

XYZ

Exotic states in the charmonium and bottomonium mass regions

Jens Sören Lange Justus-Liebig-Universität Gießen

Dienstag Seminar, DESY Hamburg, 13.05.2014 Colloquium, DESY Zeuthen, 14.05.2014

OUTLINE

- Potential model of charmonium and bottomonium
- Experiments: Belle, BaBar, BESIII
- Charmonium(-like) states
 - → X(3872)
 - → Y(4260)
 - $\rightarrow Z_{\rm C}^{\pm}(3900)$
- Bottomonium(-like) states
 - \rightarrow Implications for potential model (\rightarrow confinement)

 $\rightarrow Z_b^{\pm}$

Future experiments: Belle II, PANDA

Charmonium vs. Positronium

Charmonium

Positronium

Charmonium vs. Positronium

Static Quark-Antiquark Potential

Coulomb-Potential *k*=0.5 GeV/fm + Confinement-Term $V(r) = -\frac{4}{3}\frac{\alpha_s}{r} + kr$ V(r) [GeV] spin-spin $+\frac{32\pi\alpha_s}{9m^2}\delta_r\vec{S_c}\vec{S_c}$ k=1.5 GeV/fm 0 ${\rm spin-orbit} \quad + \frac{1}{m_*^2} (\frac{2\alpha_s}{r^3} - \frac{k}{2r}) \vec{L} \vec{S}$ $-\frac{4\alpha_s}{2\pi}$ V(r)tensor $+\frac{1}{m^2}\frac{4\alpha_s}{r^3}\left(\frac{3\vec{S_c}\vec{r}\cdot\vec{S_c}\vec{r}}{r^2}-\vec{S_c}\vec{S_c}\right)$ solve Schrödinger equation (quark mass heavy \rightarrow non-relativistic) 0.5 10 Notation 0 \rightarrow states r [fm] $n^{2S+1}L_{1}$ $\Psi(r,\theta,\phi) = R_{nl}(r)Y_{lm}(\theta,\phi)$ $\left[-\frac{1}{m_{\pi}}\left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} + \frac{l(l+1)}{m_{\pi}r^2} + V(r)\right)\right]R_{nl}(r) = E_{nl}R_{nl}(r)$ **IPC**

XYZ States | S. Lange (Giessen) DESY Hamburg, DESY Zeuthen, 13.-14.05.2014 7

~553 /fb
On-resonance samples:
Y(4S): 433 /fb
Y(3S): 30 /fb
Y(2S): 14 /fb

no Y(5S) data Off-resonance: 54 /fb

477M B meson decays

~952 /fb
On-resonance samples:
Y(4S): 711 /fb
Y(5S): 121 /fb
Y(3S): 3.0 /fb
Y(2S): 24 /fb
Y(1S): 5.7 /fb
Off-resonance: 87 /fb

772M B meson decays

Charmonium Production

Direct Production

Product branching fraction small $\mathcal{B}(B \text{ decay}) \times \mathcal{B}(X \text{ decay}) = 10^{-5}$

X(3872)

XYZ States | S. Lange (Giessen) DESY Hamburg, DESY Zeuthen, 13.-14.05.2014 12

 $X(3872) \rightarrow J/\psi \pi + \pi -$

beam constraint and 3-dim fit (over-constraint) \rightarrow fit resolution better than detector resolution

Precise Measurement of Mass and Width of X(3872)

Belle, Phys. Rev. Lett.91(2003)262001CDF-II, Phys. Rev. Lett.93(2004)072001D0, Phys. Rev. Lett.93(2004)162002BaBar, Phys. Rev. D71(2005)071103LHCb, Eur. Phys. J. C72(2012)1972CMS, arXiv:1302.3968[hep-ex]

Experiment	Mass of $X(3872)$	
CDF2	$3871.61 \pm 0.16 \pm 0.19 \text{ MeV}$	
BABAR (B^+)	$3871.4 \pm 0.6 \pm 0.1 \text{ MeV}$	
$BABAR (B^0)$	$3868.7 \pm 1.5 \pm 0.4 \text{ MeV}$	
D0	$3871.8 \pm 3.1 \pm 3.0 \text{ MeV}$	
Belle	$3871.84 \pm 0.27 \pm 0.19 \text{ MeV}$	
LHCb	$3871.95 \pm 0.48 \pm 0.12 \text{ MeV}$	
World Average	$3871.68 {\pm} 0.17 { m MeV}$	

- threshold m(D^o)+m(D^{*o})=3871.84±0.28 MeV "binding energy" -0.16±0.33 MeV
 - \rightarrow random coincidence or "grand design" ?
- upper limit on width

 Γ< 1.2 MeV (very narrow)
 </p>

What do we know about the X(3872)?

- Observed by 7 experiments
- Observed in 5 decay channels
- Quantum numbers are J^{PC}=1⁺⁺ potential model: χ_{c1} '

Barnes et al., Phys. Rev. D72(2005)054026

- \rightarrow predicted mass \geq 50 MeV higher
- \rightarrow predicted width factor $\geq\!\!100$ larger
- Decay X(3872) $\rightarrow J/\psi\pi^+\pi^$ dominated by X(3872) $\rightarrow J/\psi\rho^0(l=1)$ \rightarrow violates isospin (assume initial l=0) $\rightarrow B$ factor 10–100 too large

Is the X(3872) exotic?

Tornqvist; Swanson; Braaten, Kusonoki, Wong; Voloshin; Close, Page Threshold CUSP: Bugg

Intriguing Analogon

Diquarks can be colored

[Qq][Qq] Maiani, Riquer, Piccinini, Polosa, Burns; Ebert, Paustov, Galkin; Chiu, Hsieh; Ali, Hambrock, Wang

Can the X(3872) be a mixture ?

$$|X(3872) >= c_1 |c\bar{c} > + c_2 |\overline{D}^0 D^{0*} >$$
 $\chi_{c1'}$
 $J^{PC}=1^{++}$

XYZ States | S. Lange (Giessen)DESY Hamburg, DESY Zeuthen, 13.-14.05.201417

Is there cc admixture inside the X(3872) ?

Search for X(3872) $\rightarrow \chi_{c1} \pi^+ \pi^-$

NEW, Belle, 711 fb⁻¹ E. Panzenboeck (Göttingen/Nara) Hadron 2013. LLWI 2014

No signal observed (no indication of admixture)

MC simulation, assuming $\mathcal{B}(\chi_{c1} \pi^+\pi^-) = \mathcal{B}(J/\psi \pi^+\pi^-)$

Note: recent notation by PDG as X(4260)

Y(4260)

Initial state radiation events

$$e^+e^- \to \gamma_{ISR} \underbrace{J/\psi \pi^+\pi^-}_{\text{resonant state}?}$$

- m > 4 GeV

 → far above D(*)D(*) threshold,
 but decay to open charm
 not observed
- Quantum numbers (based upon production mechanism)
 JPC=1⁻⁻

initial state radiation

Y(4260) Parameters

	BaBar 1	CLEO-c 2	Belle 3	Belle 4	BaBar 5	BaBar 6
\mathcal{L}	$211 { m ~fb^{-1}}$	$13.3 \ {\rm fb}^{-1}$	$553 {\rm ~fb^{-1}}$	$548 {\rm ~fb^{-1}}$	454 fb^{-1}	454 fb^{-1}
Ν	125 ± 23	$14.1^{+5.2}_{-4.2}$	165 ± 24	$324{\pm}21$	344 ± 39	_
Significance	$\simeq 8\sigma$	$\simeq 4.9\sigma$	$\geq 7\sigma$	$\geq 15\sigma$	_	_
m / MeV	$4259 \pm 8^{+2}_{-6}$	$4283^{+17}_{-16}\pm4$	$4295 \pm 10^{+10}_{-3}$	$4247 \pm 12^{+17}_{-32}$	$4252 \pm 6^{+2}_{-3}$	$4244{\pm}5{\pm}4$
Γ / MeV	$88 \pm 23^{+6}_{-4}$	70^{+40}_{-25}	$133 \pm 26^{+13}_{-6}$	$108 \pm 19 \pm 10$	$105 \pm 18^{+4}_{-6}$	$114^{+16}_{-15} \pm 7$

[1] BaBar Collaboration, arXiv:hep-ex/0506081, Phys. Rev. Lett. 95(2005)142001.

- [2] CLEO-c Collaboration, arXiv:hep-ex/0611021, Phys. Rev. D74(2006)091104.
- [3] Belle Collaboration, arXiv:hep-ex/0612006.
- [4] Belle Collaboration, arXiv:0707.2541[hep-ex], Phys. Rev. Lett. 99(2007)182004.
- [5] BaBar Collaboration, arXiv:0808.1543[hep-ex].
- [6] BaBar Collaboration, arXiv:1204.2158[hep-ex], Phys. Rev. D86(2012)051162.

 $e^+e^- \rightarrow \gamma_{ISR} J/\psi (\psi') \pi^+\pi^-$: Y States

Overpopulation of J^{PC}=1⁻⁻ States

Mass / GeV 5.0 Events/20 MeV/c² 55 00 05 **Belle** Y(4660) No additional states No more states. $J/\psi\pi^+\pi^-$ with $J^{PC=}1^{--}$ $\psi(4400)$ up to 7 GeV Y(4350) Y(4260)20 $\psi(4140)$ Y(4008) $\psi(4040)$ 4.0 15 $\psi(3770)$ 10 $J/\psi\pi^+\pi^-$ CC Ψ'π+π- J/ψ 3.04.5 5.5 6 6.5 7 $M(\pi^+\pi^-J/\psi)$ (GeV/c²)

- Non-trivial pattern, not understood
- $\hfill \ensuremath{\,^\circ}$ No mixing with conventional ψ states
- No mixing among them
 - \rightarrow Y(4260) seems not to decay to $\psi^{\prime}\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$
 - \rightarrow Y(4350) seems not to decay to $J/\psi\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$

Is the Y(4260) exotic?

TETRAQUARK

higher excitation ?

[Qq][Qq] Maiani, Riquer, Piccinini, Polosa, Burns

MOLECULE

heavier mesons $(\overline{D}D_1(2460))$?

[Qq][Qq] Swanson, Rosner, Close [QQ][qq] "Hadro-Charmonium" Guo, Hanhart, Krewald, Meissner

Zhu; Kou, Pene; Close, Page; Lattice QCD, Bernard et al.; Mei, Luo

Z_c⁺ States

If there are exotic neutral states, are there also exotic charged states ? (→ cannot be charmonium!)

Example: $[c \overline{c} u \overline{d}]^+$

 $\begin{array}{c} \mathsf{B}^{\scriptscriptstyle 0} \rightarrow \;\mathsf{K}^{\scriptscriptstyle +} \;\psi^{\scriptscriptstyle +} \;\pi^{\scriptscriptstyle -} \\ \psi^{\scriptscriptstyle +} \rightarrow \;\mathsf{J}/\psi \;\pi^{\scriptscriptstyle +} \;\pi^{\scriptscriptstyle -} \end{array}$

 $B^{o} \rightarrow K^{+} \psi' \pi^{-}$

 $B^{o} \rightarrow K^{+} \psi' \pi^{-}$

 $\psi' \rightarrow J/\psi \ \pi^+ \pi^-$

Problem: understanding of 3-body decay dynamics

Beijing Electron Positron Collider II

XYZ States | S. Lange (Giessen)

DESY Hamburg, DESY Zeuthen, 13.-14.05.2014 30

Beijing Electron Positron Collider II

BESIII

detector

BESIII Experiment (IHEP Beijing) Beam energy 1.0–2.3 GeV (→√s=2.0–4.6 GeV)

 $e^+e^- \rightarrow (Y(4260)) \rightarrow J/\psi \pi^{\pm} \pi^{\mp}$

resonant state?

XYZ States | S. Lange (Giessen)

DESY Hamburg, DESY Zeuthen, 13.-14.05.2014 31

BESIII Experiment

360 members, 52 institutions, 11 countries Germany: Univ. Bochum, GSI Darmstadt, Univ. Giessen, Univ. Mainz

 $e^+e^- \rightarrow J/\psi \pi^+\pi^-$

MARK I, 1977 $e^+e^- \rightarrow \psi' \rightarrow J/\psi \pi^+ \pi^ \sqrt{s}=3868 \text{ MeV}$

BESIII, 2013 e⁺e⁻ \rightarrow Y(4260) \rightarrow J/ $\psi \pi^+ \pi^- \sqrt{s}$ =4260 MeV

 $e^+e^- \rightarrow (Y(4260)) \rightarrow J/\psi \pi^{\pm} \pi^{\mp}$

resonant state?

Z_c(3900)

m = 3899.0±3.6±4.9 MeV Γ = 46±10±20 MeV 307±48 events, >8 σ arXiv:1303.5949, PRL 110(2013)252001 m = 3894.5±6.6±4.5 MeV Γ = 63±24±26 MeV 159±49 events, >5.2 σ arXiv:1304.0121, PRL 110(2013)252002

Confirmed with CLEO-c data, but different $\sqrt{s} \rightarrow \text{not Y}(4260)$ S. Dobbs et al., Phys. Lett. B727(2013)366

Tetraquark state predicted at m=3.882 GeV Ali, Hambrock, Wang, Phys. Rev. D85(2012)054011

Z_c(3900)

- Y(4260) \rightarrow [J/ $\psi\pi^+$] $\pi^$
 - charged \rightarrow no C-parity
 - $1^- 0^-$ and assume L=0 $\rightarrow J^P = 1^+$, similar to X(3872)
- D⁺D^{*0} threshold 3877 MeV measured: 3899 MeV (BESIII), 3894 MeV (Belle)
 - \rightarrow higher than threshold
 - → no binding energy ("virtual state")
- There is no state at [D⁰D[±]] threshold !

Notes from the Editors: Highlights of the Year

Published December 30, 2013 | Physics 6, 139 (2013) | DOI: 10.1103/Physics.6.139

PHYSICS VIEWPOINT

New Particle Hints at Four-Quark Matter

Published 17 June 2013

Two experiments have detected the signature of a new particle, which may combine quarks in a way not seen before.

This is the first charged Z state observed by 2 experiments!

named "APS Highlight of the year 2013" among others, e.g. extra-solar neutrinos by IceCube

Z_c⁺ states at BESIII

38

Confirmation of the Z(4430) in B⁰ \rightarrow K⁺ ψ ' π ⁻ LHCb, arXiv:1404.1903[hep-ex]

- data set 3 fb⁻¹, $\sqrt{s}=7$ and 8 TeV
- ${\mbox{ \ \ significance }} > 13.9 \sigma$
- $J^P = 1^+$ unambigously established
 - (0-, 1-, 2+, 2- ruled out
 - by 9.7 σ , 15.8 σ , 16.1 σ and 14.6 σ)
- mass and width consistent with Belle

All measured Z_c^{\pm} masses are above $D^{(*)}\overline{D}^{(*)}$ thresholds.

State	$m/{ m MeV}$	Threshold	$\Delta m/{ m MeV}$
$Z_{c}(3900)$	$3899.0 \pm 3.6 \pm 4.9$	$D^+\overline{D}^{0*}$	+22.4
$Z_c(3900)$	$3899.0 \pm 3.6 \pm 4.9$	$D^0\overline{D}^{+*}$	+23.9
$Z_c(3900)$	$3894.5 \pm 6.6 \pm 4.5$	$D^+\overline{D}^{0*}$	+17.9
$Z_{c}(3900)$	$3894.5 \pm 6.6 \pm 4.5$	$D^0\overline{D}^{+*}$	+19.4
$Z_{c}(3900)$	$3885 \pm 5 \pm 1$	$D^+\overline{D}^{0*}$	+8.4
$Z_{c}(3900)$	$3885\pm5\pm1$ MeV	$D^0\overline{D}^{+*}$	+9.9
$Z_c(3885)$	$3883.9 \pm 1.5 \pm 4.2$	$D^+\overline{D}^{0*}$	+7.4
$Z_c(3885)$	$3883.9 \pm 1.5 \pm 4.2$	$D^0\overline{D}^{+*}$	+8.8
$Z_{c}(4020)$	$4022.9 \pm 0.8 \pm 2.7$	$D^{0*}\overline{D}^{\pm *}$	+5.6
$Z_{c}(4025)$	$4026.3 \pm 2.6 \pm 3.7$	$D^{0*}\overline{D}^{\pm *}$	+9.0

\rightarrow not explained yet

Is there a decay from an XYZ to another XYZ?

 $Y \rightarrow Z$ Z_c^+ are observed in Y(4260) decay (cross section vs. \sqrt{s} peaks at Y(4260))

 $\begin{array}{l} \mathsf{Y} \to \mathsf{X} \\ \to \mathsf{X}(3872) \text{ in } \mathsf{Y}(4260) \text{ decay } ? \\ 1^{--} \to 1^{++} \text{ , parity flip, } \Delta \mathsf{L}{=}1 \\ \to \text{ search for radiative decay} \end{array}$

$e{+}e{-} \rightarrow Y(4260) \rightarrow X(3872) \gamma$

Confirmation of X(3872) 20.0 \pm 4.6 events m = (3871.9 \pm 0.7 \pm 0.2) MeV 6.3 σ

Cross section peaks at Y(4260)

 $\mathcal{B}(Y \rightarrow \gamma X)$ is factor ≤ 50 higher than for E1 charmonium transition with same quantum numbers (assume: no additional Y decay and $\mathcal{B}(X \rightarrow J/\psi \pi \pi)=5\%$))

Bottomonium

XYZ States | S. Lange (Giessen) DESY Hamburg, DESY Zeuthen, 13.-14.05.2014 44

Y(5S) Decays

π + π - missing mass

First observation of $h_b(1P)$ and $h_b(2P)$

Belle, 121.4 fb⁻¹ Phys. Rev. Lett 108(2011)032001 arXiv:1103.3419

XYZ States | S. Lange (Giessen) DESY Hamburg, DESY Zeuthen, 13.-14.05.2014 47

Implications of newly observed, expected bottomonium states for potential model (confinement) ? Charmonium

Bottomonium

Agreement to $10^{-3} - 10^{-4}$ level

Experimental observation of

$$|\Delta m|_{c\overline{c}} = |\Delta m|_{b\overline{b}}$$

is inconsistent with potential model

		$ \Delta m $ Scaling
Coulomb	V(r) = k/r	$m_Q k ^2$
Linear	V(r) = kr	$m_Q^{-1/3} k ^{2/3}$
Logarithmic	$V(r) = k \ln r$	k

Explicit quark mass dependence (except for logarithmic potentials).

C. Quigg, arXiv:hep-ph/9707493 C. Quigg, J. L. Rosner, Phys. Lett. B71(1977)153 C. Quigg, J. L. Rosner, H. B. Thacker, Phys. Rev. D21(1980) 234 C. Quigg, J. L. Rosner, Phys. Rev. D23(1981)2625

Future Experiments: Belle II, PANDA

XYZ States | S. Lange (Giessen) DESY Hamburg, DESY Zeuthen, 13.-14.05.2014 53

Belle II MC B⁺ \rightarrow K⁺ X(3872), X(3872) \rightarrow J/ $\psi \pi^+ \pi^-$

PXD inner vertex detector

Factor ≤40 higher luminosity ("nanobeam") First data taking planned in 2016

XYZ States | S. Lange (Giessen) DESY Hamburg, DESY Zeuthen, 13.-14.05.2014 55

Belle II DEPFET Pixel Detector Univ. Bonn, DESY, Univ. Giessen, Univ. Göttingen, Univ. Heidelberg, KIT Karlsruhe, HLL München, MPI München, LMU München, TU München

XYZ States | S. Lange (Giessen)

lizium Pixel Detek

Belle II

Bundesministerium

für Bildung und Forschung

•

0

.

PANDA @ FAIR pp → formation of any (non-exotic) quantum number e.g. high F-wave state (L=3, J^{PC}=4⁺⁺) 3-step radiative cascade

M. Galuska, S. Reiter, E. Prencipe, S. Spataro, S.L. arXiv:1311.7597[hep-ex]

State	Production	J^{PC}	Mass	Width	Decay	Experiment	Interpretation
			(MeV)	(MeV)			
X(3872)	B decays, $p\overline{p}$	1^{++}	$\simeq 3872$	$<\!\!1.2$	$J/\psi\rho, J/\psi\omega$	Belle, BABAR , CDF	4-quark, $(D^0\overline{D}^{*0})$ molecule?
					$J/\psi\gamma, D^0\overline{D}^{0*}$	D0, LHCb, CMS	
X(3940)	$e^+e^- \rightarrow c\overline{c}X$	$0^{?+}$	$\simeq 3942$	$\simeq 37$	$D\overline{D}^* \pmod{D\overline{D}}, J/\psi\omega$	Belle	shifted $\eta_c^{\prime\prime}$?
Y(3940)	B decays	??+	$\simeq 3943$	$\simeq 20$	$J/\psi\omega \ ({\rm not} \ DD^*)$	Belle, BABAR	shifted χ'_{c0} ?
$Z_c(3900)$	Y(4260) decays	1^{+}	$\simeq 3899$	$\simeq 46$	$J/\psi \pi^{\pm}$	BESIII, Belle	4-quark ? $(D\overline{D}^*)^{\pm}$ molecule?
$Z_c(3885)$	Y(4260) decays	$?^{?}$	$\simeq 3884$	$\simeq 25$	$(D\overline{D}^*)^{\pm}$	BESIII	4-quark ? $(D\overline{D}^*)^{\pm}$ molecule?
$Z_{c}(4020)$	Y(4260) decays	??	$\simeq 4023$	$\simeq 8$	$h_c \pi^{\pm}$	BESIII	4-quark ? $(D^*\overline{D}^*)^{\pm}$ molecule?
$Z_c(4025)$	Y(4260) decays	??	$\simeq 4026$	$\simeq 25$	$(D^*D^*)^{\pm}$	BESIII	4-quark ? $(D^*\overline{D}^*)^{\pm}$ molecule?
Y(4140)	B decays	??+	$\simeq 4143$	$\simeq 15$	$J/\psi\phi$	CDF	$c\overline{c}s\overline{s}$
X(4160)	$e^+e^- \rightarrow c\overline{c}X$	$0^{?+}$	$\simeq 4156$	$\simeq 139$	$D^*\overline{D}^* \ ({\rm not} \ D\overline{D}, \ D\overline{D}^*)$	Belle	$\eta_c^{\prime\prime}?$
Y(4008)	ISR	$1^{}$	$\simeq 4008$	$\simeq 226$	$J/\psi \pi^+\pi^-$	Belle	$c\overline{c}g$ hybrid?
						(not BABAR)	
Y(4260)	ISR	$1^{}$	$\simeq 4264$	$\simeq 83$	$J/\psi \pi^+\pi^-$,	BABAR , CLEO, Belle	$c\overline{c}g$ hybrid?
					$J/\psi \pi^0 \pi^0$,		
					$J/\psi K^+K^-$		
X(4350)	$\gamma\gamma$	$?^{?+}$	$\simeq 4351$	$\simeq 13$	$J/\psi\phi$	Belle	$c\overline{c}s\overline{s}$
Y(4350)	ISR	$1^{}$	$\simeq 4361$	$\simeq 74$	$\psi'\pi^+\pi^-$	BABAR, Belle	$c\overline{c}g$ hybrid?
Y(4660)	ISR	$1^{}$	$\simeq 4664$	$\simeq 48$	$\psi' \pi^+ \pi^-$	Belle	$c\overline{c}g$ hybrid?
X(4630)	ISR	$1^{}$	$\simeq 4634$	$\simeq 92$	$\Lambda_c \overline{\Lambda_c}$	Belle	$\Lambda_c \overline{\Lambda_c}$ molecule?
$Z^{\pm}(4050)$	B decays	??	$\simeq 4051$	$\simeq 82$	$\chi_{c1}\pi^{\pm}$	Belle	4-quark?
$Z^{\pm}(4250)$	B decays	$?^{?}$	$\simeq 4248$	$\simeq 177$	$\chi_{c1}\pi^{\pm}$	Belle	4-quark?
$Z^{\pm}(4430)$	B decays	??	$\simeq 4433$	$\simeq 45$	$\psi' \pi^{\pm}$	Belle	4-quark?
						(not BABAR)	
$Z_b^{\pm}(10610)$	$\Upsilon(5S)$ decays	1^{+}	$\simeq 10607$	$\simeq 18$	$\Upsilon(1S)\pi^{\pm}$	Belle	4-quark? $(B\overline{B}^*)^{\pm}$ molecule?
					$\Upsilon(2S)\pi^{\pm}$		
					$\Upsilon(3S)\pi^{\pm}$		
					$h_b(1P)\pi^{\pm}$		
$Z_{1}^{\pm}(10650)$	$\Upsilon(5S)$ decays	1+	~ 10652	~11	$\gamma(1S)$	Belle	4-quark? $(B^*\overline{B}^*)^{\pm}$ molecule?
2, (10000)	1 (00) accays	1	_10002		$\Upsilon(2S)\pi^{\pm}$	Delle	Fquark: (B B) morecure:
					$\Upsilon(3S)\pi^{\pm}$		
					$h_b(1P)\pi^{\pm}$		
					$h_b(2P)\pi^{\pm}$		
$Y_b(10889)$	e^+e^-	$1^{}$	$\simeq 10890$	$\simeq 100$	$\psi' \pi^{\pm}$	Belle (not $BABAR$)	4-quark?
					$\Upsilon(1S)\pi^+\pi^-$	Belle	4-quark, $[b\overline{b}]_8g$ hybrid?
					$\Upsilon(2S)\pi^+\pi^-$		rescattering?
					$T(3S)\pi^{+}\pi^{-}$		

SUMMARY

- Experiments at e⁺e⁻ colliders re-defined our understanding of hadrons
- Many unexplained states have J^{P(C)}=1+(+)
- $\hfill \ensuremath{\,^{\text{st}}}$ transitions between X and Y and Z observed
- Product branching fractions of XYZ states are small $(\mathcal{B}\sim 10^{-5})$ \rightarrow next-generation high luminosity experiments are required Belle II, PANDA, LHCb (upgrade), more BESIII running ...

THANK YOU.

Review Articles: arXiv:1311.7594 [hep-ex] arXiv:1208.6128 [hep-ex] arXiv:1109.1699 [hep-ex] arXiv:1010.2331 [hep-ex]