

Measurement of θ_{13} in Neutrino Oscillation Experiments

Stefan Roth, RWTH Aachen Seminar, DESY, 21st/22nd January 2014

Overview

- Experiments with neutrinos
- Neutrino oscillations
- Reactor and accelerator neutrino experiments
- Current status and future sensitivities

Two experiments with RWTH participation:

- Reactor neutrino experiment Double Chooz
 Near and far detector
 at nuclear power plant
 Chooz (France)
- Accelerator neutrino experiment T2K
 Tokai to Kamioka
 long baseline neutrino
 experiment

Discovery of the Neutrino: Project "Poltergeist" (1956)

Nuclear reactors produce a large flux of anti-neutrinos $\bar{\nu}_e$ β -decays of the fission products of the isotopes ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu

 $\overline{\nu}_e + p \rightarrow n + e^+$

Inverse β -decay using delayed coincidences:

Prompt: positron annihilation

Discovery of the Myon-Neutrino: Brookhaven (1960)

Pion beam produces v_{μ} beam

Nobel price 1988

Leon Ledermann

Melvin Ja Schwartz St

Jack Steinberger

Myon track starts within spark chamber

Discovery of Neutrino Oscillations

Mixing of mass and flavor states

Production/detection:

 ν_e, ν_μ, ν_τ

Propagation: v_1, v_2, v_3

$$\begin{aligned} |\nu_{\alpha}\rangle &= \sum_{i} U_{\alpha i} \ |\nu_{i}\rangle \\ \alpha &= e, \mu, \tau \\ i &= 1, 2, 3 \end{aligned}$$

Unitary rotation of states with 3 mixing angles: $\theta_{12}, \theta_{23}, \theta_{13}$ 1 CP violating phase: δ_{CP}

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix: $c_{ij} = \cos \theta_{ij}$, $s_{ij} = \sin \theta_{ij}$

Oscillation parameters

(other possibility: inverted mass hierarchy)

٧τ

νμ

Neutrino Oscillations (3 Masses)

Survival probability $P(\bar{\nu}_e \rightarrow \bar{\nu}_e)$:

Neutrino Oscillations (3 Masses)

Appearance probability $P(\nu_{\mu} \rightarrow \nu_{e})$:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \frac{\Delta m_{31}^{2} L}{4E} + f\left(\sin^{2} \frac{\Delta m_{21}^{2} L}{4E}\right)$$

Here also neglected: Terms with δ_{CP} , Terms due to matter effects

New Reactor Neutrino Experiments

DayaBay:

- Located at Daya Bay Nuclear Power Plant in China
- 6 x 2.9 GW_{th} nuclear reactors
- 6 neutrino detecors
 3 near (520 m from reactors)
 3 far (1650 m from reactors)

RENO:

- Located at Yonggwang Nuclear Power Plant in Korea
- 6 x 2.8 GW_{th} nuclear reactors
- 2 neutrino detecors
 1 near (294 m from reactor)
 1 far (1383 m from reactor)

The Double Chooz Experiment

Design of the DoubleChooz Detectors

Onion like structure to shield against backgrounds

Outer Veto:

Plastic scintillator

Steel Shielding (17 cm)

Inner Veto (steel vessel): 80 m³ liquid scintillator, 80 PMT

Buffer (steel vessel): 100 m³ oil 390 PMT (10 inch) observing the target

Gamma Catcher (acylic vessel): 22.6 m³ liquid scintillator no Gd

Target (acrylic vessel) : 10.3 m³ liquid scintillator + 0.1% Gd

Detector Vessels before Closing

Selection of Neutrino Candidates

Coincidence Cut: $2 \mu s < \Delta T < 100 \mu s$

Prompt-delay time difference

Selection of Neutrino Candidates

Rate of Neutrino Candidates

~36 neutrino candidates per day ~1 background event per day

Neutrino rate

- In total 8249 candidates survive the cuts (no background subtraction)
- Good correspondence to reactor power history
- Indicates low background level in detector

Backgrounds

Accidental background

Correlated background

Prompt: environmental gamma-ray Delayed: neutron induced by muon

Prompt:

proton recoils from neutron Delayed:

neutron capture on Gd

Cosmogenics: ⁹Li/ ⁸He from μ -induced spallation β – n emitters, mimic the v-signal

Background Estimation

- Unique opportunity to measure backgrounds in-situ with both reactors off ~7,5 days of reactor OFF-OFF data
- background event rate are consistent with background calculation
 → waiting for more reactor OFF-OFF periods ...

Oscillation Analysis

- Oscillation depends on neutrino energy: $P(\bar{v}_e \rightarrow \bar{v}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{31}^2 L}{4E}$
 - Rate & shape analysis yields $\sin^2 2\theta_{13} = 0.109 \pm 0.030 \text{ (stat)} \pm 0.025 \text{ (syst)}$ using $\Delta m_{31}^2 \approx \Delta m_{32}^2 = 2.32 \cdot 10^{-3} \text{eV}^2$ (MINOS)
- Together with results from DayaBay and RENO:

 $sin^2 2\theta_{13} = 0.095 \pm 0.010$ (PDG 2014)

New Accelerator Neutrino Experiments

NOvA: <u>Numi Off-Axis ve</u> <u>Appearance Experiment</u>

Start planned for 2014

Far Detector Building - Complete

The T2K Experiment (Tokai To Kamioka)

Data taking since 2010

T2K

Japan Proton Accelerator Research Center J-PARC

J-PARC: Joint project between KEK and JAEA

The Neutrino Beam

Extraction point

- 30 GeV proton beam on carbon target
- Beam intensity currently 220 kW, design value 700 kW
- Final goal is 8 · 10²¹ protons on target (POT)
- Muon beam direction stable within 1 mrad

Y center

20 May

21 Mar 20 Apr

± 1 mrad

Graphite Target I=320kA 1400 2000 ARC 2500 **Muon monitor Final Focusing** Decay pipe 0° on-axis Target Statio ~110 m 2.5° off-axis (diag) 280 m |Jan 2010 – Jun 2010 | Nov 2010 – Mar 2011 | Mar 2012 – Jun 2012 | **Beam diagnostics** : +1 mrad Position 20 Profile 19 1 mrad Intensity 4 02 Ju 27 Nov 27 Dec 26 Jan 25 Feb

02 Mar

02 May

Off Axis Neutrino Beam

Neutrinos at 2.5° off-axis:

- Intense narrow energy band
- Energy maximum tuned to oscillation maximum at ~0.6 GeV

Off Axis Neutrino Beam

Charge Current (CC) processes:

- Quasi Elastic (QE): $\nu_{\mu}n \rightarrow \mu^{-}p$
- Resonant (RES):
- $\nu_{\mu}n \rightarrow \mu^{-}\pi^{+,0}N$

• Deep Inelastic (DIS): $\nu_{\mu}N \rightarrow \mu^{-}X$

Neutrinos at 2.5° off-axis:

- Enhances CCQE fraction
- Reduces associated pion production

Neutrino Monitor

Near Detector 280m (ND280)

Inside 0.2 T UA1/NOMAD magnet:

- The π^0 detector POD (lead/water/scintillators)
- Barrel and downstream ECAL
- Fine Grain Detectors FGD (water/scintillators)
- Time Projection Chambers TPC
 - (large gas volume with micromegas readout)

Magnet Moving System

Opening and closing of 900 t UA1 magnet yokes Adaption of HERA-B guide rollers to the UA1 magnet carriage Re-use of ZEUS hydraulic movers

Many thanks to DESY!

ND280 Event Gallery

Measurement of v_{μ} flux at ND280

Basic CC event selection at ND280 for ν_{μ} :

- Use the highest momentum, negative charged TPC track
- Select muon from TPC particle ID

Measurement of spectrum and flux of v_{μ} neutrinos at ND280 yields prediction for v_{μ} flux at SK

Super Kamiokande

Super-Kamiokande is a 50,000 ton water Cherenkov detector, with 11,000 photomultiplier tubes, which started observation in 1996 after 5 years of construction

 π^0 Background at Super-K

Important Background:

- Neutral Current process $\nu_{\mu} p \rightarrow \nu_{\mu} p \pi^0$
- Pion decay $\pi^0 \rightarrow \gamma \gamma$
- Photon conversion $\gamma \rightarrow e^+e^-$ with two overlapping electron-like rings
- Build likelihood ratio from two fits

Measured charge

Likelihood ratio vs. π^0 mass

Selection of v_e Appearance Candidates

 \rightarrow Observation of 28 ν_e candidates in 6.4 \cdot 10²⁰ pot

Appearance of v_e

First v_e candidate observed (May 2010)

Successful startup and running \rightarrow Reached $\sim 10\%$ of the final design goal of $8 \cdot 10^{21}$ pot

Development of Data

- Runs 1-2: 1.4 · 10²⁰ pot
 - → Indication of v_e appearance with 2.5 σ (6 candidates)
- Runs 1-3: 3.0 · 10²⁰ pot
 - → Evidence of ν_e appearance with 3.1 σ (11 candidates)
- Runs 1-4: $6.4 \cdot 10^{20}$ pot
 - → Observation of ν_e appearance with 7.3 σ (28 candidates)

Predicted Number of Events

Expected number of signal+background events

Fit to the Data

Likelihood is calculated by comparing the number of observed events (N_{obs}) and the electron momentum & angle $(p-\theta)$ distribution with MC.

Assuming $\delta_{CP} = 0$ and normal hierarchy

 $\Rightarrow \sin^2 2\theta_{13} = 0.140^{+0.038}_{-0.032}$

Interpretation of v_e data

With current $\sin^2 2\theta_{13}$ value: $P(\nu_{\mu} \rightarrow \nu_{e}) \approx 0.051 - 0.014 \sin \delta_{CP}$

Allowed region of $\sin^2 2\theta_{13}$ for each value of δ_{CP}

→ Sensitivity to CP violating phase δ_{CP}:
For normal mass hierarchy (Δm²₃₂ > 0)
0.35 π < δ_{CP} < 0.63 π</p>
for inverted mass hierarchy (Δm²₃₂ < 0)</p>
0.09 π < δ_{CP} < 0.90 π</p>
are excluded at 90% C.L.

Future Prospects

T2K 90% C.L. regions for true $\delta_{CP} = -90^{\circ}$, $\sin^2 2\theta_{13} = 0.1$, normal hierarchy

 \rightarrow Scheduled a pilot run with anti-neutrinos in 2014

Combination with NOvA

Region where evidence for CP violation can be found at the 90% C.L.

Conclusions

- Physics of neutrino oscillations is a very active field
- Several new experiments have started (will start soon):
 - Reactor neutrino experiments DoubleChooz, Reno, DayaBay
 - Neutrino beam experiments T2K, Nova (2014)
- Measurement of θ_{13} has been established
- T2K has observed v_e appearance, hence shows for the first time neutrino flavour transistion directly
- Combination of all neutrino experiments could resolve: CP-violation in leptonic sector (maybe mass hierarchy)