Double Parton Scattering @ LHCb

LHCD

Vanya Belyaev (ITEP/Moscow)

DPS: simple paradigm

Simple pattern, a lot of powerful consequences and interesting predictions

Pocket formula is also valid for differential cross-sections

' The cross-section is *larger* than in naïve model

 $\sigma_{eff} = 15mb$ vs $\sigma_{in} = 55mb$

- The effective cross-section is a property of proton (integral over transverse degrees of freedom)
 - Smaller than "proton size": $\pi R^2 \approx 50 mb$
 - It is universal: <u>energy and and process independent</u>
 - easy to compare Tevatron, GPD and LHCb
- Easy to extend to pA and AA collisions with interesting predictions
 - Large enhancement for certain processes

19 May 2k+15 DESY

Too simple?

Validity of factorization anzatz:

$$D_h^{ij}(x_1, x_2; Q_1^2, Q_2^2) = D_h^i(x_1; Q_1^2) D_h^j(x_2; Q_2^2).$$

- This anzatz allow $x_1+x_2>1$:
 - energy non-conservation. Need to suppress such configurations: at least $\theta(1-x_1-x_2)$ factor is needed
 - Makes integration impossible
- Numerical studies within Lund dipole cascade model shows violation of factorization at large $Q_1{}^2$ and/or $Q_2{}^2$
 - up to 20% deviation from factorization in γ +jets cross-sections in Tevatron case
 - Up to 30-50% for certain kinematical ranges
- For processes with (very) small x only factorization is fine

$$\begin{split} \Gamma_{gg}(b, x_1, x_2; \mu_1^2, \mu_2^2) \\ &= F_g(x_1, \mu_1^2) F_g(x_2, \mu_2^2) F(b; x_1, x_2, \mu_1^2, \mu_2^2), \end{split}$$

19 May 2k+15 DESY

 $\sigma_{\rm eff}(x_1, x_2, x_1', x_2', \mu_1^2, \mu_2^2) = \left(\int d^2 b F(b; x_1, x_2, \mu_1^2, \mu_2^2) F(b; x_1', x_2', \mu_1^2, \mu_2^2)\right)^{-1}.$

Need to measure σ_{eff}

validate independence on energy and process

DPS

- ... or measure the dependence
- Validate/probe the pocket formula for differential cross-sections
 - Due to $\theta(1-x_1-x_2)$ insert the differential formula dies the first
 - "A" and "B" have larger rapidity separation with respect to uncorrelated case...

 $D_h^{ij}(x_1, x_2; Q_1^2, Q_2^2) = D_h^i(x_1; Q_1^2) D_h^j(x_2; Q_2^2).$

19 May 2k+15 DESY

DPS importance

Can easily mimic crucial signals

- DPS importance grows with energy/gluon density (smaller ×)
- Interparton correlations
- First observed long time ago:
 - 4-jets AFS@ISR
 - 3-jets+y CDF, D0, ...
- @ LHC

19 May 2k+15 DESY

- ATLAS, CMS: 4-jets, W+jets, $2 \times J/\psi$, W+J/ ψ , Z+J/ ψ , ...
- LHCb: 2×J/ψ, Z+D, double charm,

1000 - AT -2 his 100/0

 σ_{eff} is important QCD parameter:

Energy independent (?)

Process independent (?

Vanya Belyaev, "DPS@LHCb"

RICH Detectors: 95% $\epsilon(K^{\pm})$ @5% $\pi \rightarrow K$ misID

ε(μ[±])=97%@1-3% π→μ misID

Muon:

pp-interaction point

Vertex Locator O(50fs) resolution for B The most precise τ(B)

ECAL: $\sigma_{\rm m}(\pi^0)=7{\rm MeV}/c^2$

Tracking: $\Delta p/p = 0.5 - 0.6\%$ for 5 GeV/cThe most precise B-masses

19 May 2k+15 DESY

Run I

1fb⁻¹@7TeV 2fb⁻¹@8TeV 3.3pb⁻¹ @2.76TeV 1.6 nb⁻¹ pA & Ap

LHCb Efficiency breakdown pp collisions 2010-2012

Thanks to LHC accelerator team for the excellent performance of machine

19 May 2k+15 DESY

$J/\psi \rightarrow \mu^+\mu^-$ @ LHCb

EPJC71 (2011) 1645

JHEP 06(2013) 064

JHEP 02(2013) 041

10

- High trigger efficiency
 - Dimuon trigger
 - No $p_T(J/\psi)$ cut
- Excellent µID
- Very low background
- Resolution ~13MeV/c²
- High yield: ~150M/fb⁻¹
- Cross-section is measured at √s=7,8 &2.76TeV

19 May 2k+15 DESY

Prompt open charm at LHCb

JHEP 1206(2012) 141, 1403(2014) 108

Dedicated charm triggers

- further improvement for 2012, and even further for Run II
- Excellent hadron ID
 - RICH detectors
- Excellent mass-resolution O(5MeV/c²)
- Measured cross-section at \sqrt{s} =7TeV

NPB871(2013)1

11

 $\sqrt{s}=7$ TeV, 355pb⁻¹

19 May 2k+15 DESY

J/ψ + open charm signals

JHEP 1206(2012) 141, 1403(2014) 108

19 May 2k+15 DESY

Vanya Belyaev, "DPS@LHCb"

Vanya Belyaev, "DPS@LHCb"

14

<u>JHEP 1206(2012) 141, 1403(2014) 108</u>

$2 < y(D) < 4, 2 < y(J/\psi) < 4, p_T(D) > 3 GeV/c$

											· · · · · · · · · · · · · · · · · · ·
Mode	$\sigma_{\rm J/\psiC} / \sigma_{\rm J/\psi} \ [10^{-3}]$	$\sigma_{{\rm J/\!\psiC}}/\sigma_{\rm C}~[10^{-4}]$	$\sigma_{\mathrm{J/\psi}}\sigma_{\mathrm{C}}/\sigma_{\mathrm{J/\psi}\mathrm{C}}~[\mathrm{mb}]$								S.W.
$J/\psi D^0$	$16.2 \pm 0.4 \pm 1.3^{+3.4}_{-2.5}$	$6.7\pm0.2\pm0.5$	$14.9 \pm 0.4 \pm 1.1^{+2.3}_{-3.1}$		$\mathrm{D}^{0}\mathrm{D}^{0}$			1 9 1			i.
$J/\psi D^+$	$5.7 \pm 0.2 \pm 0.6^{+1.2}_{-0.9}$	$5.7 \pm 0.2 \pm 0.4$	$17.6 \pm 0.6 \pm 1.3^{+2.8}_{-3.7}$		D^0D^+			**			1×
$J/\psi D_s^+$	$3.1 \pm 0.3 \pm 0.4^{+0.6}_{-0.5}$	$7.8 \pm 0.8 \pm 0.6$	$12.8 \pm 1.3 \pm 1.1^{+2.0}_{-2.7}$		$\mathrm{D}^{0}\mathrm{D}^{+}_{\mathrm{s}}$			H Q 1	SPS	fraction 1	1-5%
$J/\psi \Lambda_c^+$	$4.3 \pm 0.7 \pm 1.2^{+0.9}_{-0.7}$	$5.5 \pm 1.0 \pm 0.6$	$18.0 \pm 3.3 \pm 2.1^{+2.8}_{-3.8}$		D^+D^+		H Q H		Extr	emely clean	DPS
,	0.1		0.0	_	D^+D^+		H- 8- 1		Berezh	hnoy et al,	
Mode	σ [nb]	$\sigma_{\rm CC}/\sigma_{\rm C\overline{C}}$ [%]	$\sigma_{\rm C_1}\sigma_{\rm C_2}/\sigma_{\rm C_1C_2}$ [mb]						Baran	ov	
$D^0 D^0$	$690 \pm 40 \pm 70$	10.0 0.9	$2 \times (42 \pm 3 \pm 4)$		$D^+\Lambda_c^+$		⊷		Macul	erg, 'a and Szcz	urok
$D^0 \overline{D}^0$	$6230 \pm 120 \pm 630$	10.9 ± 0.8	$2 \times (4.7 \pm 0.1 \pm 0.4)$						macu		
D^0D^+	$520 \pm 80 \pm 70$	100101	$47 \pm 7 \pm 4$					_	T/T D0		53
D^0D^-	$3990 \pm 90 \pm 500$	12.8 ± 2.1	$6.0 \pm 0.2 \pm 0.5$			XXXXXX		•	J/ψD°		31
$D^0D_s^+$	$270 \pm 50 \pm 40$	157194	$36\pm 8\pm 4$				H e H		J∕ψD+		5
$D^0 D_s^-$	$1680\pm110\pm240$	10.7 ± 3.4	$5.6\pm0.5\pm0.6$						1/1 D+		A.S.
$D^0 \bar{\Lambda}_c^-$	$2010\pm280\pm600$		$9\pm 2\pm 1$		XXXXXXXXX		H O H		J/ψD's		20
D^+D^+	$80 \pm 10 \pm 10$	0.6 ± 1.6	$2 \times (66 \pm 11 \pm 7)$				⊷⊷		$J/\psi \Lambda_c^+$		
D^+D^-	$780 \pm 40 \pm 130$	9.0 ± 1.0	$2 \times (6.4 \pm 0.4 \pm 0.7)$								7
$D^+D_s^+$	$70 \pm 15 \pm 10$	12.1 ± 3.3	$59 \pm 15 \pm 6$		1		2		2	4	15
$\rm D^+D_s^-$	$550 \pm 60 \pm 90$		$7\pm$ 1 ±1	1(1	10	10^{2}	1)'	10^{4}	2
$D^+\Lambda_c^+$	$60 \pm 30 \pm 20$	10.7 ± 5.0	$140\pm70\pm20$								d-
$D^+ \bar{\Lambda}_c^-$	$530\pm130\pm170$	10.7 ± 0.9	$15\pm 4 \pm 2$				σ			[nb]	
				1							D

 $\sqrt{s}=7$ TeV, 355pb⁻¹

19 May 2k+15 DESY

Pure DPS?

15

Measured crosssections significantly (×30-100) larger than theory predictions for SPS

DPS process with purity in excess of 97% ???

• Really unique Test differential distributions

19 May 2k+15 DESY

Most precise σ_{eff} J/ ψ C agrees perfectly with CDF DD closer to ~20mb $V_{s=7TeV, 355pb}$

<mark>JHEP 1206(2012) 141, 1403(2014) 108</mark>

Vanya Belyaev, "DPS@LHCb"

Vanya Belyaev, "DPS@LHCb"

Next steps?

21

Something + cc at LHCb

 $\sigma(c\bar{c})_{p_{\rm T}<8\,{\rm GeV}/c,\,2.0< y<4.5} = 1419 \pm 12\,({\rm stat}) \pm 116\,({\rm syst}) \pm 65\,({\rm frag})\,\mu{\rm b},$

 $\sigma(X+c\bar{c})_{DPS} = \sigma(X) \times \sigma(c\bar{c}) / \sigma_{eff} \approx 10\% \sigma(X)$

- 10% of "hard" events has additional charm!
- Choice of "X" defines the process scale, vary from soft $c\bar{c}$ to hard Z/W, ...
 - Intermediate scales?
- Large statistic allows precise differentia measurements
- Probe pocket formula and search for factorization violations

19 May 2k+15 DESY

Summary ("Towards TPS")

- DPS is actively explored at LHC by ATLAS, CMS and LHCb
 - Great degree of complementarity:
 - large variety of processes
 - different kinematics range
 - different DPS purity
- Testing the basic principles of DPS paradigm
 - ... and search for factorization violation
- Charm and multiple charm production is very good DPS probe
- DPS processes have different energy dependence from SPS
 - data at $\sqrt{s}=13 TeV$ will be very useful for better DPS understanding
 - for √s=13TeV for some processes, e.g. cc̄, one probably can speculate also about *Triple Parton Scattering*

19 May 2k+15 DESY

Vanya Belyaev, "DPS@LHCb"

Compare with CDF'2k+6

24

http://www-cdf.fnal.gov/physics/new/bottom/060921.blessed-double-charm-corr/

CDF: azimuthal correlations for D^(0,+)D*-Large gluon splitting contribution

19 May 2k+15 DESY