Dark Matter & Dark Energy with the early Run-2 LHC dataset

Priscilla Pani (DESY-Zeuthen) Colloquium 13/03/2019

Summary of the recent ATLAS results arXiv:1903.01400 & personal thoughts

Priscilla Pani (DESY-Zeuthen) Colloquium 13/03/2019

The Dark Matter mystery

- Electrically neutral
- Observed via gravity, massive
- Weakly interacting
- Elementary particles created in the early universe
- **DESY.** | P. Pani | Dark matter & Dark Energy @LHC

The Dark Matter quest

universe scales in meters

The Dark Matter quest

universe scales in meters

The collider ansatz

1. Production mechanism

2. Particles detection and identification

2. Particle identification

The ATLAS detector

Other collider experiments

Particles detection

Particles produced in the collision are detected as analogue signals by the ATLAS sub-detectors, digitised, recorded and reconstructed *offline* as *particle-objects*.

1. Production mechanism

Theoretical framework

"Mediator-based DM simplified models"

Mediator simplified models

- ★ Reduce a complex model to a simple one with DM + mediator
- ★ Few free parameters: mφ, mχ,
 gSM, gDM, Γφ
- ★ Nature of mediator and DM can (also) be systematically classified based on their spin and CP

arXiv:1507.00966 (and ref. therein) + LPCC WG

E_Tmiss+X experimental approach

- Definition of a set of Signal enriched Regions (SR)
- Definition of a set of Control Regions (CR) to derive a data-driven normalisation of MC with transfer factors (TF).
 - / Needs precise theory prediction for shapes <u>arxiv:1705.04664</u>

- Validation of the TF in the Validation Region (VR)
- Unblinding ! check whether an excess is observed (p-value)
- Interpretation in terms of limits on selected models.

Mediator simplified models

- ★ Reduce a complex model to a simple one with DM + mediator
- ★ Few free parameters: mφ, mχ, gSM, gDM, Γφ
- ★ Nature of mediator and DM can (also) be systematically classified based on their spin and CP

- E_T^{miss} + jet
- E_T^{miss} + photon
- E_Tmiss + Z/W
- E_T^{miss} + heavy quarks

arXiv:1507.00966 (and ref. therein) + LPCC WG

Mediator simplified models

- ★ Reduce a complex model to a simple one with DM + mediator
- ★ Few free parameters: mφ, mχ, gSM, gDM, Γφ
- ★ Nature of mediator and DM can (also) be systematically classified based on their spin and CP
- ★ Very rich phenomenology

DESY.

Resonances experimental approach

Mediator simplified models

	SM > 2	Spin 1	Spin 0		
× + s	φ	Short description	Acronym	Symbol	J^P
	gsm Γ _φ SM	Vector/axial-vector mediator	V/AV	$Z_{ m V}'/Z_{ m A}'$	1 [∓]
	σινι / Πφ	Vector baryon-number-charged mediator	VBC	$Z'_{ m B}$	1 ⁻
CO	SM / SM	Vector flavour-changing mediator	VFC	$Z'_{ m VFC}$	1
nan	φ	Scalar/pseudo-scalar mediator	S/PS	ϕ/a	0^{\pm}
Sesoi	gsm Γ _φ	Scalar colour-charged mediator	$\mathrm{SCC}_{q/b/t}$	$\eta_{q/b/t}$	0+
	$SM / m_{\phi} $ SM				

Table 1: arXiv:1903.01400

3. Results for simplified models

Spin-1 mediators

Page 20

Spin-1 mediators

Model's predicted relic density depleted with respect to 0.12 thermal relic

Loss of sensitivity due to mediator width effects

Spin-1 leptophilic case

Spin-0 mediators $\mathcal{L} \sim \sum_{g_f} ig_v \frac{y_f}{\sqrt{2}}$

Figure 16: Diagr

DESY. | P. Pani | Dark matter & Dark Energy @LHC

Page **29**

Figure 16: Diag

DESY. | P. Pani | Dark matter & Dark Energy @LHC

Page **30**

CMS grand combination

Spin-0 with single top

Considerations on the results

- Simplified models are good
 phenomenology proxies.
- ★ Simplified models are simplified models.
- ★ Simplified models are not full and complete theories, which might have more complex topologies.
- ★ All exclusions need to be taken with a grain of salt.

Towards the next level

4. less simplified models: 2HDMs

2HDM-based models

2HDM DM models

• jet-jet	 top-top
 bjet-bjet 	 4 tops

- E_T^{miss} + jet
- E_T^{miss} + photon
- E_T^{miss} + Z/W
- E_T^{miss} + higgs
- E_T^{miss} + heavy quarks

★ Richer phenomenology: Higgs bosons productions and decays, mixing, many

final states.

arxiv:1810.09420 (and ref. therein) + LPCC WG

2HDM-based models

DESY. | P. Pani | Dark matter & Dark Energy @LHC

 J^P

 1^{-}

 0^{-}

2HDM+a

2HDM+a models

- **h** SM higgs
- **A**, **a** CP-odd heavy scalars
- **H** CP-even heavy higgs
- **H**[±] charged Higgs
- χ DM candidate

7 parameters fixed by symmetry and EWK/Higgs measurements.

7 left free:

- <u>masses</u>
- A/a mixing angle <u>sinθ</u>
- Higgses VEV ratio <u>tanβ</u>
 (DM coupling set to 1)
- ★ Richer phenomenology: Higgs bosons productions and decays, mixing, many final states.

arxiv:<u>1810.09420</u> (and ref. therein) + <u>LPCC WG</u>

- Mass reach driven by
- $BR(A \rightarrow aZ)$ and $BR(H \rightarrow ah)$

and mass threshold

- Mass reach driven by
- BR(A⇒aZ) and BR(H⇒ah)
- and mass threshold
- Plotting effect due to missing samples

Mass reach driven by

BR(A⇒aZ) and BR(H⇒ah)

and mass threshold

Plotting effect due to missing samples

Loss of sensitivity due to missing bb-initiated production

Relic density perspective

Understanding the relic prediction

Relic density perspective

Sensitivity forecast

Bonus: Dark Energy

Dark Energy

- ★ Dark Energy = universe accelerated expansion
- ★ Big unanswered question in cosmology and particle physics
 - new particle or modified gravity?
 - constant or dynamic?
 - interacting or not?
 - microscopic nature?

★ no leading candidate theory

Horndeski EFT model

 $\mathcal{L}_{SM} + \sum_{i=1}^{9} \frac{c_i}{M_i^{(d-4)}} O_i^{(d)},$ 1 scalar field ϕ_{DE} coupled to gravity

tops + E_T^{miss}

jet + E_T^{miss}

DESY. | P. Pani | Dark matter & Dark Energy @LHC

Perspectives

Dark Matter is an exciting topic also for colliders!

Quite a few results with full Run-2 dataset already available:

AS	Dilepton Resonance Search NEW	ATL	AS-CONF-2019-001	26-FEB-19	13	139 fb ⁻¹
	Combination h(125)h(125)	ATL	AS-CONF-2018-043	04-SEP-18	13	36.1 fb ⁻¹
4	MET + H search with H to bb	ATL	AS-CONF-2018-039	25-JUL-18	13	80 fb ⁻¹
	Dijet resonance search in events with leptons	ATL	AS-CONF-2018-015	29-MAY-18	13	80 fb ⁻¹
()						
Ž	Searches for dijet resonances		EXO17026	PAS EXO-1	7-026 🕜	78 fb ⁻¹
C	Search for high mass resonances in dielectro	n final state	EXO18006	PAS EXO-1	8-006 🗗	41 fb ⁻¹

Thanks for your attention!

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Dr. Priscilla Pani

ATLAS Group Campus Zeuthen priscilla.pani@desy.de

https://atlas.desy.de/external_grants/priscilla_pani_yig/

Backup

Long lived particles

- macroscopic decay length models
- hidden DM
- weak-scale hidden sectors
- SUSY LLPs

disappearing tracks displaced multi-track vertices in ID + MET, non-prompt jets, leptons photons displaced leptons, lepton emerging jets jets, or lepton pairs stable or meta-stable charged particles trackless jets with low displaced multi-**EMfrac** track vertices in Muon Spectrometer

Well established in SUSY, less interpretation in other DM models. **Not covered further here**

DD Comparison

Details and limitations of the conversion in arXiv:<u>1603.04156</u> DESY. | P. Pani | Dark matter & Dark Energy @LHC

CMS combination Pseudo

DESY. | P. Pani | Dark matter & Dark Energy @LHC

arXiv:1807.06522

Figure 16: Diagr

DESY. | P. Pani | Dark matter & Dark Energy @LHC

Page **60**

The tt2l channel for DM

- \star 2 leptons (e or μ)
- ★ clean signature
 - ★ low statistics due to branching ratio ~4%

Тор	Pair	Decay	Channels
-----	------	-------	----------

CS	on+jets	I+jets	jets	all-ba	dronic	
ūd	electro	muon	tau+	ali-lia	an-nauronic	
Ч <mark>ч</mark>	еτ	μτ	zτ	tau+jets		
' 1	еμ	, Q.Q.	ιτ	muon+jets		
ω	εð	eμ	π	electron+jets		
W decarl	e⁺	μ +	τ+	иd	сs	

The tt2l channel for DM

