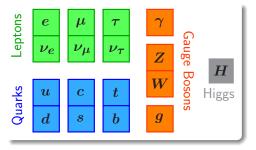

Study of Higgs boson properties in its decay to two photons with the ATLAS detector

Kerstin Tackmann (DESY)



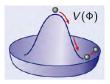
DESY Physics Seminar

Kerstin Tackmann (DESY)

The Standard Model and the Higgs boson.

SM describes known elementary particles and their interactions

Local gauge invariance does not allow explicit mass terms in the Lagrangian – but experiment shows W and Z to have mass


- Elementary particles acquire mass through the Higgs (BEH) mechanism by interacting with the Higgs field
 - ★ Introduced 1964 by Brout, Englert and Higgs

- Higgs mechanism predicts the existence of a new, neutral boson: the Higgs boson
 - * Candidate discovered by the LHC experiments (2012)

What do we expect a SM Higgs boson to look like?

Introduce a scalar field with vaccum expectation value $v \neq 0$ $\phi(x) = \begin{pmatrix} \phi^+(x) \\ \phi^0(x) \end{pmatrix} \rightarrow \langle \phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$ (choose gauge)

Mass terms from interaction between Higgs field and gauge bosons and fermions:

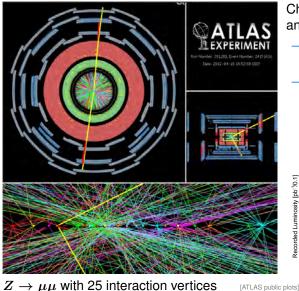
 $\mathcal{L}_{\phi} = (D^{\mu}\phi)^{\dagger}(D_{\mu}\phi) - g_f(\bar{\psi}_L\phi\psi_R + \bar{\psi}_R\phi\psi_L) - V(\phi)$

- Gauge boson masses $m_{W^\pm}=rac{gv}{2}, m_Z=rac{v\sqrt{g^2+{g'}^2}}{2}$
- Charged fermion masses $m_f = \frac{g_f v}{\sqrt{2}}$
 - Not needed for electroweak symmetry breaking, but convenient to generate fermion masses

Higgs mechanism predicts the existence of a new, neutral boson: the Higgs boson, coupling to particles proportional to their mass, $J^P = 0^+$

The Large Hadron Collider and the ATLAS experiment.

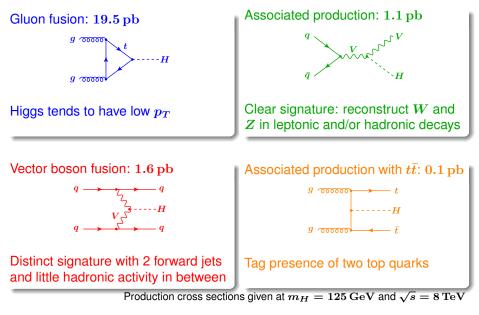
- Proton-proton collisions
 - * 2010/11 $\sqrt{s} = 7 \text{ TeV} (6 \text{ fb}^{-1})$
 - * 2012 $\sqrt{s} = 8 \text{ TeV} (23 \text{ fb}^{-1})$
- 2013/14 shutdown: machine and detector consolidation+upgrade
- 2015- pp collisions at 13-14 TeV


ATLAS

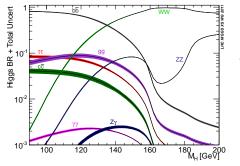
 Multipurpose detector: search for new physics, Higgs, top and SM measurements, ...

Outstanding performance of LHC and the experiments

The cost of high luminosity: pileup.


Challenge to trigger, software and analyses

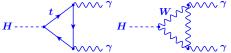
- → Large amount of data to process and store
- → Identification and measurement of the "interesting" objects, including the primary vertex



Kerstin Tackmann (DESY)

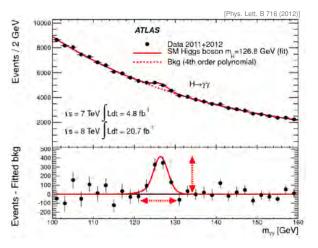
Higgs boson production at the LHC.

SM Higgs boson decays.


Higgs boson couples to mass

Decay branching fractions @ $m_H = 125 \, {
m GeV}$

$H ightarrow b ar{b}$	57.7%
H ightarrow WW	21.5%
H o au au	6.3%
H ightarrow ZZ	$\mathbf{2.6\%}$
$H o \gamma \gamma$	0.23%

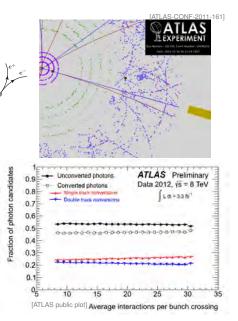

 $H
ightarrow \gamma\gamma$: Comparably simple final state: 2 energetic isolated photons

Large event yield despite low branching fractions expect to see 475 signal events in current dataset

Decay through loop processes \rightarrow sensitive to new heavy particles

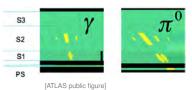
What do we need to discover and measure $H \rightarrow \gamma \gamma$?

High and well-known efficiency


Good energy and angular resolution Precise understanding of energy scale

Kerstin Tackmann (DESY)

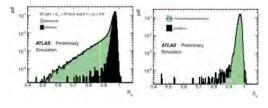
Photon reconstruction, identification and calibration


Photon reconstruction.

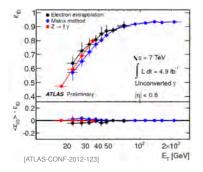
- Reconstruction seeded from electromagnetic clusters
- $\sim 40\%$ of photons convert to e^+e^- pairs in the material of the tracking detector
- Reconstructed secondary vertices (and tracks) matched to clusters in calorimeter
 - Separate reconstruction of converted and unconverted photons important for good calibration and identification, and separation from electrons
- Reconstruction robust against pileup
 - Substantial improvements made for 8 TeV

Photon identification.

- Powerful jet-rejection (O(10⁴)) needed to suppress dominant hadronic background
- Take advantage of fine granularity of electromagnetic calorimeter to look at width and internal structure of showers: Photon identification based on shower shape


Events / GeV ATLAS Preliminary yy+DY Data Data 2012 vi Data R TeV, | Ldt = 13.0 fb ii Data - Stat. uncertainty 200 Total uncertainty 1500 1000 120 150 130 140 m, [GeV] [ATLAS-CONF-2012-169]

After photon identification and requiring photon candidates to be isolated in calorimeter and tracker


75% $\gamma\gamma$ events 22% γ -jet events 3% jet-jet events

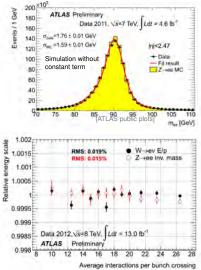
Photon identification efficiency measurement.

"Electron extrapolation" selects a pure sample of electrons in $Z \rightarrow ee$ and applies transformations to correct for differences between electron and photon shower shapes

[ATLAS-CONF-2012-123]

- "Electron extrapolation" results combined with results from other measurements
- Reduced uncertainty by a factor of 4 between discovery and now (8 TeV)

Summer 2012	10.8%
Winter 2013	2.4%

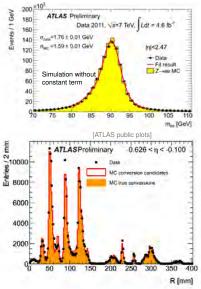

Uncertainty on expected $H
ightarrow \gamma \gamma$ signal yield

Energy calibration.

$$m_{\gamma\gamma}^2 = 2E_1E_2(1-\cos\alpha)$$

- MC-based calibration improved with energy scale and resolution corrections based on $Z \rightarrow e^+e^ (W \rightarrow e\nu, J/\psi \rightarrow e^+e^-$ for cross checks)
- Energy response of the calorimeter is stable over time and varying pileup
- Understanding of photon energy scale requires understanding of inner detector material budget Cross checked with photon conversions, hadronic

interactions, e^{\pm} shower shapes and E/p, ...

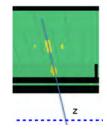


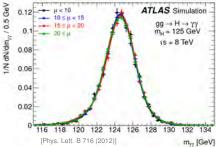
Energy calibration.

$$m_{\gamma\gamma}^2 = 2E_1E_2(1-\cos\alpha)$$

- MC-based calibration improved with energy scale and resolution corrections based on $Z \rightarrow e^+e^ (W \rightarrow e\nu, J/\psi \rightarrow e^+e^-$ for cross checks)
- Energy response of the calorimeter is stable over time and varying pileup
- Understanding of photon energy scale requires understanding of inner detector material budget

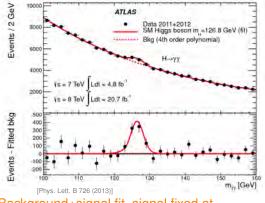
Cross checked with photon conversions, hadronic interactions, e^{\pm} shower shapes and E/p, ...




Photon pointing and primary vertex selection.

$$m_{\gamma\gamma}^2 = 2E_1 E_2 (1 - \cos \alpha)$$

Improve photon angle measurement using


- Photon pointing
 - Photon direction from calorimeter using longitudinal segmentation
 - Position of conversion vertex for converted photons (with Si hits)
- $\sum p_T^2$, $\sum p_T$ (over tracks) and angular balance in ϕ between tracks and diphoton system (8 TeV)
- → Contribution of angle measurement to mass resolution negligible already without primary vertex information
- → Good primary vertex selection needed for selection of signal jets

Mass spectrum and background parametrization.

7 TeV + 8 TeV data

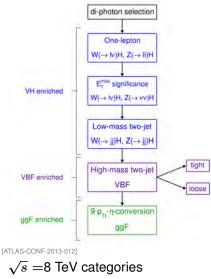
Background+signal fit, signal fixed at 126.8 GeV

Signal clearly visible ($\sim 6\,\sigma$)

Diphoton selection

Identified and isolated photons $p_T^{\gamma 1} >$ 40 GeV, $p_T^{\gamma 2} >$ 30 GeV

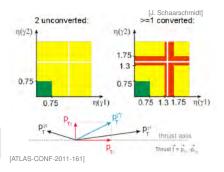
23788 events (7 TeV) 118893 events (8 TeV)


Background modelled by 4th order Bernstein polynomial

Studied on high-statistics MC and chosen to give good statistical power while keeping potential biases acceptable

Potential bias accounted for as systematic uncertainty

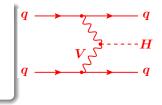
$H ightarrow \gamma \gamma$ production and coupling studies

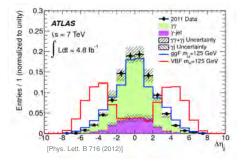

Categorization overview.

(7 TeV: 1 VBF category)

- Dedicated categories for separation of production processes: VH, VBF, gluon fusion
- Remaining events split into categories of varying signal resolution and S/B

 \star $\eta_{\gamma 1,2}$, conversions, p_{Tt}


Kerstin Tackmann (DESY)


VBF-enriched categories.

Select with 2 jets and VBF topology:

- 2 well-separated jets $(\eta_{j1,2}, \Delta \eta_{jj}, m_{jj})$
- Boosted diphoton system $(p_{Tt}^{\gamma\gamma})$
- Jet-photon separation ($\Delta \phi_{\gamma\gamma;jj}$,

 $\eta^* = \eta_{\gamma\gamma} - 1/2(\eta_{j1}+\eta_{j2}), \, \Delta R_{\min}^{\gamma j})$

- Variables combined in a boosted decision tree
- High purity of VBF events

	VBF purity	$N_{ m sig}$
tight	76%	8.1
loose	54%	5.3

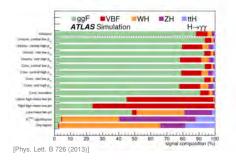
2-Jets candidate.

Run Number: 204769, Event Number: 24947130 Date: 2012-06-10 08:17:12 UTC

[Phys. Lett. B 726 (2013)]

Kerstin Tackmann (DESY)

 $H
ightarrow \gamma \gamma$ at ATLAS


VH-enriched categories.

Inclusive leptons $(W o \ell
u, Z o \ell \ell)$

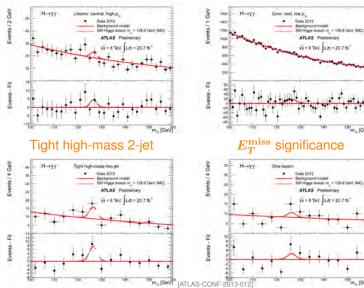
 $p_T^e >$ 15 GeV or $p_T^\mu >$ 10 GeV, isolated in tracker and calorimeter

Missing energy $(W
ightarrow \ell
u, Z
ightarrow
u
u)$

 $E_T^{
m miss}$ significance $rac{E_T^{
m miss}}{0.67 \sum E_T} > 5$

Dijet (W
ightarrow jj, Z
ightarrow jj)60 GeV $< m_{jj} <$ 110 GeV, $|\Delta \eta_{jj}| <$ 3.5

q

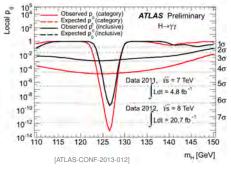

ā

	VH purity	$N_{ m sig}$
lepton	82%	2.9
$E_T^{ m miss}$	83%	1.3
dijet	47%	3.3

H

Diphoton mass spectra for a few categories.

Unconverted central, high p_{Tt}

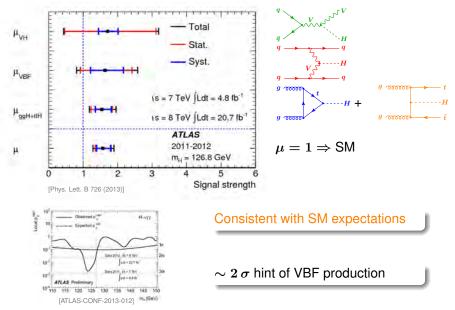


Converted rest, low p_{Tt}

m., (GeV

m., (Gev

$H ightarrow \gamma \gamma$ single channel discovery.

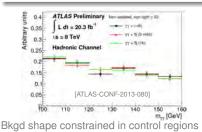


- (Local) significance of excess 7.4 σ
 - \star 4.1 σ expected for SM Higgs boson

Single channel discovery

- 4.5 σ excess at the time of discovery (summer 2012)
- Measured mass $m_H = 126.8 \pm 0.2 ({
 m stat}) \pm 0.7 ({
 m syst}) \, {
 m GeV}$
 - Dominated by systematic uncertainties, mainly from photon energy calibration
- Measured signal strength $\mu = N_{\rm meas}/N_{\rm SM} = 1.55^{+0.33}_{-0.28}$ (at $m_H = 125.5 \,{\rm GeV}$, combined mass with $H \rightarrow 4\ell$)
 - $\star\,$ Data favors narrower signal shape than assumed for μ measurement, which would lower $\mu\,$

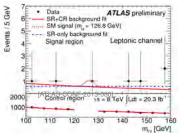
Separating production processes.


Search for production in association with $t\bar{t}$.

• Aim for high efficiency for $t\bar{t}H$, while suppressing other production modes

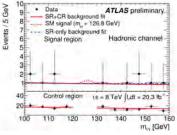
Search in two event categories

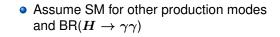
- Fully hadronic: 2 t
 ightarrow bjj'
 - ★ ≥ 6 jets (≥ 2 *b*-tagged)
 - ★ No leptons
- Leptonic: 1 or 2 $t
 ightarrow b \ell
 u$
 - ★ ≥1 electron or muon
 - ★ ≥1 b-tagged jet
 - $\star ~ E_T^{
 m miss} >$ 20 GeV



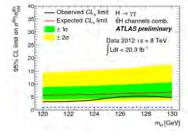
[ATLAS-CONF-2013-080]

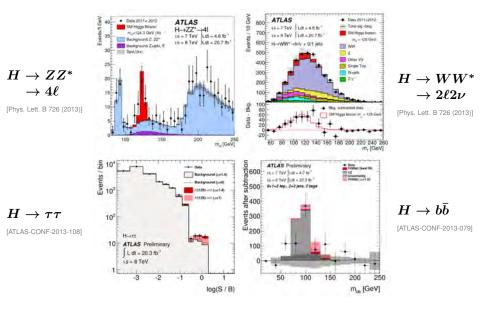
Search for production in association with $t\bar{t}$.


Leptonic

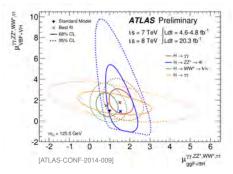


$$0.46 \ N_{t\bar{t}H} \ 0.33$$

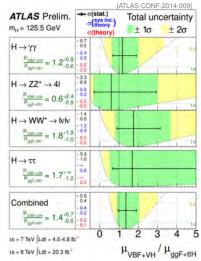

Hadronic


 $\sigma^{tar{t}H}/\sigma^{tar{t}H}_{
m SM} <$ 5.3 @ 95% CL

(6.4 expected) at m_H =126.8 GeV


Detailed coupling studies: combination with the other decay channels

Combining with the other decay channels.



Separating production channels.

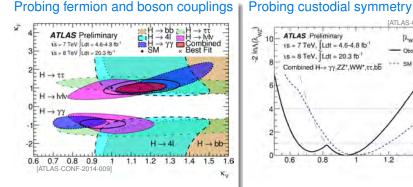
- Coupling to vector bosons use $\mu_{VBF+VH} = \mu_{VBF} = \mu_{VH}$
- Coupling to fermions use $\mu_{\rm ggF+ttH} = \mu_{\rm ggF} = \mu_{\rm ttH}$

 Combination of decay channels (at level of μ) would need assumptions on BRs

$4.1\,\sigma$ evidence for VBF

(obtained profiling μ_{VH})

Kerstin Tackmann (DESY)


Detailed coupling studies.

LO-inspired coupling scale factors κ_j:

$$\begin{aligned} \mathcal{L} &= \kappa_3 \frac{m_H^2}{2v} H^3 + \kappa_Z \frac{m_Z^2}{v} Z_\mu Z^\mu H + \kappa_W \frac{2m_W^2}{v} W_\mu^+ W^{-\mu} H \\ &+ \kappa_g \frac{\alpha_s}{12\pi v} G_{\mu\nu}^a G^{a\mu\nu} H + \kappa_{\gamma} \frac{\alpha}{2\pi v} A_{\mu\nu} A^{\mu\nu} H + \kappa_{Z\gamma} \frac{\alpha}{\pi v} A_{\mu\nu} Z^{\mu\nu} H \\ &+ \kappa_{VV} \frac{\alpha}{2\pi v} \left(\cos^2 \theta_W Z_{\mu\nu} Z^{\mu\nu} + 2 W_{\mu\nu}^+ W^{-\mu\nu} \right) H \\ &- \left(\kappa_t \sum_{f=u,c,t} \frac{m_f}{v} f \overline{f} + \kappa_b \sum_{f=d,s,b} \frac{m_f}{v} f \overline{f} + \kappa_{\tau} \sum_{f=e,\mu,\tau} \frac{m_f}{v} f \overline{f} \right) H. \end{aligned}$$

 Effective coupling scale factors κ_γ and κ_g treated as function of more fundamental scale factors κ_t, κ_b, κ_W, ... for some tests

Specific benchmark models.

- Simplest non-trivial model
- $H \rightarrow \gamma \gamma$ decay gives sensitivity to relative sign
- Agreement of SM hypothesis with data $\sim 10\%$

- $\lambda_{WZ} = \kappa_W / \kappa_Z$
 - \star Common κ_F for fermion couplings

1.2

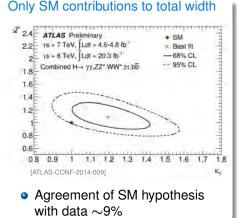
 Agreement of SM hypothesis with data $\sim 19\%$

AS-CONE-2014-00

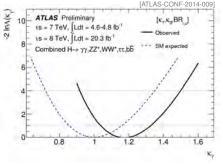
(Awa, Ara, Kra)

SM expected

1.4


1.6

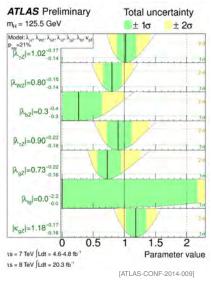
Nyz


hisomied

Probing beyond SM contributions.

Effective scale factors κ_g and κ_γ allow for new contributions in loops

No assumptions on total width



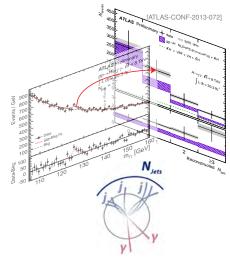
- Allow for undetected or invisible final states
- BR_{*i*,*u*} < 0.41 (at 95% CL) (expected: 0.55)
 - \star Improved by inclusion of new $H o b ar{b}, \, H o au au$

Most generic model.

...free couplings to SM particles and allowing for deviations in loops and additional contributions to total width

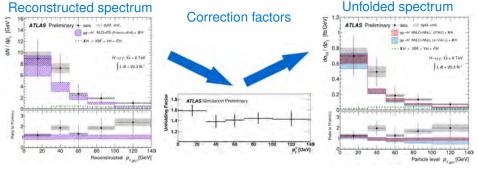
- No sensitivity to relative signs between couplings
- No sensitivity to Higgs-top coupling
 - ★ Degenerate with gluon-fusion loop
 - \star Needs observation of ttH production
- Agreement of SM hypothesis with data ~21%

Back to $H ightarrow \gamma \gamma$


Differential cross section measurements.

Full 8 TeV dataset allows to make first differential cross section measurements

- Almost model-independent measurements of production and decay kinematics
- Measure kinematic distributions of Higgs, of associated jets, ...

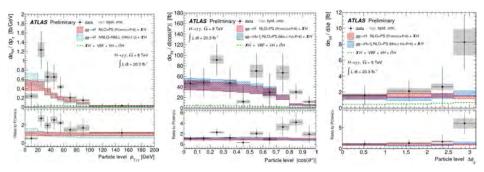

- $H \rightarrow \gamma \gamma$ decay well suited thanks to good resolution and "high" signal yield
- Background subtracted in a simultaneous signal-plusbackground fit to all bins

Correcting to fiducial cross sections.

- Bin-by-bin unfolding for detector acceptance, resolution and efficiency
- Unfold to fiducial region defined by photons (and jets)

$$\star \ p_T^{\gamma^1(\gamma^2)} > 0.35 \ (0.25) \ m_{\gamma\gamma}, \quad |\eta^{\gamma_1,2}| < 2.37$$

 $\star \ p_T^j > 30 \ {
m GeV}, \qquad |y^j| < 4.4$



- Uncertainties dominated by statistical uncertainties
- Allows for direct comparisons to precise theoretical calculations

Kerstin Tackmann (DESY)

[ATLAS-CONF-2013-072]

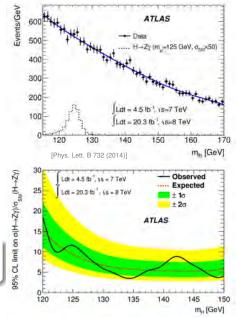
A few more results.

[ATLAS-CONF-2013-072]

Agreement between data and SM prediction within current uncertainties

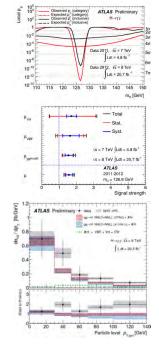
χ^2 probabilities comparing to several predictions

	Njets	$p_{\mathrm{T}}^{\gamma\gamma}$	$ y^{\gamma\gamma} $	$ \cos \theta^* $	$p_{\mathrm{T}}^{j_1}$	$\Delta \phi_{jj}$	$p_{\mathrm{T}}^{\gamma\gamma jj}$
POWHEG					0.79	0.42	0.50
MINLO	0.44	-	-	0.67	0.73	0.45	0.49
HRES 1.0	-	0.39	0.44	-	-	-	-


Looking for rare decay modes: $H \rightarrow Z\gamma$.

 $H
ightarrow Z\gamma$ coupling could be modified e.g. from new particles in the loop

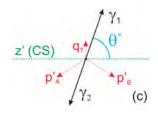
- ...although careful parameter tuning needed to enhance expected signal beyond ~2×SM
- $Z
 ightarrow \ell \ell$ with $\ell = e$ or μ
- Search assumes SM-like production
- Events classified by lepton flavor, $p_{Tt}, \Delta \eta_{Z\gamma}$

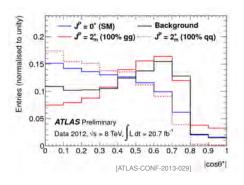

 ${<}11 \times \text{SM}$ @ 95% CL

(expected 9) at m_H =125.5 GeV

Conclusions and Outlook.

- Successful transition from Higgs search to detailed measurements
 - SM predictions consistent with data within present uncertainties
- Run 2 to start in 2015, expecting to collect 350 fb⁻¹ until 2022
- Detailed studies of production channels and couplings
- Refine measurements of differential and fiducial cross sections
- Search for rare decay modes $(H o Z\gamma, H o \mu\mu)$
- Looking forward to LHC Run 2 for a detailed understanding of EWSB


Spin studies.


Polar angle θ^* in resonance rest frame sensitive to spin of resonance

 $\begin{array}{l} {\rm spin} \ 0^+ \ {\rm d}N/{\rm d}|{\rm cos}\theta^*| \sim {\rm const} \\ {\rm spin} \ 2^+ \ {\rm d}N/{\rm d}|{\rm cos}\theta^*| \sim 1 + 6{\rm cos}^2\theta^* + {\rm cos}^4\theta^* \end{array}$

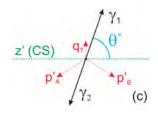
(for spin 2 produced by gg fusion in minimal coupling model)

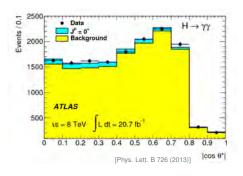
 \rightarrow strongly distorted by kinematic selection

Background $|\cos\theta^*|$ shape interpolated from $m_{\gamma\gamma}$ sidebands into signal region (122 to 130 GeV)

- Decorrelate $m_{\gamma\gamma}$ and $|\cos\theta^*|$ by using $p_T^{1/2}>35/25~m_{\gamma\gamma}$
- Extract 690±150 (620±160) signal events under spin-0 (spin-2) assumption

Analysis performed on 20.7 fb⁻¹ of $\sqrt{s} = 8$ TeV data

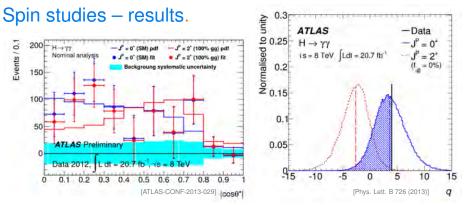

Spin studies.


Polar angle θ^* in resonance rest frame sensitive to spin of resonance

 $\begin{array}{l} {\rm spin} \ 0^+ \ {\rm d}N/{\rm d}|{\rm cos}\theta^*| \sim {\rm const} \\ {\rm spin} \ 2^+ \ {\rm d}N/{\rm d}|{\rm cos}\theta^*| \sim 1 + 6{\rm cos}^2\theta^* + {\rm cos}^4\theta^* \end{array}$

(for spin 2 produced by gg fusion in minimal coupling model)

ightarrow strongly distorted by kinematic selection



Background $|\cos\theta^*|$ shape interpolated from $m_{\gamma\gamma}$ sidebands into signal region (122 to 130 GeV)

- Decorrelate $m_{\gamma\gamma}$ and $|\cos\theta^*|$ by using $p_T^{1/2}>35/25~m_{\gamma\gamma}$
- Extract 690±150 (620±160) signal events under spin-0 (spin-2) assumption

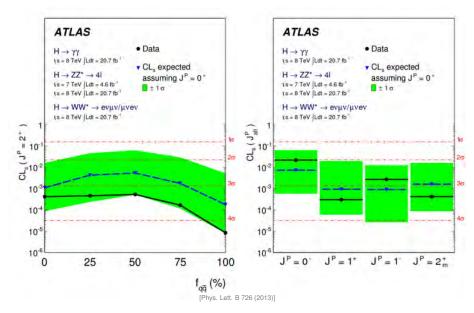
Analysis performed on 20.7 fb $^{-1}$ of $\sqrt{s} = 8$ TeV data

Compatibility of data with spin-0⁺ signal plus background hypothesis and spin-2⁺ signal plus background hypothesis estimated via likelihood ratio

 $q = - \mathrm{ln} \mathcal{L}(\mathrm{spin0}, \hat{ heta}) / \mathrm{ln} \mathcal{L}(\mathrm{spin2}, \hat{ heta})$

Expected $p\text{-values}\;p_{2^+}=0.5\%$ and $p_{0^+}=1.2\%$ Observed $p\text{-values}\;p_{2^+}=0.3\%$ and $p_{0^+}=58.8\%$

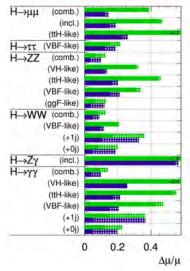
p value of 50% would be perfect agreement


Tested spin 2 model excluded at 99% CL

Exclusion can be significantly weaker for other models

Kerstin Tackmann (DESY)

 $H
ightarrow \gamma \gamma$ at ATLAS


Spin combination.

Projections for 300 and 3000 fb^{-1} .

ATLAS Simulation Preliminary

IS = 14 TeV: Ldt=300 fb⁻¹ ; Ldt=3000 fb⁻¹

Projection for $H ightarrow Z \gamma$

	300 fb ⁻¹	3000 fb ⁻¹
Exp. CL_s limit (×SM)	2.53	0.74
$p_0~(\sigma)$	0.67	2.12

Limit on width from interference

• Measurement of mass shift between $p_T^{\gamma\gamma} <$ 30 GeV and > 30 GeV

	300 fb ⁻¹	3000 fb ⁻¹
Exp. limit	880 MeV	160 MeV

[ATL-PHYS-PUB-2013-014]