

First results from the 13 TeV data with the CMS Experiment

Carmen Diez Pardos DESY Hamburg

First collisions at 13 TeV

Welcome to the 13 TeV era

Here: results using the early data with luminosity from nb^{-1} to $42pb^{-1}$

CMS Integrated Luminosity, pp, 2015, $\sqrt{s}=$ 13 TeV

Measuring from the lightest to the heaviest particles

\dots in the SM

Top quark physics: $t\overline{t}$ and single top cross section

Measuring from the lightest to the heaviest particles

\ldots in the SM

Top quark physics: $t\overline{t}$ and single top cross section

... and beyond: Heavy resonance searches

Plethora of studies with the 13 TeV data

Dimuons spectroscopy [CMS-DP-2015-018]

[CMS-DP-2015-016]

Resonance searches

[CMS-DP-2015-037]

SUSY Commissioning

[CMS-DP-2015-035]

Soft QCD

- The understanding and modeling of QCD interactions necessary for precision measurements and searches for new physics
- Soft particle production cannot be calculated reliably using pQCD: generally described by phenomenological models
 → Monte Carlo tunes

Pseudorapidity distribution of charged hadrons [PLB 751 (2015) 143]

- Inclusive production of charged hadrons $dN/d\eta$ gives a handle on the relative weight of soft and hard scattering contributions \rightarrow Important for precise modeling of pile-up collisions
- Collect minimum bias data in low pile up (PU) runs
 - Data taken on June 7, average PU~0.2-5%, B=0T (straight tracks)
- Strategy: Use different techniques with different sensitivities to misalignment, material detector response, background contamination

Two hits in different pixel layers

C. Diez Pardos (DESY)

Tracks from pixel hits triplets: three aligned hits fitted to a straight line

Results [PLB 751 (2015) 143]

- Corrected to a sample of inelastic collisions: $dN/d\eta(|\eta| < 0.5) = 5.49 \pm 0.01 \text{ (stat)} \pm 0.17 \text{ (syst)}$
- Collision energy dependence as expected
- \rightarrow First LHC publication with 13 TeV data

C. Diez Pardos (DESY)

Long-range near-side two-particle angular correlations

arXiv:1510.03068, submitted to PRL

• High-multiplicity events show long-range correlations at $\Delta \Phi \sim 0$ (near-side ridge)

- Associated yield extracted as a function of charged particle multiplicity and pT
 - Linear raise of the associated yield is observed as a function of number of tracks

The top quark

Top quark production mainly in pairs $(t\bar{t})$ and via gluon fusion at LHC

• Measuring $\sigma_{t\bar{t}}$ is the first fundamental step for understanding top physics

- Test QCD predictions and help constraining the PDFs (especially gluon distribution)
- Main background for Higgs and many searches for New Physics
- May provide insight into physics BSM
- Measure $t\bar{t}$ in different regions of the phase space: further understanding of QCD, enhance sensitivity to new physics

First 13 TeV top quark candidates

$t\bar{t} e\mu + 2 b jets$ single top quark CMS Experiment at LHC_CERN Data recorded: Tac Jul 14 11:47:11 2015 CEST Run/Event: 251721 / 22303468 CMS (im) section: 21 CMS Experiment at LHC, CERN CMS, Data recorded: Wed Jul 8 19:26:24 2015 CEST Run/Event: 251244 / 83494441 Lumi section: 151 Orbit/Crossing: 39572626 / 358 MET untagged jet MET= 164.0 GeV b-tagged j muon Jet p, = 81.6 GeV CMS Experiment at LHC. CERN Electron CMS Hats recorded' Thu Jul 9 01/29 2: Run/Event: 251252765011478 p, = 57.7 Lumi section: 140 Orb //Crossing 38595725 / 2078 Jet p. = 56.8 GeV Muon p. = 53.8 GeV muon jet from W jet from W biet extra jet $t\bar{t} \ \mu + \ge 4$ jets C. Diez Pardos (DESY) 03.11.2015 11/28

Inclusive cross section

$t ar{t} \ e \mu \ {\sf channel}$ [arXiv:1510.05302, submitted to PRL]

 $\sigma_{t\bar{t}} = 769 \pm 60(\text{stat}) \pm 55(\text{syst}) \pm 92(\text{lumi}) \text{ pb}$ (16% precision)

C. Diez Pardos (DESY)

03.11.2015

42 pb⁻¹ (13 TeV)

Non W/Z

Number of jets 42 pb¹ (13 TeV)

Non W/Z VV tW

> 250 300 m_{ey} (GeV)

Data

Data

ZIN

$t\bar{t}$: I+jets channel [CMS-PAS-TOP-15-005]

Grand summary $t\bar{t}$ cross sections

Good agreement among all measurements, also with NNLO+NNLL theory $_{\rm 03.11.2015}$

Differential cross section: analysis strategy

- Event selection
- 2 Top quark kinematic reconstruction

- Bin-wise cross section measurement:
- ◊ Subtract background
- ◊ Unfolding: correct for detector effects & acceptance to particle or parton level in full or visible phase space
- ${f 9}$ Normalised to measured σ in the same phase space
- Sompare to theory predictions/calculations

$t\bar{t}$ and top quark kinematics [CMS-PAS-TOP-15-005/10]

- Results measured in full phase space at parton level
- Measurements are dominated by the statistical uncertainty

• In general good agreement between data and predictions

Results as a function of global event variables (MET, HT, etc.): CMS-PAS-TOP-15-013

tī: jet multiplicity [CMS-PAS-TOP-15-005/10]

Large fraction of $t\bar{t}$ produced with high energetic jets from initial and final state radiation

- Stringent test of QCD perturbation series to higher orders
- Reveal presence of new physics in tt
 +jets final states, background for ttH

• Measured at particle level in fiducial phase space

Single Top

Single top production via EWK interaction

Single top t-channel production

Why are single tops interesting?

... in the Standard Model

 Direct probe of Wtb coupling, V_{tb} in CKM matrix.

$$\left(\begin{array}{ccc} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{array}\right)$$

- Constrain u/d PDF models (ratio of top/anti-top cross-sections)
- ... as probe for new physics:
 - 4th generation of quarks, FCNC, contributions from additional bosons (W'), charged Higgs, dark matter associated production
 - anomalous EWK couplings (corrections from higher energies)

t-channel inclusive cross section [CMS-PAS-TOP-15-004]

q q'foward b t l

- Selection: 1 isolated high-p_T muon, 1 central b-tagged jet, 1 forward light jet, M_T(W)
- Template fit to the pseudorapidity of the forward jet

Single Top

t-channel inclusive cross section [CMS-PAS-TOP-15-004]

- σ = 274 ± 98(stat) ± 52(syst) ± 33pb(lumi), constrained |V_{tb}| > 0.7 at 95%CL
- Significance: 3.5 (2.7) observed (expected)

Resonant Di-jet Candidate (5.4 TeV!)

Dijet resonances [CMS-PAS-EXO-15-001]

- Search for heavy particles decaying into 2 jets
- For narrow resonances : search for a bump in the di-jet mass spectrum.

- \bullet Simple and striking signature \rightarrow sensitive to any resonance coupling to quarks/gluons
- New energy scale reachable, expected to have already a better sensitivity for masses > 5 TeV!

C. Diez Pardos (DESY)

Selection [CMS-PAS-EXO-15-001]

• Wide jets improve dijet mass resolution

- Fit to the dijet invariant mass
- No evidence of dijet resonances: data agree with background fit function

Results [CMS-PAS-EXO-15-001]

- Exclusion limits are calculated for gluon-gluon, quark-gluon and quark-quark.
- Exclusion from 2.3 to 5.1 TeV (best exclusion), depending on the model.

Model	Final State	Obs. Mass Limit [TeV]	Exp. Mass Limit [TeV]
String Resonance (S)	qg	5.1	5.2
Excited Quark (q*)	qg	2.7	2.9
Scalar Diquark (D)	qq	2.7	3.3
Axigluon (A)/Coloron (C)	φą	2.7	2.9
Color Octet Scalar (s8)	gg	2.3	2.0

C. Diez Pardos (DESY)

Prospects at 13 TeV

CMS Integrated Luminosity, pp, Run 2 $\sqrt{s} = 13$ TeV

Some prospects at 13 TeV

- Measure the couplings of the top quark to Z,γ and top-Yukawa coupling
- Higgs: first measurement of VBF, VH
- Highest dijet mass bin >7 TeV
- Hopefully first discoveries!

Summary

- A new challenging time just started at LHC 13 TeV Run2
- First measurements from 13 TeV with a luminosity \leq 50 pb⁻¹ are already public
- $\bullet\,$ First competitive searches at 13TeV $\rightarrow\,$ Nothing found yet
- Many new results (EWK, searches for BSM, SUSY) expected before the end of the year!
- CMS public Physics results available from: http://cms-results.web.cern.ch/cms-results/public-results/publications/

BACK UP

CMS after Long Shutdown 1

Some Prospects at 13 TeV

- For high mass searches parton luminosity counts!
- With 3 fb⁻¹ all searches with $M_x > 2$ TeV are competitive

31/28

Magnet Criogenics

- The restart of the CMS magnet after LS1 was more complicated than anticipated due to problems with the cryogenic system in providing liquid Helium.
- Inefficiencies of the oil separation system of the compressors for the warm Helium required several interventions and delayed the start of routine operation of the cryogenic system.
- Currently the magnet can be operated, but the continuous up-time is still limited by the performance of the cryogenic system requiring more frequent maintenance than usual.
- A comprehensive program to re-establish its nominal performance is underway. These
 recovery activities for the cryogenic system will be synchronized with the accelerator
 schedule in order to run for adequately long periods.
- A consolidation and repair program is being organized for the next short technical stops and the long TS at the end of the year.