# Prospect of New Physics Searches using HL-LHC



# Altan Cakir DESY Hamburg, 16.09.2014



HELMHOLTZ

#### Also presented at Next Steps in the Energy Frontier – Hadron Colliders Workshop at Fermilab, USA



# Large Hadron Collider (LHC)







# **The High-Lumi LHC Project**



To extend its discovery potential, the LHC will need a major upgrade around 2020 to increase its luminosity (rate of collisions) by a factor of 10 beyond its design value.

# **New LHC / HL-LHC Plan**



✓ provide more accurate measurements of new particles and enable observation of rare processes that occur below the current sensitivity level.





#### The Standard Model is incomplete: big questions



#### Naturalness and fine tuning



10-1 m 10: GeV 10-18 m

QED

10-11 m

1 Mev

Electro



10 to m 10 eV

Magnetism

Long range

# Origin of SM matter and flavor? Are particles elementary or composite?



10<sup>-#</sup> m 10<sup>#</sup> GeV 1018 GeV

Unity of forces? New forces?

Most interesting theories offer solutions to open problems of the SM?





Gravity

# Why do we need HL-LHC?



- The discovery of new physics is one of the highest priorities for the current and future LHC
- ➤ The multi-TeV energy range will not be accessible at any other current facility.
- Strategy: take existing searches and figure out reach at 14 TeV, for different luminosities!
- ✓ significant impact on the physics reach of CMS and ATLAS beyond that gained by accumulating 10 or 100 times more data.
- Discuss expected sensitivity to broad range of Beyond the SM benchmark models for new physics searches at the CMS and ATLAS collaborations.





# **Outline: HL-LHC Analyses**

- > Supersymmetry Searches
  - o Strongly produced SUSY: gluino and squarks searches
  - Third generation SUSY: direct stop and direct sbottom searches
  - Electroweak production of SUSY particles
  - Vector Boson Fusion in SUSY
- Vector boson scattering and Triboson production
- $\succ$  Vector-like charge 2/3 quark search
- > Search for ttbar and dilepton resonances
- > Search for W` and Dark Matter



ATLAS-PHYS-PUB-2013-003, ATLAS-PHYS-PUB-2013-007, ATLAS-PHYS-PUB-2013-011, ATLAS-PHYS-PUB-2014-010

CMS-NOTE-13-002, CMS-FTR-13-006, CMS-FTR-13-014, CMS-FTR-13-026

ATLAS Collaboration  $\rightarrow$  https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradePhysicsStudies CMS Collaboration → <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFP</u>





Altan Cakir | Prospect of New Physics Searches using HL-LHC | DESY 2014 | Page 6

# **Studies of Future Physics Prospects**

Both CMS and ATLAS studies have been performed for  $5\sigma$  discovery reach with 300(0) TD<sup>-1</sup> @ 14 TeV based on 20 TD<sup>-1</sup>@ 8 TeV

- 1 Conservative: all yields and uncertainties scaled by IumI and cross-section
- ② Optimistic: relative background uncertainty is assumed to be same







### **Searches for Supersymmetry at HL-LHC**



## **Strongly produced SUSY**







#### **Strongly produced SUSY and Current Limits**



# **Monte-Carlo Samples**

Several Monte-Carlo (MC) generators are used to model the dominant SM processes and new physics signals relevant for the analyses.

# **ATLAS** Collaboration



- Cteq6l1 Madgraph and CT10 MC@NLO and Sherpa
  - ATLAS fast simulation, based on parametrization of the trigger and detector response to generator level objects

### **CMS Collaboration**

|   | Top-pair               |                      |
|---|------------------------|----------------------|
|   | DIDUSUII<br>W(*) Lioto |                      |
| _ | VV()+Jets              | Madgraph             |
|   | Z()+jets               |                      |
|   | V  (V=VV, Z)           |                      |
|   | VVVVV,ZZZ, ZVVVV       |                      |
|   | Signal Samples         | Madgraph and Pythia6 |
|   | Prospino (xsec)        |                      |

# Cteq6l1 and CT10

<u>Delphes fast simulation with CMS tuning</u>, a few SM processes produced with full-simulation to validate Delphes simulation.



Detector



#### CMS-PAS-FTR-13-014 (ECFA 2013)

#### Signal topology of such events:

- Many jets and Leptons
- Among them several b-jets
- Large missing energy  $(E_T^{Miss})$

#### Pre-selection of events based on:

- An isolated electron (muon)  $p_T>20$ GeV and  $|\eta|<2.5$  (2.1)
- Leptons veto  $p_T > 15 \text{ GeV}, |\eta| < 2.5$
- nJets>6 p<sub>T</sub>>40 GeV, |η|<2.4
- At least one b-tagged jet
- HT> 500 GeV and  $S_{Tlep} > 250 \text{ GeV}$
- $\Delta \phi$  (W, Lepton)

#### Single Lepton + b-tagged jets final state



$$N_{SM}^{pred}(\Delta\phi(W,\ell) > 1) = R_{CS} \cdot N_{data}(\Delta\phi(W,\ell) < 1)$$
  
Signal region Control region

Search regions: different  $S_{T}^{Lep}$  (MET +  $\boldsymbol{\Sigma}_{i}$  LepPt\_i) bins with different b-tagged jets

 $R_{\rm CS} = \frac{N_{\rm signal}}{N_{\rm control}} = \frac{\text{Number of events with } \Delta \phi(W, \ell) > 1}{\text{Number of events with } \Delta \phi(W, \ell) < 1}.$ 







3000 fb<sup>-1</sup> up to 2.2 TeV, for  $\chi_1^0$  with mass of up to 1.2 TeV





ATLAS-PHYS-PUB-2014-010 (I CHEP 2014)

#### Signal topology of such events:

- Many jets, no leptons
- Large missing energy (E<sub>T</sub><sup>Miss</sup>)
- Use of  $M_{eff}$  and  $E_T^{Miss}/\sqrt{HT}$

The selection of events based on:



| Solartion                                                           | Channel                                                            |            |      |            |      |      |      |      |      |      |
|---------------------------------------------------------------------|--------------------------------------------------------------------|------------|------|------------|------|------|------|------|------|------|
| Selection                                                           | 2jl                                                                | 2jm        | 3ј   | 4jl        | 4jm  | 4jt  | 5j   | 6j1  | 6jm  | 6jt  |
| $p_{\rm T}(j_1) [{\rm GeV}] >$                                      | 160                                                                |            |      |            |      |      |      |      |      |      |
| $N_{\text{jets}}(p_{\text{T}} > 60 \text{ [GeV]}) \ge$              |                                                                    | 2          | 3    | 4 5 6      |      |      |      | 6    |      |      |
| $E_{\rm T}^{\rm miss}$ [GeV] >                                      | 160                                                                |            |      |            |      |      |      |      |      |      |
| $\Delta \phi$ (jet, $E_{\rm T}^{\rm miss}$ ) <sub>min</sub> [rad] > | 0.4 $(j_1, j_2, j_3)$ , 0.2 (all $p_T > 40$ GeV jets)              |            |      |            |      |      |      |      |      |      |
|                                                                     | $\langle \mu \rangle = 140, 3000  \text{fb}^{-1}  \text{scenario}$ |            |      |            |      |      |      |      |      |      |
| $E_{\rm T}^{\rm miss}/m_{\rm eff}>$                                 | –                                                                  | –          | 0.3  | 0.35       | 0.25 | –    | 0.25 | 0.25 | 0.35 | 0.15 |
| $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}  [{\rm GeV}^{1/2}] >$        | 8                                                                  | 15         | _    | _          | -    | 10   | _    | -    | -    | -    |
| $m_{\rm eff} \; [{ m GeV}] >$                                       | 4500, 5000                                                         | 4500, 4900 | 4000 | 4000, 3800 | 4000 | 4500 | 4000 | 3400 | 3500 | 5000 |

The uncertainty on the total SM background is assumed to be 10%.





ATLAS-PHYS-PUB-2014-010 (I CHEP 2014)

Multiple signal regions have been optimized with requirements on the effective mass, E<sub>T</sub><sup>miss</sup> and HT

$$m_{\rm eff} = E_{\rm T}^{\rm miss} + \sum |p_{\rm T}^{\rm jet}|$$
,  $E_{\rm T}^{\rm miss}/m_{\rm eff}$ ,  $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}$ 



#### **Gluino signals**



Altan Cakir | Prospect of New Physics Searches using HL-LHC | DESY 2014 | Page 15



#### ATLAS-PHYS-PUB-2014-010 (I CHEP 2014)

> For squark-pair production two scenarios have been taken into account in this analysis:

- The squarks are completely decoupled from gluino
- The gluino mass is set to 4.5 TeV, which is above the expected HL-LHC
- ► The difference in selection efficiencies for these scenarios is found to be <30 %.







DESY



#### ATLAS-PHYS-PUB-2013-007 (Snowmass 2013)





Gain of ~400 GeV in gluino and squark mass discovery reach (for  $m_{LSP} = 0$ ) when going from 300 fb<sup>-1</sup> to 3000 fb<sup>-1</sup>





#### CMS-PAS-FTR-13-014 (ECFA 2013)

#### Signal topology of such events:

- Many jets, no leptons
- Use of  $H_{\rm T} = \sum_{\rm jets} p_{\rm T}$  and  $H_{\rm T} = |-\sum_{\rm jets} \vec{p}_{\rm T}|$

#### Pre-selection of events based on:

- nJets>3  $p_T > 50$  GeV,  $|\eta| < 2.5$
- Leptons veto  $p_T > 10 \text{ GeV}$ ,  $|\eta| < 2.4(2.5)$
- HT> 500 GeV and  $M_{\rm HT}$  > 200 GeV
- HT> 500 GeV and  $S_{Tlep} > 250 \text{ GeV}$
- $|\Delta \phi \text{ (Jets}_{1,2}, \text{ MHT)}| > 0.5, |\Delta \phi \text{ (Jets}_3, \text{ MHT)}| > 0.3$

Strategy: Several exclusive search regions defined according to nJets, HT and  $\rm M_{\rm HT}$ 



Search regions at 3000/fb

| nJets > 6<br>HT > 2500 GeV<br>MHT > 1000 GeV<br>High gluino mass | nJets > 6<br>HT > 1600 GeV<br>MHT > 700 GeV<br>High LSP mass |
|------------------------------------------------------------------|--------------------------------------------------------------|
| SR1                                                              | SR2                                                          |
| nJets > 6                                                        | nJets > 6                                                    |
| HT > 2000 GeV                                                    | HT > 800 GeV                                                 |
| MHT > 1000 GeV                                                   | MHT > 400  GeV                                               |
| Medium gluino and                                                | Low gluino and LSP                                           |
| ISP masses SP3                                                   | masses SR4                                                   |





#### CMS-PAS-FTR-13-014 (ECFA 2013)







CMS-PAS-FTR-13-014 (ECFA 2013)

Gluino masses up to ~ 2.2 (1.8) TeV and LSP masses up to ~ 500 (400) GeV can be discovered at √s = 14 with an integrated luminosity of 3000 (300) fb<sup>-1</sup>.







# Third generation SUSY: direct stop searches

#### ATLAS-PHYS-PUB-2013-011 (ECFA 2013)

#### Signal topology of such events:

- A one lepton (e, mu) based selection
- An all-hadronic selection, vetoing on the presence of leptons (e, mu)
- HT,  $E_T^{\text{Miss}}$ ,  $M_T$ ,  $\Delta \phi$  (lep, ETmiss),  $E_T^{\text{miss}} / \sqrt{H_T}$



DESY





### Third generation SUSY: direct stop searches







# Third generation SUSY: direct sbottom searches

ATLAS-PHYS-PUB-2014-010 (ICHEP 2014)

#### Signal topology of such events:

- An all-hadronic selection with b-tagged jets, vetoing on the presence of leptons (e, mu)
- $E_T^{Miss}$ ,  $M_{CT}$ ,  $\Delta \varphi$  (lep,  $E_T^{Miss}$ ),  $m_{bb}$
- The main variable used to discriminate the bottom squark pair signal from background is the boost corrected cotransverse mass:

$$m_{\rm CT}^{\rm max} = \frac{m^2(\tilde{b}) - m^2(\tilde{\chi}_1^0)}{m(\tilde{b})}.$$

m<sub>CT</sub> is bounded by an analytical combination of particle masses.







### **Third generation SUSY: direct sbottom searches**

#### ATLAS-PHYS-PUB-2014-010 (ICHEP 2014)

Different m<sub>CT</sub> values have been studied for different signal regions. The systematic uncertainty for the signal regions have been assumed to be 30% Bottom squarks with masses of ~ 1100 (1300) GeV can be discovered with 5σ significance with 300(3000) fb<sup>-1</sup>.







Searches for direct electroweak production of SUSY particles are challenging at the LHC due to its <u>low production cross-section</u> and <u>low hadronic activities</u> in the event



Analyses strategies: In order to reduce the background as efficiently as possible, it is concentrated on the decays where all bosons (W, Z and h) decay leptonically, leading to a final state with three leptons.





#### CMS-PAS-FTR-13-014 (ECFA 2013)

#### Signal topology of such events:

- Multi-leptons
- The presence of a pair of leptons with same flavor and opposite charge (OSSF)
- Select the pair closest to the Z-boson and the remaining lepton is assigned to the W decay





ATLAS-PHYS-PUB-2014-010 (ICHEP 2014)



ATLAS analysis in the same production channel:

- Similar strategy based on OSSF pair in the event
- Events with b-tagged jets are vetoed
- $M_T$  reconstructed from the third lepton (from W)



DESY









DESY

#### ATLAS-PHYS-PUB-2014-010 (ICHEP 2014)

#### Signal topology of Wh-mediated channel:

- Multi-leptons: 3-leptons with and without taus
- The presence of a pair of OSSF leptons and veto them for WZ contribution
- Veto b-tagged jets for ttH avd ttV contributions





# **Vector Boson Fusion in SUSY**

#### CMS-PAS-FTR-13-014 (ECFA 2013)

### Signal topology of such events:

- Two jets with large di-jet invariant mass in the forward region in opposite hemispheres
- Large  $E_T^{Miss}$ , and no leptons
- small cross-section  $\rightarrow$  challenging at HL-LHC

### Selection of events based on:

- nJets=2  $p_T$ >30 GeV,  $|\eta|$  < 5
- $\eta_1 \eta_2 > 4.2 \eta_1^* \eta_2 < 0$
- $p_{Tjet1} > 200 \text{ GeV}, p_{TJet2} > 100 \text{ GeV}$
- M<sub>ii</sub> > 1500 GeV
- Veto 3<sup>rd</sup> jet within jet1 and jet2
- Veto of b-tagged jet
- <u>Veto of leptons</u>, it is very crucial for the success of the analysis
- $E_T^{Miss} > 200 \text{ GeV}$







#### **Vector Boson Fusion in SUSY**



The lepton selection efficiency is crucial in order to achieve high efficiency for lepton vetoes to reduce W and tt backgrounds.

- The pileup jets outside the tracking coverage (CMS) are visible in the forward region outside the tracking coverage for 140 pileup scenarios.
- > HL-LHC > the extended tracker coverage can reduce pileup jets substantially up to  $|\eta| \sim 4$





### **Vector Boson Fusion in SUSY: Detector configuration**

- Number of jets rises dramatically in forward region without tracking
   → MHT and Mjj strongly affected
- Analyses depending on measurement of forward jets profit most from tracking up to |n| < 4
- ➤ Background reduction by factor 3-10 expected





DES

# **Vector Boson Scattering And Triboson Production**

#### ATLAS-PHYS-PUB-2013-006 (ECFA 2013)

Sensitivity to new physics can be achieved through heavy vector boson scattering via EWK processes.



A striking experimental feature of vector boson scattering is the presence of two high-pT jets in the forward regions, similar to those found in Higgs production via vector boson fusion.

- > Vector boson scattering happen through
  - Double triple gauge coupling (TGC)
  - Quartic gauge coupling (QGC)
  - s-channel and t-channel Higgs scattering
- ➤ Observation
  - Cross-section rises quickly with the energy
  - Exploring gauge-Higgs sector in detail





### **Vector Boson Scattering: Results for ZZ channel**

#### ATLAS-PHYS-PUB-2013-006 (ECFA 2013)

#### Signal topology of such events:

- Multi-leptons with two forward jets
- M<sub>ii</sub> > 1 TeV for non-VBS diboson production
- small cross section but provides clean, reconstructible final state.

$$\mathbf{VBS}\ ZZ \to \ell\ell\ell\ell$$

Direct interaction of the gauge boson fields via a field strength tensor

$$\mathcal{L}_{\phi W} = \frac{c_{\phi W}}{\Lambda^2} \mathrm{Tr}(W^{\mu \nu} W_{\mu \nu}) \phi^{\dagger} \phi$$







### **Vector Boson Scattering: Results for WW channel**

#### ATLAS-PHYS-PUB-2013-006 (ECFA 2013)

#### Signal topology of such events:

- Two same-sign leptons with two forward jets
- $M_{ii} > 1$  TeV for non-VBS diboson production
- Major backgrounds: WZjj, W<sub>Y</sub>, WZ and WW-QCD





**VBS**  $W^{\pm}W^{\pm} \rightarrow \ell^{\pm}\nu\ell^{\pm}\nu$ 

 $\mathcal{L}_{S,0} = \frac{f_{S0}}{\Lambda^4} [(D_\mu \phi)^\dagger D_\nu \phi)] \times [(D^\mu \phi)^\dagger D^\nu \phi)]$ 



# **Vector Boson Scattering: Triboson Scattering**

#### ATLAS-PHYS-PUB-2013-006 (ECFA 2013)

#### Signal topology of such events:

- Final state with di-lepton and di-photon
- Allows full reconstruction and calculate Z<sub>YY</sub> invariant mass





Ζγγ

 $\mathcal{L}_{T,8} = \frac{f_{T8}}{\Lambda^4} B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$ 



#### **Vector Boson Scattering: Summary**

➤ HL-LHC enhances discovery range for new higher-dimension electroweak operators by more than a factor of two.

If Beyond the SM discovered in 300 fb<sup>-1</sup> dataset, then the coefficients on the new operators could be measured to 5% precision with 3000 fb<sup>-1</sup>

| 3000 fb <sup>-1</sup>  |  |  |
|------------------------|--|--|
| 95% CL                 |  |  |
| $0.3 \text{ TeV}^{-2}$ |  |  |
| $0.8 \text{ TeV}^{-4}$ |  |  |
| $0.3  {\rm TeV}^{-4}$  |  |  |
| $0.2 \text{ TeV}^{-4}$ |  |  |
| $0.3 \text{ TeV}^{-4}$ |  |  |
| · ) ) ) =              |  |  |

 $\Lambda_{\text{UV}}$ : unitarity violation bound corresponding to the sensitivity with 3000 fb<sup>-1</sup>





#### CMS-PAS-FTR-13-026 (ECFA 2013)

> Vector like quarks differ from SM quark since they have only vector-couplings to the W boson

- Vector-like mass term does not violate gauge invariance without the need for a Yukawa coupling to the Higgs boson
- Vector-like quarks are e.g. predicted by little Higgs models
- Another natural solution to cancel the diverging contributions of top quark loops to the Higgs boson mass!







tC

0

and performed in

h

• Single Lepton

Analysis based on arXiv: 0105239

h

тс

DES

#### CMS-PAS-FTR-13-026 (ECFA 2013)

#### Signal topology of such events:

- Massive T quarks characterized by two to four vector bosons and at least two b-quarks.
- Single lepton → one W boson decays leptonically and all the other bosons decay to hadrons (categories based on jet multiplicity and b-tagged jets)
- Multi Lepton  $\rightarrow$  at least one Z boson or at least two W bosons decay leptonically (categories based on multiplicity and charged of leptons )







- > The mass reach for the discovery of a heavy T quark at  $3\sigma$  and  $5\sigma$  level is expected to be **1.65** TeV and **1.48** TeV, respectively.
- ➤ A light Higgs at 126 GeV on composite Higgs model → light top partners with masses around few TeV are essential for a moderate level of tuning





### **Summary I**

#### Supersymmetry and naturalness:

- **Gluinos** mass reach enhanced by 400 GeV up to **2.4** TeV, for  $\chi_1^0$  with mass of up to **1.1** TeV.
- Squarks mass reach shows strong dependency based on gluino mass assumptions
- For LSP masses below ~ 300 GeV a stop discovery would be possible up to ~ 1.2 TeV
- For LSP masses below ~ 300 GeV a sbottom discovery would be possible up to~ 1.3 TeV
- o Gain of ~300 GeV in chargino/neutralino mass discovery reach when going from 300 fb<sup>-1</sup> to 3000 fb<sup>-1</sup>

#### VBF searches, dark matter and forward tracking

o depend crucially on forward tracking for pileup mitigation

#### Vector Boson scattering

• **HL-LHC** enhances discovery range for **new higher-dimension electroweak operators** by more than a **factor of two**.

Vector Like charge 2/3 quark: search can probe masses up to 1.5 TeV

#### Search for ttbar and dilepton resonances

gain up to 50% in mass reach for KK gluons or dilepton to several TeV

Search for W` and heavy stable charged particles: signal efficiency and TOF importance are very critical for discovery





# Key questions?

- Is the mass scale beyond the LHC reach?
- Is the mass scale within LHC`s reach, but final states are elusive?

We must carefully analyze the implications of these two items in formulating detector concepts, and planning running conditions.

optimized to address sub-TeV and multi-TeV physics, respectively





### **Conclusion and Outlook**



The results from ATLAS and CMS will continue to set the agenda across the energy frontier for the foreseeable future

- Run-I demonstrated the excellent performance and sensitivity over wide range of signatures but
  - in fact just started to test various BSM physics
- ✓ HL-LHC era improves significantly the current boundaries and open an important window to new physics prospects

#### Benefits of HL-LHC

- o Reduced statistical and systematic uncertainties in searches
  - Improvement of detector modeling and understanding of background processes
- o Increased sensitivity of low cross section processes
- Probe a significant part of the interesting range of phase space for new physics prospects











### **Vector Boson Scattering: Results for WZ channel**

#### ATLAS-PHYS-PUB-2013-006 (ECFA 2013)

#### Signal topology of such events:

- Multi-leptons with two forward jets
- Lepton from W should be identified
- Larger cross section but there is an unidentified lepton in the event.

**VBS** 
$$WZ \rightarrow \ell \nu \ell \ell$$
  
$$\mathcal{L}_{T,1} = \frac{f_{T1}}{\Lambda^4} \operatorname{Tr}[\hat{W}_{\alpha\nu}\hat{W}^{\mu\beta}] \times \operatorname{Tr}[\hat{W}_{\mu\beta}\hat{W}^{\alpha\nu}]$$







### **Vector Boson Scattering: Results for WZ channel**

 $5\sigma$ 

185 fb<sup>-</sup>

 $1.0 \, {\rm TeV^{-4}}$ 

#### CMS-FTR-13-006(ECFA 2013)

Significance

SM EWK scattering discovery

 $\frac{f_{T1}}{\Lambda^4}$  at 300 fb<sup>-1</sup>

symmetry breaking sector.

at 3000 fb<sup>-1</sup>

#### Signal topology of such events:

- Multi-leptons with two forward jets
- Lepton from W should be identified
- Larger cross section but there is an unidentified lepton in the event.

Observation of anomalous couplings of this type

may indicate new physics in the electroweak

 $3\sigma$ 

75 fb<sup>-1</sup>

 $0.8 \, {\rm TeV^{-4}}$ 

 $0.45 \text{ TeV}^{-4}$ 

| VBS WZ | $\rightarrow \ell \nu \ell \ell$ |  |
|--------|----------------------------------|--|
|--------|----------------------------------|--|

$$\mathcal{L}_{T,1} = \frac{f_{T1}}{\Lambda^4} \operatorname{Tr}[\hat{W}_{\alpha\nu}\hat{W}^{\mu\beta}] \times \operatorname{Tr}[\hat{W}_{\mu\beta}\hat{W}^{\alpha\nu}]$$







# **Search for ttbar resonances**

#### ATLAS-PHYS-PUB-2013-006 (ECFA 2013)

#### Signal topology of ttbar resonances:

- ➢ Final state with di-lepton and single lepton
  - Leptonic ttbar: clean final state but more difficult reconstruction of ttbar invariant mass
  - Semi-leptonic ttbar: more complete reconstruction, but higher background

$$g_{KK} \rightarrow t\bar{t} \text{ and } Z'_{\text{topcolor}} \rightarrow t\bar{t}$$

$$\boxed{\text{model } 300 \text{ fb}^{-1} \text{ 1000 fb}^{-1} \text{ 3000 fb}^{-1}}_{g_{KK}} 4.3 (4.0) 5.6 (4.9) 6.7 (5.6)}_{Z'_{\text{topcolor}}} 3.3 (1.8) 4.5 (2.6) 5.5 (3.2)}$$





di-leptonic selection (similar results for single-lepton selection)

Altan Cakir | Prospect of New Physics Searches using HL-LHC | DESY 2014 | Page 48



# Search for di-lepton resonances

#### ATLAS-PHYS-PUB-2013-006 (ECFA 2013)

#### Signal topology of ttbar resonances:

- > Exactly two selected same flavor leptons
- ➤ Z<sup>•</sup>→mumu candidate events must have two opposite-sign muons

#### Mass reach for Z' dileptons can be enhanced by 20% with 3000 fb<sup>-1</sup>

| model                     | $300{\rm fb}^{-1}$ | $1000  {\rm fb}^{-1}$ | $3000  \text{fb}^{-1}$ |
|---------------------------|--------------------|-----------------------|------------------------|
| $Z'_{SSM} \rightarrow ee$ | 6.5                | 7.2                   | 7.8                    |
| $Z'_{SSM} \to \mu\mu$     | 6.4                | 7.1                   | 7.6                    |



### Search for Heavy Gauge bosons via di-leptons

#### CMS-NOTE-13-002 (Snowmass 2013)

#### Signal topology of Z` searches:

- Di-lepton pairs electron (muon)  $p_T > 35$  (45) GeV and |n| < 2.5 (2.4)
- Electron (muon) identification efficiency 88 (85)% taken from 8 TeV analysis
- Use ECAL barrel and endcap regions
- One electron must be found in barrel region
- Also studied is a case reduced acceptance due to degradation of the ECAL endcaps at HL-LHC



![](_page_49_Picture_9.jpeg)

![](_page_49_Picture_11.jpeg)

# Search for W` and Dark Matter

#### CMS-NOTE-13-002 (Snowmass 2013)

Signal topology of W` searches (SSM W` and dark matter effective theory):

- High  $p_T$  lepton and missing energy
- W` considered to be heavy analog of W boson
- Dark matter model → a pair of dark matter particles are produced in association with a lepton and a neutrino deriving from an intermediate SM W
- The signal efficiency 60 (10) % in the case of constructive (destructive) interference (8 TeV)

![](_page_50_Figure_7.jpeg)

![](_page_50_Picture_8.jpeg)

![](_page_50_Picture_9.jpeg)

# **Search for Heavy Stable Charged Particles**

#### CMS-NOTE-13-002 (Snowmass 2013)

#### Signal topology of the search

- Long lived gluinos, stops and staus
- various combinations of signatures in the inner tracker only, inner tracker and muon detector only
- long time-of-flight (TOF) to the outer muon system and anomalously large energy deposition in the inner tracker
- Background  $\rightarrow$  instrumental effects
- dE/dx unchanged with the combination of long time-of-flight and highly ionizing signatures for HL-LHC
- the exclusion results rely entirely on theoretical cross section predictions made in the context of a given model (Split SUSY, GMSB and UED)

![](_page_51_Figure_9.jpeg)

![](_page_51_Picture_10.jpeg)

![](_page_51_Picture_12.jpeg)

| $S_{\rm T}^{\rm lep}$ region                               | sample           | N <sub>signal</sub> | N <sub>control</sub> | R <sub>CS</sub> |
|------------------------------------------------------------|------------------|---------------------|----------------------|-----------------|
|                                                            | tī               | 16.7±4.5            | 227.4±19.1           | 0.073095        |
|                                                            | tīV              | 0.8±0.2             | $18.1 {\pm} 4.4$     | 0.047           |
| $450 \le S_{\rm T}^{\rm lep} < 550 \rm GeV$                | single top       | $0.0{\pm}0.0$       | $1.2 {\pm} 0.5$      | 0.038           |
|                                                            | V + jets         | $0.0{\pm}0.0$       | $0.0 {\pm} 0.0$      | 0.000           |
|                                                            | SM all           | $17.5 \pm 4.5$      | 246.7±19.6           | 0.071           |
|                                                            | signal(2000,300) | 6.3±1.0             | $3.3 {\pm} 0.7$      | 1.909           |
|                                                            | tī               | $4.4{\pm}1.4$       | $76.8 {\pm} 9.8$     | 0.057           |
|                                                            | tīV              | $0.4{\pm}0.1$       | $3.7 {\pm} 0.6$      | 0.109           |
| $550 \le S_{\mathrm{T}}^{\mathrm{lep}} < 650 \mathrm{GeV}$ | single top       | $0.0{\pm}0.0$       | $0.2{\pm}0.1$        | 0.211           |
| 1                                                          | V + jets         | $0.0{\pm}0.0$       | $1.6{\pm}1.6$        | 0.000           |
|                                                            | SM all           | $4.8{\pm}1.4$       | 82.3±9.9             | 0.059           |
|                                                            | signal(2000,300) | 5.1±0.9             | $3.8 {\pm} 0.8$      | 1.360           |
|                                                            | tī               | 0.8±0.2             | 29.1±5.1             | 0.027           |
|                                                            | tīV              | $0.1{\pm}0.0$       | $1.6{\pm}0.4$        | 0.055           |
| $650 \le S_{\mathrm{T}}^{\mathrm{lep}} < 750 \mathrm{GeV}$ | single top       | $0.0{\pm}0.0$       | $0.3 {\pm} 0.1$      | 0.000           |
|                                                            | V + jets         | $0.0{\pm}0.0$       | $0.0{\pm}0.0$        | 0.000           |
|                                                            | SM all           | 0.9±0.2             | 31.1±5.1             | 0.028           |
|                                                            | signal(2000,300) | 7.3±1.1             | $3.9{\pm}0.8$        | 1.885           |
|                                                            | tī               | 1.5±0.4             | 15.5±2.8             | 0.095           |
|                                                            | tīV              | $0.2{\pm}0.1$       | $1.0 {\pm} 0.3$      | 0.162           |
| $S_{\rm T}^{\rm lep} \ge 750{ m GeV}$                      | single top       | $0.0{\pm}0.0$       | $0.1 {\pm} 0.0$      | 0.050           |
|                                                            | V + jets         | $0.0{\pm}0.0$       | $2.5 \pm 1.6$        | 0.000           |
|                                                            | SM all           | $1.6 \pm 0.4$       | $19.1 \pm 3.3$       | 0.086           |
|                                                            | signal(2000,300) | 31.6±2.2            | $17.6 \pm 1.6$       | 1.803           |

> The discovery range of gluinos can be enhanced 300 GeV for 300 fb<sup>-1</sup> to 3000 fb<sup>-1</sup> up to 2.2 TeV, for  $\chi_1^0$  with mass of up to 1.2 TeV

![](_page_52_Picture_3.jpeg)

![](_page_52_Picture_5.jpeg)

#### ATLAS-PHYS-PUB-2014-010 (ICHEP 2014)

Table 8: Yields for the main backgrounds and selected signal points simulated with  $\langle \mu \rangle = 60$ , normalised to  $\mathcal{L} = 300 \text{ fb}^{-1}$ . The signal samples samples are normalized for the scenario with a gluino mass of 4.5 TeV.

| Region                                                                          | SR2jl           | SR2jm          | SR3j           | SR4jl            | SR4jm          | SR4jt           | SR5j           | SR6jl           | SR6jm           | SR6jt           |
|---------------------------------------------------------------------------------|-----------------|----------------|----------------|------------------|----------------|-----------------|----------------|-----------------|-----------------|-----------------|
| W+jets                                                                          | $45.0 \pm 3.5$  | $2.7 \pm 0.9$  | $11.2 \pm 1.8$ | $11.8 \pm 1.8$   | $25.7 \pm 2.7$ | $113 \pm 6$     | $30.4 \pm 2.9$ | $8.5 \pm 1.5$   | $6.3 \pm 1.3$   | $3.6 \pm 1.0$   |
| Z+jets                                                                          | $104.4 \pm 3.1$ | $16.9 \pm 1.2$ | $43.0 \pm 2.0$ | $48.5 \pm 2.1$   | $75.9 \pm 2.6$ | $111.1 \pm 3.2$ | $74.4 \pm 2.6$ | $20.7 \pm 1.4$  | $13.0 \pm 1.1$  | $10.0 \pm 1.0$  |
| tī                                                                              | $15.7 \pm 1.8$  | $1.6 \pm 0.5$  | $4.2 \pm 0.8$  | $5.1 \pm 1.1$    | $10.6 \pm 1.5$ | $45.9 \pm 3.4$  | $19.3 \pm 2.2$ | $5.2 \pm 1.1$   | $6.0 \pm 1.2$   | $3.4 \pm 0.9$   |
| Diboson                                                                         | $18.4 \pm 1.7$  | $2.4 \pm 0.5$  | $6.5 \pm 0.9$  | $7.3 \pm 1.0$    | $12.5 \pm 1.3$ | $30.0 \pm 2.4$  | $13.8 \pm 1.5$ | $3.8 \pm 0.8$   | $2.8 \pm 0.7$   | $1.9 \pm 0.5$   |
| Total background                                                                | $183 \pm 5$     | $23.6 \pm 1.7$ | $64.9 \pm 2.9$ | $72.6 \pm 3.1$   | $125 \pm 4$    | $300 \pm 8$     | $138 \pm 5$    | $38.3 \pm 2.5$  | $28.1 \pm 2.2$  | $18.8 \pm 1.7$  |
| $m_{\tilde{g}} = 1950 \text{ GeV}$ $m_{\tilde{\chi}_1^0} = 1 \text{ GeV}$       | 68.8 ± 0.6      | 12.48 ± 0.27   | $35.4 \pm 0.5$ | $18.41 \pm 0.33$ | $70.6 \pm 0.7$ | $102.4 \pm 0.8$ | 83.4 ± 0.7     | $25.6 \pm 0.4$  | $44.6 \pm 0.5$  | $35.4 \pm 0.5$  |
| $m_{\tilde{g}} = 1425 \text{ GeV}$<br>$m_{\tilde{\chi}_1^0} = 1400 \text{ GeV}$ | 12.6 ± 1.2      | 3.7 ± 0.6      | 8.5 ± 1.0      | 7.5 ± 0.9        | 8.1 ± 0.9      | $6.2 \pm 0.8$   | $4.7 \pm 0.7$  | $1.6 \pm 0.4$   | $1.05 \pm 0.33$ | $1.05 \pm 0.33$ |
| $m_{\tilde{q}} = 1050 \text{ GeV}$<br>$m_{\tilde{\chi}_1^0} = 900 \text{ GeV}$  | $2.5 \pm 1.1$   | $1.5 \pm 0.9$  | $2.0 \pm 1.0$  | 3.5 ± 1.3        | $6.4 \pm 1.8$  | $4.0 \pm 1.4$   | $7.4 \pm 1.9$  | 3.5 ± 1.3       | $1.5 \pm 0.9$   | $1.5 \pm 0.9$   |
| $m_{\tilde{q}} = 2250 \text{ GeV}$ $m_{\tilde{\chi}_1^0} = 1 \text{ GeV}$       | $141.7 \pm 0.9$ | $60.1 \pm 0.6$ | 82.1 ± 0.7     | 39.2 ± 0.5       | 59.3 ± 0.6     | 58.9 ± 0.6      | $28.4 \pm 0.4$ | $7.84 \pm 0.21$ | 8.00 ± 0.21     | $7.57 \pm 0.20$ |

![](_page_53_Figure_4.jpeg)

![](_page_53_Picture_5.jpeg)

Altan Cakir | Prospect of New Physics Searches using HL-LHC | DESY 2014 | Page 54

![](_page_53_Picture_7.jpeg)

#### ATLAS-PHYS-PUB-2014-010 (ICHEP 2014)

Table 9: Yields for the main backgrounds and selected signal points simulated with  $\langle \mu \rangle = 140$ , normalised to  $\mathcal{L} = 3000 \text{ fb}^{-1}$ . The signal samples samples are normalized for the scenario with a gluino mass of 4.5 TeV.

| Region                                                                          | SR2jl          | SR2jm           | SR3j           | SR4jl          | SR4jm        | SR4jt           | SR5j            | SR6jl          | SR6jm          | SR6jt           |
|---------------------------------------------------------------------------------|----------------|-----------------|----------------|----------------|--------------|-----------------|-----------------|----------------|----------------|-----------------|
| W+jets                                                                          | 8 ± 5          | $5 \pm 4$       | $38 \pm 10$    | 8 ± 5          | $14 \pm 6$   | $101 \pm 17$    | $14 \pm 6$      | $25 \pm 8$     | 11 ± 5         | $0.00 \pm 0.00$ |
| Z+jets                                                                          | 51 ± 7         | $51 \pm 7$      | $185 \pm 13$   | $78 \pm 8$     | $127 \pm 11$ | $125 \pm 11$    | $65 \pm 8$      | $85 \pm 9$     | $29 \pm 5$     | $3.6 \pm 1.8$   |
| tī                                                                              | $9 \pm 4$      | $9 \pm 4$       | $20 \pm 5$     | $7.0 \pm 3.1$  | $18 \pm 6$   | $37 \pm 9$      | $11 \pm 4$      | $17 \pm 5$     | $3.5 \pm 2.1$  | $1.4 \pm 1.4$   |
| Diboson                                                                         | $7.6 \pm 3.1$  | $7.2 \pm 2.9$   | $10.4 \pm 3.4$ | $18 \pm 5$     | $29 \pm 7$   | $9.9 \pm 3.5$   | $14 \pm 4$      | $4.8 \pm 2.6$  | $0.6 \pm 0.8$  |                 |
| Total background                                                                | $76 \pm 10$    | $72 \pm 9$      | $269 \pm 18$   | $104 \pm 11$   | $176 \pm 14$ | $292 \pm 23$    | 99 ± 11         | $141 \pm 14$   | $48 \pm 8$     | $5.6 \pm 2.4$   |
| $m_{\tilde{g}} = 1950 \text{ GeV}$ $m_{\tilde{\chi}_1^0} = 1 \text{ GeV}$       | 55.8 ± 1.8     | 43.4 ± 1.6      | 163.9 ± 3.1    | $75.2 \pm 2.1$ | 191.0 ± 3.4  | 159.1 ± 3.1     | $152.7 \pm 3.0$ | 257 ± 4        | 73.4 ± 2.1     | 36.0 ± 1.5      |
| $m_{\tilde{g}} = 1425 \text{ GeV}$<br>$m_{\tilde{\chi}_1^0} = 1400 \text{ GeV}$ | $10.5 \pm 3.3$ | $15 \pm 4$      | 48 ± 7         | 19 ± 4         | 23 ± 5       | 8.4 ± 3.0       | $14 \pm 4$      | $7.4 \pm 2.8$  | 5.3 ± 2.4      | $0.00 \pm 0.00$ |
| $m_{\tilde{q}} = 1050 \text{ GeV}$<br>$m_{\tilde{\chi}_1^0} = 900 \text{ GeV}$  | 5 ± 5          | $10 \pm 7$      | 15 ± 9         | $10 \pm 7$     | 15 ± 9       | 15 ± 9          | $10 \pm 7$      | 25 ± 11        | 5 ± 5          | 5 ± 5           |
| $m_{\tilde{q}} = 2250 \text{ GeV}$<br>$m_{\tilde{v}^0} = 1 \text{ GeV}$         | 186 ± 3        | $208.2 \pm 3.4$ | 558 ± 6        | $254 \pm 4$    | $320 \pm 4$  | $182.6 \pm 3.2$ | $136.4 \pm 2.7$ | $75.2 \pm 2.0$ | $50.9 \pm 1.7$ | $13.6 \pm 0.9$  |

![](_page_54_Figure_4.jpeg)

![](_page_54_Picture_5.jpeg)

Altan Cakir | Prospect of New Physics Searches using HL-LHC | DESY 2014 | Page 55

![](_page_54_Picture_7.jpeg)

#### ATLAS-PHYS-PUB-2013-011 (ECFA 2013)

|                                                                     | (800,100)                                              | (1100,100)                                                   |                                                                | (800,100)                                               | (1100,100)                                             |
|---------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|
| $t\overline{t}$<br>$t\overline{t}+W$<br>$t\overline{t}+Z$<br>W+jets | $257\pm 25$<br>15 $\pm 2$<br>71 $\pm 7$<br>41 $\pm 11$ | $6.6\pm 3.8$<br>$0.9\pm 0.5$<br>$8.5\pm 2.3$<br>$5.4\pm 3.8$ | $t\bar{t}$<br>$t\bar{t}+W$<br>$t\bar{t}+Z$<br>W+jets<br>Z+jets | $69\pm13$<br>$5\pm1$<br>$38\pm5$<br>$3\pm3$<br>$14\pm4$ | 5.7±3.4<br>0.8±0.6<br>3.9±1.5<br>negligible<br>1.8±1.3 |
| Total bkg                                                           | 385±28                                                 | 21.4±5.9                                                     | Total bkg                                                      | 129±15                                                  | 12.2±3.9                                               |
| Signal                                                              | 880±18                                                 | 55.7±1.5                                                     | Signal                                                         | 457±13                                                  | 46.0±1.4                                               |

1-lepton channel

0-lepton channel

![](_page_55_Picture_5.jpeg)

![](_page_55_Picture_6.jpeg)

### Third generation SUSY: direct sbottom searches

| ATIAS DUVS DUR                                   | 2014 010           | ) (ICHED 2014)                               | -            | -       | vs = 14                    | TeV $\langle \mu \rangle = 60$ | · · · · · ·        |                                                                                                                                                                                    |              |
|--------------------------------------------------|--------------------|----------------------------------------------|--------------|---------|----------------------------|--------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| AILAS-PHIS-PUB-                                  | 2014-010           | J (ICHEP 2014)                               | New          |         |                            | S Simulation                   | n Prelimi          | nary                                                                                                                                                                               | '   <u> </u> |
| Selection                                        |                    | SRx                                          |              |         | ç 10 <sup>4</sup> <b>∏</b> | L = 30                         | 0 fb <sup>-1</sup> | Standard Model Tota                                                                                                                                                                |              |
| Lepton veto                                      | No <i>e/μ</i> w    | with $p_{\rm T} > 7(6) {\rm GeV}$            | for $e(\mu)$ | , ct    | 2 10 <sup>3</sup>          | 5                              |                    | W + jets<br>Single Top                                                                                                                                                             |              |
| $E_{ m T}^{ m miss}$                             |                    | > 150 GeV                                    |              |         | 10 <sup>2</sup>            |                                |                    | Z + jets<br>Other<br>(m - m .) = (800.1) G                                                                                                                                         | ieV =        |
| Leading jet $p_{\rm T}(j_1)$                     |                    | > 130 GeV                                    |              |         | 10                         |                                |                    | $(\mathbf{m}_{\tilde{b}}^{\tilde{b}},\mathbf{m}_{1}^{\tilde{\chi}_{1}^{0}}) = (1200,1)$<br>$(\mathbf{m}_{\tilde{b}}^{\tilde{b}},\mathbf{m}_{1}^{\tilde{\chi}_{1}^{0}}) = (2000,1)$ | GeV          |
| Third jet $p_{\rm T}(j_3)$                       |                    | veto if > 50 GeV                             |              |         |                            |                                |                    | b х <sub>1</sub>                                                                                                                                                                   |              |
| <i>b</i> -tagging                                |                    | leading 2 jets                               |              |         |                            |                                |                    |                                                                                                                                                                                    |              |
|                                                  | $(p_{\mathrm{T}})$ | $h > 50 \text{ GeV},  \eta  < 2$             | .5)          |         | 10'                        |                                |                    |                                                                                                                                                                                    |              |
| $\Delta \phi_{ m min}$                           |                    | > 0.4                                        |              |         | 10 <sup>-2</sup>           |                                |                    |                                                                                                                                                                                    |              |
| $E_{\rm T}^{\rm miss}/m_{\rm eff}(2)$            | E                  | $E_{\rm T}^{\rm miss}/m_{\rm eff}(2) > 0.25$ | 5            |         | 10 <sup>-3</sup>           |                                |                    | ·····                                                                                                                                                                              | :<br>        |
| m <sub>CT</sub>                                  |                    | > x  GeV                                     |              |         | 0                          | 500                            | 1000               | 1500                                                                                                                                                                               | 2000         |
| m <sub>bb</sub>                                  |                    | > 200 GeV                                    |              |         |                            |                                |                    | m <sub>ct</sub> [                                                                                                                                                                  | GeV]         |
| -                                                |                    | SRA300                                       | SRA          | 350     | SRA450                     | SRA                            | 550                | SRA650                                                                                                                                                                             |              |
| $(m_{\tilde{b}_1}, m_{\tilde{\chi}_1^0}) = (10)$ | 000, 1)            | $216 \pm 4$                                  | 200          | ±4      | $161 \pm 4$                | 118.5                          | ± 3.2              | $78.6 \pm 2.6$                                                                                                                                                                     | 4            |
| $(m_{\tilde{b}_1}, m_{\tilde{\chi}_1^0}) = (14)$ | 400, 1)            | $19.3 \pm 0.9$                               | 18.4         | ± 0.9   | $16.8 \pm 0.8$             | 14.9 :                         | ± 0.8              | $12.8 \pm 0.7$                                                                                                                                                                     |              |
| $(m_{\tilde{b}_1}, m_{\tilde{\chi}_1^0}) = (16)$ | 500, 1)            | $6.04 \pm 0.28$                              | 5.84 ±       | ± 0.28  | $5.55 \pm 0.27$            | 7 5.19 ±                       | 0.26               | $4.57 \pm 0.25$                                                                                                                                                                    | 3            |
| $t\bar{t}$                                       |                    | $32.6 \pm 3.0$                               | 14.8         | ± 2.0   | $4.3 \pm 1.1$              | 1.5 ±                          | 0.7                | $0.6 \pm 0.4$                                                                                                                                                                      | 0            |
| single top                                       | )                  | $146 \pm 12$                                 | 83           | $\pm 8$ | $41 \pm 6$                 | 25 :                           | ± 5                | $12.7 \pm 3.2$                                                                                                                                                                     |              |
| Z+jets                                           |                    | $508 \pm 8$                                  | 249          | ± 5     | $70.5 \pm 2.7$             | 23.1 :                         | ± 1.5              | $9.1 \pm 1.0$                                                                                                                                                                      |              |
| W+jets                                           |                    | $92 \pm 5$                                   | 44           | ± 4     | $9.3 \pm 1.7$              | 2.9 ±                          | - 0.9              | $1.6 \pm 0.8$                                                                                                                                                                      |              |
| Other                                            |                    | $5.4 \pm 0.5$                                | 3.3 ±        | ± 0.4   | $1.59 \pm 0.28$            | 3   0.50 ±                     | 0.16               | $0.18 \pm 0.09$                                                                                                                                                                    | 0            |

![](_page_56_Picture_2.jpeg)

**SRA750** 

 $44.0 \pm 1.9$ 

 $10.2 \pm 0.6$ 

 $3.78 \pm 0.22$ 

 $0.29 \pm 0.29$ 

 $8.9 \pm 2.5$  $4.1 \pm 0.7$ 

 $0.9 \pm 0.6$ 

 $0.15 \pm 0.08$ 

![](_page_56_Picture_4.jpeg)

#### CMS-PAS-FTR-13-014 (ECFA 2013)

Table 2: Standard model background predictions for the different scenarios at  $3000 \text{ fb}^{-1}$ .

|                            |                                          | Phase I                     | Phase I                     | Phase II Conf3              |
|----------------------------|------------------------------------------|-----------------------------|-----------------------------|-----------------------------|
| Selection in GeV           |                                          | $\langle PU \rangle = 0$    | $\langle PU \rangle = 140$  | $\langle PU \rangle = 140$  |
|                            |                                          | yield $\pm$ uncert.         | yield $\pm$ uncert.         | yield $\pm$ uncert.         |
| $0 < M_{\rm T} < 120$      | $0 < \not\!\! E_T < 60$                  | $(7.3 \pm 0.7) \times 10^5$ | $(8.0 \pm 1.2) \times 10^5$ | $(9.3 \pm 1.2) \times 10^5$ |
| $0 < M_{\rm T} < 120$      | $60 < \not\!\!\! E_{\rm T} < 120$        | $(1.8 \pm 0.2) \times 10^5$ | $(8.4 \pm 1.2) \times 10^5$ | $(9.3 \pm 1.1) \times 10^5$ |
| $0 < M_{\rm T} < 120$      | $120 < \not\!\! E_{\mathrm{T}} < \infty$ | $(5.6 \pm 0.8) \times 10^4$ | $(3.3 \pm 0.7) \times 10^5$ | $(3.3 \pm 0.7) \times 10^5$ |
| $120 < M_{\rm T} < 200$    | $0 < \not\!\!\! E_{\rm T} < 120$         | $(7.9 \pm 0.8) \times 10^3$ | $(7.7 \pm 0.7) \times 10^4$ | $(8.2 \pm 0.7) \times 10^4$ |
| $120 < M_{\rm T} < 200$    | $120 < \not\!\!\! E_T < 200$             | $(1.2 \pm 0.2) \times 10^3$ | $(4.0 \pm 0.7) \times 10^4$ | $(4.3 \pm 0.7) \times 10^4$ |
| $120 < M_{\rm T} < 200$    | $200 < \not\!\! E_T < \infty$            | $359\pm84$                  | $(5.7 \pm 2.3) \times 10^3$ | $(4.8 \pm 2.1) \times 10^3$ |
| $200 < M_{\rm T} < 400$    | $0 < \not\!\!\! E_{\rm T} < 200$         | $(2.3 \pm 0.2) \times 10^3$ | $(1.5 \pm 0.2) \times 10^4$ | $(1.5 \pm 0.2) \times 10^4$ |
| $200 < M_{\rm T} < 400$    | $200 < \not\!\!\! E_T < 400$             | $303 \pm 52$                | $(1.6 \pm 0.5) \times 10^3$ | $(1.4 \pm 0.5) \times 10^3$ |
| $200 < M_{\rm T} < 400$    | $400 < \not\!\! E_T < \infty$            | $24\pm4$                    | $69 \pm 35$                 | $39 \pm 12$                 |
| $400 < M_{\rm T} < 700$    | $0 < \not\!\!\! E_{\rm T} < 300$         | $249\pm24$                  | $395\pm58$                  | $390\pm42$                  |
| $400 < M_{\rm T} < 700$    | $300 < \not\!\!\! E_T < 700$             | $67 \pm 13$                 | $95\pm19$                   | $100\pm24$                  |
| $400 < M_{\rm T} < 700$    | $700 < \not\!\! E_{\mathrm{T}} < \infty$ | $1.1\pm0.4$                 | $1.3\pm0.5$                 | $1.4\pm0.4$                 |
| $700 < M_{\rm T} < \infty$ | $0 < \not\!\!\! E_T < 400$               | $30\pm3$                    | $27 \pm 3$                  | $27\pm3$                    |
| $700 < M_{\rm T} < \infty$ | $400 < \not\!\!\! E_T < 900$             | $32\pm5$                    | $31 \pm 5$                  | $30\pm5$                    |
| $700 < M_{\rm T} < \infty$ | $900 < \not\!\! E_{\mathrm{T}} < \infty$ | $1.4\pm0.4$                 | $1.5\pm0.5$                 | $1.2\pm0.4$                 |

![](_page_57_Picture_4.jpeg)

![](_page_57_Picture_6.jpeg)

ATLAS-PHYS-PUB-2014-010 (ICHEP 2014)

| Selection                                                          | SRA        | SRB   | SRC   | SRD   |  |  |
|--------------------------------------------------------------------|------------|-------|-------|-------|--|--|
| $m_{\rm SFOS}[{\rm GeV}]$                                          | 81.2-101.2 |       |       |       |  |  |
| # b-tagged jets                                                    | 0          |       |       |       |  |  |
| lepton $p_T$ (1,2,3)[GeV]                                          | > 50       |       |       |       |  |  |
| $E_{\mathrm{T}}^{\mathrm{miss}}[\mathrm{GeV}]$                     | > 250      | > 300 | > 400 | > 500 |  |  |
| $m_{\rm T}  [{\rm GeV}]$                                           | > 150      | > 200 | > 200 | > 200 |  |  |
| $\langle \mu \rangle = 60, 300  \text{fb}^{-1} \text{ scenario}$   | yes        | yes   | yes   | _     |  |  |
| $\langle \mu \rangle = 140, 3000  \text{fb}^{-1} \text{ scenario}$ | yes        | yes   | yes   | yes   |  |  |

Table 2: Expected numbers of events for SM background and four SUSY scenarios for the WZ-mediated signal regions. Uncertainties are statistical only.

| Sample                                                                  | SRA             | SRB                       | SRC             | SRA                               | SRB             | SRC             | SRD              |  |
|-------------------------------------------------------------------------|-----------------|---------------------------|-----------------|-----------------------------------|-----------------|-----------------|------------------|--|
| Scenario                                                                |                 | $300{\rm fb}^{-1},\mu=60$ |                 | $3000 \text{ fb}^{-1}, \mu = 140$ |                 |                 |                  |  |
| WZ                                                                      | 9.60±0.32       | 4.59±0.22                 | 1.91±0.14       | 200±5                             | 59.4±2.5        | 22.0±1.5        | 8.3±1.0          |  |
| ZZ                                                                      | 0               | 0                         | 0               | 0                                 | 0               | 0               | 0                |  |
| VVV                                                                     | 2.11±0.18       | $1.07 \pm 0.13$           | $0.44 \pm 0.08$ | 24.3±1.9                          | 12.1±1.4        | $5.4 \pm 0.8$   | $2.0{\pm}0.5$    |  |
| Wh                                                                      | 0               | 0                         | 0               | 0                                 | 0               | 0               | 0                |  |
| $t\bar{t}V$                                                             | $0.67 \pm 0.19$ | $0.23 \pm 0.12$           | 0               | 14.4±2.8                          | 4.2±1.6         | $0.31 \pm 0.31$ | 0                |  |
| $t\bar{t}$                                                              | 0               | 0                         | 0               | 0                                 | 0               | 0               | 0                |  |
| Σ ΜC                                                                    | 12.4±0.4        | $5.89 \pm 0.28$           | 2.35±0.16       | 239±6                             | 75.6±3.3        | 27.7±1.8        | 10.3±1.1         |  |
| WZ-mediated                                                             |                 |                           |                 |                                   |                 |                 |                  |  |
| $m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (400, 0) \text{ GeV}$          | 38.5±0.6        | $20.1 \pm 0.5$            | $5.47 \pm 0.23$ | 407±6                             | 224±5           | 67.9±2.6        | $19.7 \pm 1.4$   |  |
| $m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (600, 0) \text{ GeV}$          | 19.40±0.20      | $14.69 \pm 0.17$          | $7.76 \pm 0.12$ | $194.8 \pm 2.0$                   | $148.9 \pm 1.7$ | 81.6±1.3        | $33.5 \pm 0.8$   |  |
| $m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = (800, 0) \text{ GeV}$          | 6.97±0.06       | $5.90 \pm 0.06$           | 4.21±0.05       | 69.6±0.6                          | 59.1±0.6        | 42.4±0.5        | $25.2 \pm 0.4$   |  |
| $m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = (1000, 0) \text{ GeV}$ | 2.31±0.02       | $2.05 \pm 0.02$           | $1.64 \pm 0.02$ | 22.94±0.19                        | 20.42±0.18      | 16.36±0.16      | $11.55 \pm 0.14$ |  |

![](_page_58_Picture_5.jpeg)

![](_page_58_Picture_7.jpeg)

| ATLAS-PHYS-PUB-2014-010 (ICHEP 2014)     | Selection                                                          | SRE   | SRF   | SRG   | SRH   |
|------------------------------------------|--------------------------------------------------------------------|-------|-------|-------|-------|
| ALLAS THIS TOD LOTT STO (TOHLE LOTT) AGW | SFOS pair                                                          | veto  |       |       |       |
|                                          | # b-tagged jets                                                    |       | (     | )     |       |
|                                          | $E_{\rm T}^{\rm miss}$ [GeV]                                       |       | > 1   | 100   |       |
|                                          | $m_{OS}^{\min\Delta R}$ [GeV]                                      |       | <     | 75    |       |
|                                          | $m_{\rm T}(\ell_1)$ [GeV]                                          | > 200 | > 200 | > 300 | > 400 |
|                                          | $m_{\rm T}(\ell_2)$ [GeV]                                          | > 100 | > 150 | > 150 | > 150 |
|                                          | $m_{\rm T}(\ell_3)$ [GeV]                                          | > 100 | > 100 | > 100 | > 100 |
|                                          | $\langle \mu \rangle = 60, 300  \text{fb}^{-1} \text{ scenario}$   | yes   | yes   | yes   |       |
|                                          | $\langle \mu \rangle = 140, 3000  \text{fb}^{-1}  \text{scenario}$ | yes   | yes   | yes   | yes   |

Table 5: Expected numbers of events for SM background and four SUSY scenarios for the *Wh*-mediated  $3\ell$  signal regions. Uncertainties are statistical only.

| Sample                                                                 | SRE             | SRF                             | SRG             | SRE                               | SRF            | SRG            | SRH             |
|------------------------------------------------------------------------|-----------------|---------------------------------|-----------------|-----------------------------------|----------------|----------------|-----------------|
| Scenario                                                               |                 | $300  \text{fb}^{-1}, \mu = 60$ | 0               | $3000  \text{fb}^{-1}, \mu = 140$ |                |                |                 |
| WZ                                                                     | 0.28±0.06       | $0.14 \pm 0.04$                 | $0.05 \pm 0.02$ | 6.2±0.8                           | 2.9±0.6        | 0.76±0.29      | $0.43 \pm 0.22$ |
| ZZ                                                                     | 0               | 0                               | 0               | 0                                 | 0              | 0              | 0               |
| VVV                                                                    | $2.05 \pm 0.33$ | $1.04 \pm 0.24$                 | $0.11 \pm 0.08$ | 34±4                              | $17.5 \pm 3.1$ | 1.3±0.8        | $0.8 \pm 0.6$   |
| Wh                                                                     | 0.25±0.15       | $0.08 \pm 0.08$                 | 0               | 10.1±2.9                          | $2.5 \pm 1.5$  | $0.8 \pm 0.8$  | 0               |
| $t\bar{t}V$                                                            | $0.68 \pm 0.15$ | $0.21 \pm 0.08$                 | $0.07 \pm 0.05$ | 9.6±1.8                           | 4.1±1.3        | 1.1±0.6        | $0.4 \pm 0.4$   |
| $t\overline{t}$                                                        | 3.7±0.5         | $0.95 \pm 0.27$                 | 0               | 121±10                            | 36±5           | $3.9{\pm}1.8$  | 0               |
| $\Sigma MC$                                                            | 7.0±0.7         | 2.4±0.4                         | 0.23±0.10       | 181±11                            | 63±6           | 7.9±2.2        | 1.6±0.7         |
| Wh-mediated                                                            |                 |                                 |                 |                                   |                |                |                 |
| $m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = (200, 0) \text{ GeV}$ | 13.2±2.7        | 7.7±2.1                         | $2.2{\pm}1.1$   | 181±31                            | 99±23          | 27±12          | 0               |
| $m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = (300, 0) \text{ GeV}$ | 15.1±1.5        | $10.4 \pm 1.2$                  | $3.4{\pm}0.7$   | 166±16                            | 121±13         | 46±8           | 13±4            |
| $m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = (500, 0) \text{ GeV}$ | 5.4±0.4         | $4.58 \pm 0.33$                 | $3.19 \pm 0.28$ | 57±4                              | 46.1±3.4       | $31.9 \pm 2.8$ | $20.5 \pm 2.2$  |
| $m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = (700, 0) \text{ GeV}$ | $1.75 \pm 0.10$ | $1.55 \pm 0.10$                 | $1.27 \pm 0.09$ | 18.1±1.1                          | $15.9 \pm 1.0$ | 12.8±0.9       | 9.1±0.8         |

![](_page_59_Picture_4.jpeg)

![](_page_59_Picture_6.jpeg)

#### CMS-PAS-FTR-13-026 (ECFA 2013)

| Mass                                  | $e3 + \mu 3$        |                |                |                 | $e4 + \mu4$      |                |                |                 |  |  |
|---------------------------------------|---------------------|----------------|----------------|-----------------|------------------|----------------|----------------|-----------------|--|--|
| (GeV)                                 | 0b                  | 1b             | 2b             | $\geq$ 3b       | 0b               | 1b             | 2b             | $\geq$ 3b       |  |  |
| Signal Event Yiel                     | Signal Event Yields |                |                |                 |                  |                |                |                 |  |  |
| 1000                                  | 3988                | 8767           | 8358           | 3079            | 1850             | 4236           | 4291           | 1383            |  |  |
| 1200                                  | 1110                | 2578           | 2414           | 865             | 523              | 1313           | 1288           | 408             |  |  |
| 1400                                  | 336                 | 808            | 751            | 258             | 179              | 458            | 449            | 136             |  |  |
| 1600                                  | 109                 | 267            | 241            | 80              | 67               | 177            | 168            | 52              |  |  |
| 1800                                  | 36                  | 91             | 81             | 27              | 26               | 71             | 66             | 19              |  |  |
| 2000                                  | 12                  | 32             | 28             | 9               | 10               | 29             | 27             | 8               |  |  |
| Background Event Yields $\times 10^5$ |                     |                |                |                 |                  |                |                |                 |  |  |
| $t\bar{t}$                            | 31.3±6.2            | $ 24.2\pm4.8 $ | $17.3 \pm 3.4$ | $2.5 {\pm} 0.5$ | $37.4 \pm 7.4$   | $ 21.3\pm4.2$  | $15.6 \pm 3.1$ | $2.1\pm0.4$     |  |  |
| Electroweak                           | $135.9\pm27.1$      | 8.7±1.7        | $1.2 \pm 0.2$  | $0.08 \pm 0.01$ | $331.5 \pm 66.3$ | $16.7 \pm 3.3$ | $1.9{\pm}0.4$  | $0.10 \pm 0.02$ |  |  |
| Total Background                      | $167.3 \pm 33.4$    | 33.0±6.6       | $18.4 \pm 3.7$ | $2.6 {\pm} 0.5$ | 368.9±73.8       | 38.0±7.6       | $17.5 \pm 3.5$ | $2.2{\pm}0.4$   |  |  |

| Mass (GeV)              | OS23           | OS5+             | SS             | $\geq 3\ell$  |  |  |  |  |  |  |
|-------------------------|----------------|------------------|----------------|---------------|--|--|--|--|--|--|
| Signal Event Yields     |                |                  |                |               |  |  |  |  |  |  |
| 1000                    | 505            | 1050             | 467            | 431           |  |  |  |  |  |  |
| 1200                    | 195            | 303              | 134            | 134           |  |  |  |  |  |  |
| 1400                    | 69             | 93               | 38             | 40            |  |  |  |  |  |  |
| 1600                    | 26             | 29               | 11             | 12            |  |  |  |  |  |  |
| 1800                    | 10             | 10               | 4              | 4             |  |  |  |  |  |  |
| 2000                    | 4              | 3                | 1              | 1             |  |  |  |  |  |  |
| Background Event Yields |                |                  |                |               |  |  |  |  |  |  |
| $t\bar{t}$ +non-prompt  | $1757 \pm 352$ | $17922 \pm 3585$ | $2428{\pm}486$ | $170 \pm 34$  |  |  |  |  |  |  |
| Electroweak             | $532 \pm 106$  | $2908 \pm 581$   | $2428{\pm}486$ | 397±79        |  |  |  |  |  |  |
| Total Background        | $2289 \pm 458$ | $20830\pm4166$   | $4857\pm971$   | $568 \pm 113$ |  |  |  |  |  |  |

![](_page_60_Picture_4.jpeg)

![](_page_60_Picture_6.jpeg)

# **CMS Detector Upgrade**

#### At 13-14 TeV:

![](_page_61_Figure_2.jpeg)

Courtesy L. Schutzka

![](_page_61_Picture_4.jpeg)

![](_page_61_Picture_6.jpeg)