

Future Accelerator Facilities for Particle Physics & beyond

Brian Foster (Uni Hamburg/DESY)

PIER Colloquium November 2014

- Overview of ideas for future facilities

 Hadron-hadron machines LHC (& beyond)
 - -Lepton-lepton Machines
 - e⁺e⁻ linear, circular; μ⁺μ⁻
 - -(Lepton-hadron machines)
 - -Plasma-wave acceleration
- Status & prospects

The Higgs – particle physics at a cusp?

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

DESY

Unterstützt von / Supported by

The LHC Accelerator

Alexander von Humboldt Stiftung/Foundation

The LHC is an amazing feat of engineering - 27 km of the most high-tech equipment in the world's biggest instrument.

Run 2 Startup

- Lastest plans as discussed at LHC Performance Workshop (Chamonix), September https://indico.cern.ch/event/315665/
- First beam planned for week of March 9th
- First collisions planned for week of June 4th
 - 100 days of collisions planned
- Beam energy: 6.5 TeV
- bunching spacing: 25ns (short period of running with 50 ns also envisaged)

LHC Strategy

Alexander von Humboldt Stiftung/Foundation

LHC schedule beyond LS1

LS2 starting in 2018 (July)

LS3 LHC: starting in 2023

Injectors: in 2024

- => 18 months + 3 months BC => 30 months + 3 months BC
- => 13 months + 3 months BC

Goal is to obtain about 3 - 4 fb⁻¹/day (250 to 300 fb⁻¹/year)

HL-LHC

Many improvements on the injector chain

- Linac 4 PS booster
- PS
- SPS

Many improvements on the LHC ring

- New IR-quads Nb₃Sn (inner triplets)
- New 11 T Nb₃Sn (short) dipoles
- Collimation upgrade
- Cryogenics upgrade
- Crab Cavities
- Cold powering
- Machine protection

B. Foster - PIER Coll. - 11/14

LHC Technology

Alexander von Humboldt Stiftung/Foundation

Successful US test in 2013 of new Nb₃Sn quads for IR

Unterstützt von / Supported by

FCC Overview

FCC-hh hadron collider with 100TeV proton cms energy

~16 T \Rightarrow 100 TeV *pp* in 100 km ~20 T \Rightarrow 100 TeV *pp* in 80 km

FCC-ee a lepton collider as a potential intermediate step

FCC-eh lepton hadron option

International collaboration

- Site studies for Geneva area
- CDR for EU strategy update in 2018

(FCC slides thanks to D.Schulte.)

FCC Preliminary Layout

Unterstützt von / Supported by

First layout developed (different sizes under investigation)

- ⇒ Collider ring design (lattice/hardware design)
- \Rightarrow Site studies
- \Rightarrow Injector studies
- \Rightarrow Machine detector interface
- \Rightarrow Input for lepton option

Will need iterations

Arc dipoles are the main cost and parameter driver

Baseline is Nb₃Sn at 16T

HTS at 20T also to be studied as alternative

Field level is a challenge but many additional questions:

- Aperture
- Field quality

Different design choices (e.g. slanted solenoids) should be explored

Goal is to develop prototypes in all regions, US has world-leading expertise

Unterstützt von / Supported by

FCC Synchrotron Rad.

- At 100 TeV even protons radiate significantly
- Total power of 5 MW (LHC 7kW) \Rightarrow Needs to be cooled away
- Equivalent to 30W/m /beam in the arcs
- LHC <0.2W/m, total heat load 1W/m

Critical energy 4.3keV, close to B-factory

Protons loose energy

- \Rightarrow They are damped
- \Rightarrow Emittance improves with time
- Typical transverse damping time 1 hour

Unterstützt von / Supported by

FCC Machine Protection

- >8GJ kinetic energy per beam
 - Airbus A380 at 720km/h
 - 24 times larger than in LHC at 14TeV
 - Can melt 12t of copper
 - Or drill a 300m long hole
 - \Rightarrow Machine protection
- Also small loss is important
 - E.g. beam-gas scattering, non-linear dynamics
 - Can quench arc magnets
 - Background for the experiments
 - Activation of the machine
 - ⇒ Collimation system

- Total power of background events 100kW per experiment (a car engine)
- Already a problem in LHC and HL-LHC (heating, lifetime)
 ⇒ Improved shielding required. Lots of work to do before CDR.

- Simple particles
- Well defined: energy, angular mom.
- E can be scanned precisely
- Particles produced
 ~ democratically
- Final states generally fully reconstructable

Circular e⁺e⁻ machines

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Very approximate cost LC vs circular based on minimum of cost model Cost = $aE^4/R + bR$ where a,b "fixed" from LEP – two curves are most optimistic and pessimistic LEP cost.

BUT – luminosity of circular machine in this picture dropping steeply with E.

Circular e⁺e⁻ machines

B. Foster - PIER Coll. - 11/14

Circular e⁺e⁻ machines

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

(D. Schulte)

FCC-ee Luminosity Lifetime

ldt tion

Large particle energy loss in IPs and limited energy acceptance (2%) cause limited lifetime

- **Radiative Bhabha** scattering is proportional to **luminosity**
- Beamstrahlung as in linear colliders
- As yet no acceptable beam dynamics solution.

Need continuous injection (top-up)

CEPC Parameters

Parameter	Unit	Value	Parameter	Unit	Value
Beam Energy	GeV	120	Circumference	km	50
Number of IP		2	L ₀ /IP (10 ³⁴)	cm ⁻² s ⁻¹	2.62
No. of Higgs/year/IP		1E+05	Power(wall)	MW	200
e+ polarization		0	e- polarization		0
Bending radius	km	6.2	N _e /bunch	1E10	35.2
N _b /beam		50	Beam current	mA	16.9
SR loss	(GeV/turn)	2.96	SR power/beam	MW	50
Critical energy of SR	MeV	0.6	ε _x ,n	mm-mrad	1.57E+06
ε _γ ,n	mm-mrad	7.75E+03	β _{IP} (x/y)	mm	200/1
Trans. size (x/y)	μ m	36.6/0.18	Bunch length	mm	3
Energy spread SR	%	0.13	Full crossing angle	mrad	0
Lifetime due to Bhabha	sec	930	Damping part. No. (x/y/z)		1/1/2
b-b tune shift x/y		0.1/0.1	Syn. Osci. tune		0.13
RF voltage V _{rf}	GV	4.2	Mom. compaction	1E-4	0.4
Long. Damping time	turns	40.5	Ave. No. of photons		0.59
dB-beam-beam B. Foster - PIER Coll 11/14	%	0.014			22

SppC Parameters

Parameter	Value	Unit
Circumference	52	km
Beam energy	35	TeV
Dipole field	20	Т
Injection energy	2.1	TeV
Number of IPs	2 (4)	
Peak luminosity per IP	1.2E+35	$cm^{-2}s^{-1}$
Beta function at collision	0.75	m
Circulating beam current	1.0	А
Max beam-beam tune shift per IP	0.006	
Bunch separation	25	ns
Bunch population	2.0E+11	
SR heat load @arc dipole (per aperture)	56	W/m

- Preliminary selected Qinhuangdao (🗆 🗆 🗆 (one of the candidate sites)
- Strong support by the local government

B. Foster - PIER Coll. - 11/14

SCRF Linac Technology

• solid niobium

- standing wave
- 9 cells
- operated at 2K (Lqd. He)
- 35 MV/m
- $Q_0 \ge 10^{10}$

1.3 GHz Nb 9-cell Cavities	16,024
Cryomodules	1,855
SC quadrupole package	673
10 MW MB Klystrons & modulators	436 / 471

* site dependent

Approximately 20 years of R&D Worldwide I Mature technology

Industrial production - XFEL

Alexander von Humboldt

ENLIGHTENING SCIENCE

B. Foster - PIER Coll. - 11/14

DESY

European

Шi

Technology optimisation

Barrel Polishing in HiGrade lab @ DESY – No EP ?

- Higher Q via nitrogen doping surface processing
- High Q via efficient flux expulsion cooling
- No high gradient yet

B. Foster - LC School,

ATF2 beam-size success

Field quality improvements, orbit stabilisation 0 34 36 38 40 42 44 46 48 50 through feedback, shorted turn in 6-pole magnet, beam size monitor improvements

Evaluateds, (nm)

Japanese Site

Virtual reality tools

Unterstützt von / Supported by

CLIC

B. Foster - PIER Coll. - 11/14

- Demonstrate Drive Beam generation
 (fully loaded acceleration, beam intensity and bunch frequency multiplication x8)
- Demonstrate RF Power Production and test Power Structures
- Demonstrate Two Beam Acceleration and test Accelerating Structures

CLIC Accelerating Structures

- CLIC acceleration travelling wave too high Ohmic losses from standing wave
- Bunches induce wakefields in the accelerating cavities
- Later bunches are perturbed by these fields
- Can lead to emittance growth and instabilities
- Effect depends on a/λ (a iris aperture) and structure design details
- Transverse wakefields roughly scale as $W_{\perp} \propto f^{3}$
- Long-range minimised by structure design

Current status

Alexander von Humboldt Stiftung/Foundation

Luminosity

- Damping ring like an ambitious light source, no show stopper
- Alignment system principle demonstrated
- Stabilisation system developed, benchmarked, better system in pipeline
- Simulations on or close to the target

Conceptual design complete

Operation & Machine Protection

- Implementation
- Start-up sequence operation defined
- Consistent staged implementation scenario defined
- Schedules, cost and power developed and presented
- Site and CE studies documented

Muon Collider

ጥ

North

Alexander von Humboldt Stiftung/Foundation

Muon Collider **Conceptual Layout**

-M

-N

-T

-(m

PHYSICS

DES

Project X Accelerate hydrogen ions to 8 GeV using SRF technology.

Compressor Ring Reduce size of beam.

Ϊľ

Target Collisions lead to muons with energy of about 200 MeV.

Muon Cooling Reduce the transverse motion of the muons and create a tight beam.

Initial Acceleration In a dozen turns, accelerate muons to 20 GeV.

Recirculating Linear Accelerator In a number of turns, accelerate muons up to 2 TeV using SRF technology.

Collider Ring Located 100 meters underground. Muons live long enough to make about 1000 turns.

B. Foster - PIER Coll. - 11/14

41

- Ionization cooling analogous to familiar SR damping process in electron storage rings
 - energy loss (SR or dE/ds) reduces p_x , p_y , p_z
 - energy gain (RF cavities) restores only p_z
 - repeating this reduces $p_{x}/p_{z} \Rightarrow 4D$ cooling)

MICE Schedule

Under construction:

Muon Collider Cooling

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Need 6D cooling (emittance exchange)

Surfing the wave

 We know that electric fields inside an atom are enormous. Can we find a way to use them to accelerate? In a plasma, yes.

I GeV electron beams on "table top".

Unterstützt von / Supported by

Inject beam

To understand acceleration in plasma, inject high-quality beam into plasma – requires excellent time and spatial precision.

Litos et al., Nature 515, 92-95 (06.11.2014)

Inject beam

To understand acceleration in plasma, inject high-quality beam into plasma – requires excellent time and spatial precision.

Litos et al., Nature 515, 92-95 (06.11.2014)

Alexander von Humboldt Stiftung/Foundation

World-wide acceleration

B. Foster - PIER Coll. - 11/14

The LAOLA. collaboration and its plasma-wakefield strategy

Mission and goals of the FLASHForward►► project

Mission > To demonstrate the potential of beam-driven plasma wakefield accelerators for the production of high-quality electron beams supporting free-electron laser operation as a first step towards future high-energy physics applications

Scientific goals

- Characterization of externally injected electron beams and controlled release from a wakefield accelerator with energies > 1.6 GeV
- Exploration of novel in-plasma beam-generation techniques to provide > 1.6 GeV energy, < 100 nm transverse normalized emittance, ~1 fs duration, and > 1 kA current electron bunches
- > Assessment of beams for free-electron laser gain at wavelengths on the few-nanometer scale

FLASHForward beamline overview

FLASHForward►► beamline overview

Beamline installation to start in May 2015

Preliminary FLASHForward installation plan in place

- Preparation of FLASH extraction area in May 2015, 3 weeks duration
- Installation of vacuum components not before 2016 owing to
 - unavailability of some technical groups in 2015 due to XFEL work
 - user run at FLASH 1
- > Further installations require
 - 1 month of work in FLASH extraction area in 2016
 - Total of 2x 1 month of work in FLASH II tunnel in 2015/16, can be partially in parallel with extraction area work
- Exact installation time slots in 2016 still to be defined

FLASH coordinators extremely supportive in implementation of plan, regular coordination meetings have been established.

Helmholtz Virtual Institute for Plasma Wakefield Acceleration of highly Relativistic electrons with FLASH

Realising the dreams?

• A laser-plasma-driven linear collider?

B. Foster - PIER Coll. - 11/14

B. Foster - PIER Coll. - 11/14

- Particle & accelerator physics very lively many ideas out there
- In last ~ year, great upsurge of interest in new large rings, aimed at ~ 100 TeV pp but with possibility of initial e⁺e⁻
- ILC technically mature but expensive
- CLIC significant development required < 1 TeV, cost ~ ILC
- Circular e⁺e⁻ Higgs factory cheaper than LC but not trivial accl. physics & no energy-upgrade path...
- μ C It's a great idea but don't hold your breath....
- LHeC/FCC-eh technically "OK" once protons there.
 Cost/physics?
- PWA very exciting, but long way from a LC for particle physics
- In the immediate future, Japanese interest in hosting ILC is being discussed. A strong physics case exists, irrespective of LHC results. The next 2-3 years will be criticial.

Backup slides

