Search for scalar $\gamma\gamma$ resonances at $\sqrt{s} = 13$ TeV with the ATLAS detector

Elisabeth Petit LPSC

DESY Hamburg/Zeuthen seminars 2nd/3rd of February 2016

- Search for new physics in the diphoton final state
- Analysis similar to the SM 125 GeV Higgs boson
- ♦ Run1: limit from 60 to 600 GeV
- ◆ Tried to be as process-independent as possible

• Increase of centre-of-mass energy: $8 \rightarrow 13 \text{ TeV}$

ATLAS detector in 2015

♦ New pixel layer (IBL)

- ♦ ~4 fb⁻¹ recorded data
 - 87% good for physics
- Used in this analysis: **3.2 fb**⁻¹

Method in a nut-shell

- Signal + background fit on the diphoton invariant mass
 - signal modelling from MC
 - background function chosen from MC, fitted on data
 - normalisation from data

Diphoton selection

- ♦ 2 well identified, isolated photons
 - identification eff > 90%
 - isolation eff > 80-90%
- $E_T^{\gamma 1}/m_{\gamma \gamma} > 0.4$ and $E_T^{\gamma 2}/m_{\gamma \gamma} > 0.3$
 - $60/45 \text{ GeV for } m_{_{VV}} = 150 \text{ GeV}$
 - 640/480 GeV for $m_{yy} = 1600 \text{ GeV}$

♦ γγ purity > 90% above 200 GeV

- ♦ **Higgs-like** signal simulation
 - Narrow Width Approximation (NWA): $\Gamma = 4 \text{ MeV}$
 - dominated by detector resolution

• Use of double-sided Crystal-Ball function

Width: : ~2 GeV at 200 GeV, 13 GeV at 2 TeV

Signal modelling (2)

- ◆ Larger widths: convolute resolution with Breit-Wigner
 - taking into account dependence on gluon-gluon parton lumi and on s

8

- Fit function chosen from high-statistics γγ MC
 - tested functions: $f_{(k)}(x; b, \{a_k\}) = (1 x^{1/3})^b \cdot x^{\sum_{j=0}^{k} a_j (\log x)^j}$ with $x = \frac{m_{\gamma\gamma}}{\sqrt{s}}$
 - F-test on data to decide if additional degrees of freedom are necessary \rightarrow k=0

 $f_{(0)}(x;b,a_0) = (1-x^{1/3})^b \cdot x^{a_0}$ 10⁴ Events / 40 GeV **ATLAS** Preliminary Data 10^{3} Background-only fit 10² $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ 10 1 10 Data - fitted background 15 10 5 -5 -10-15 1000 1200 1600 200 400 600 800 1400 $m_{\gamma\gamma}$ [GeV]

9

- ♦ Main uncertainty: photon energy resolution
 - corrections from 2012 data-driven measurements
 - additional uncertainties: comparison of run1 and run2 setup

Source	Uncertainty		
Background modeling $^{\circ \bullet}$			
Spurious signal	$2-10^{-3}$ events, mass-dependent		
Background fit	$\leq 50\% - \leq 20\%$ of the total signal yield uncertainty,		
	mass- and signal-dependent		
Signal modeling $^{\circ \bullet}$			
Photon energy resolution	$^{+[55-110]\%}_{-[20-40]\%}$, mass-dependent		

♦ p-value vs mass:

- Most significant deviation: local significance of **3.6***σ* around 750 GeV
 - global p0 of **2.0**σ (after look-elsewhere-effect in 200-2000 GeV)
 - − 1.5σ pull on the nuisance parameter associated with photon energy resolution uncertainty ⇒ excess broader than experimental resolution

11

Large width result

- Fits redone while scanning mass and width ($\alpha = \Gamma/m$)
 - look-elsewhere-effect for $m_x \in [200-2000]$ GeV and $\alpha \in [1-10]\%$
- Largest deviation around 750 GeV and $\alpha \simeq 6\%$ (ie 45 GeV)
- ♦ Local significance: 3.9σ
- Global significance: 2.3σ

Compatibility with run 1 result

- Published result up to 600 GeV:
 - now extended with improved fit procedure

- Assumption of s-channel gluon-initiated process $m_{\gamma\gamma}$ [GeV]
 - $\sigma(13 \text{ TeV})/\sigma(8 \text{ TeV}) = 4.7$
- Result
 - narrow-width: compatible within 2.2σ
 - large width: compatible within 1.4σ

Limit on fiducial cross section (1)

• Fiducial cross section: σ_{fid} =

$$_{l} = \frac{N^{signal}}{C_{X} \cdot L}$$

- C_x = correction factor in fiducial volume
 - computed for several Higgs-like production modes
 - difference as systematics
- Fiducial volume:
 - $E_T^{\gamma_{1,truth}} > 0.4 m_{\gamma_{1}}, E_T^{\gamma_{2,truth}} > 0.3 m_{\gamma_{1}}$
 - $|\eta^{truth}| < 2.37$
 - $E_{\rm T}^{\rm iso,truth} < 0.05*E_{\rm T}^{\rm truth} + 6 \ GeV$

• Additional uncertainties:

Source	Uncertainty		
Luminosity	$\pm 5\%$		
Trigger	$\pm 0.63\%$		
$C_X factors \bullet$			
Photon identification	$\pm (3-2)\%$, mass-dependent		
Photon isolation	$\pm (4.1-1)\%$, mass-dependent		
Production process	$\pm 3.1\%$		

Limit on fiducial cross section (2)

¹ Conclusion

Look for scalar diphoton resonances in 3.2 fb⁻¹ of 13 TeV data

- from 200 to 2000 GeV
- ♦ Excess seen around 750 GeV:

	significance	local	global
width	narrow	3.6σ	2.0σ
	6%*mX	3.9σ	2.3σ

- ◆ **No obvious** detector nor reconstruction effect
- Kinematic properties in the excess region and on both sides are similar within statistical uncertainties

- ♦ LHC starting again next month!
- ♦ First stable beams in April
- ◆ Expected in 2016: ~30 fb⁻¹

Back-up

Large width signal parameterisation

