for $m_G = 750 \text{ GeV}$

✓ local significance $\sim 3\sigma$

✓ reduced to <1.7 σ accounting for LEE

Outlook

- Observed diphoton mass spectrum in agreement with Standard Model expectations
- Strongest constraint on production cross-section set
- Simple and robust analysis strategy

Modest excess for mass ~760 GeV

- o local significance of 2.6 σ assuming narrow width signal
- global significance of <1.2 σ
- still consistent with 8 TeV search

Few more months (~10 fb⁻¹ @ 13 TeV) to determine the origin of this excess: statistical fluctuation or manifestation of new physics ?

CMS operation @ 13TeV

2015 operations strongly affected by a contamination of the magnet cold box
 Thanks to the effort of many, ~¾ of delivered luminosity collected with full B field

CMS Operation in 2015

- At the end of the Long Shutdown 1 we realized that the performance of the cryogenic system feeding Liquid He to our Magnet was severely impaired by a contamination of the Cold box
- This has affected our operation in 2015: a large effort from the CERN cryogenic and technical departments associated to our Technical Coordination have limited the impact, allowing to collect ~¾ of the delivered luminosity with full magnetic field.
- The detector and new acquisition system was ready from the start of LHC running at 13 TeV: we have logged data with efficiency well above 90% with trigger thresholds similar or lower than the ones at Run I
- A detailed plan of repair and cleaning of the cryo system, to be executed during the Year End Technical Stop, is ready and foresees the system to be ready for Physics production by the first week of April, i.e. well ahead of the start of physics production of LHC in 2016

Physics objects @ 13 TeV

Excellent comprehension of electrons, photons, muons, jets, MET

Electrons from Z decays

• HCAL / ECAL energy

Photons from radiative Z decays

Photon selection efficiencies

Photon energy scale and resolution

- in different photon categories
- maximum likelihood analysis performed while modifying energy
- Extrapolation to high mass checked with high mass DY events
- compatible with a precision of 0.5% for m_{ee} >200 GeV
- Photon energy smeared on MC to match data
- additional smearings

still room for improvement

Background composition

Background estimate fully data driven => no simulation used BUT good control of background gives confidence in the analysis

Background composition measured in data using template fits

Dominant contribution: events with 2 prompt photons Events where 1 or 2 candidates from jet fragmentation <10% (20%) in EBEB (EBEE)

Background composition: closure test

Data driven prediction for the prompt-prompt component compared with theory \checkmark Sherpa generator rescaled to 2yNNLO

Good agreement observed

Systematic errors

Signal model:

- ✓ Luminosity: 4.6% on signal normalization
- Trigger and photon selection: 10% on signal normalization
- ✓ Photon energy scale: 1%
- ✓ PDF: 6% on signal normalization

Background model:

- ✓ Bias term only
- ✓ Parameter coefficients: unconstrained nuisance parameters contribute to statistical error

Signal model

$m_{\rm G}~({\rm GeV})$	category	$\widetilde{\mathcal{K}}$	FWHM (GeV)	$\widetilde{\mathcal{K}}$	FWHM (GeV)
500	EBEB	0.01	14	0.2	36
500	EBEE	0.01	22	0.2	42
1000	EBEB	0.01	27	0.2	74
1000	EBEE	0.01	43	0.2	85
2000	EBEB	0.01	54	0.2	147
2000	EBEE	0.01	76	0.2	163
3000	EBEB	0.01	96	0.2	225
3000	EBEE	0.01	110	0.2	254
4000	EBEB	0.01	121	0.2	320
4000	EBEE	0.01	150	0.2	326

Analysis categories

Overall efficiency x acceptance ~55% for RSG at 600GeV Fraction of EBEE events: 10 to 45%

- 10-15% improvement from adding the barrel-endcap category
- Excess at 760GeV mostly in barrel

2.6 fb⁻¹ (13 TeV) **CMS** *Preliminary* 14 95% C.L. limit σ(pp→ G→γγ) (fb) 12 $\widetilde{\kappa} = 0.01$ 10 Combined EBEB 8 EBEE 6 4 2 0 5×10² 10³ 2×10³ 3×10³ m_G (GeV)

Combination with 8 TeV

CMS vs ATLAS

	CMS	Atlas
luminosity	2.6 fb ⁻¹	3.2 fb ⁻¹
benchmark	Spin 2	Spin 0
selection	fixed pT cut	scaling pT cut
eff x acc @ 600GeV	~0.55	~0.40
background model	m^(a + b*log(m))	(1-x^1/3)^b x^a
fit bias	< ½ stat.uncertainty	< 1/5 stat.uncertainty
Preferred width	narrow	~6%