
C
old D

ark M
atter by C

ornelia Parker

With:
Silvia Garbari,  Alex Hobbs, David Cole, Walter Dehnen, Mark Wilkinson, George Lake, Lucio Mayer, 

Fabio Governato, Alyson Brooks, Romain Teyssier, Prasenjit Saha, Jonathan Coles

Astrophysical probes of 
dark matter 

Justin Read
ETH Zürich | University of Leicester

Tuesday, April 3, 2012



Background | The standard cosmological model LCDM

WMAP team; e.g. Dunkley et al. 2009

Atoms
4%

Dark matter
22%

Dark energy
74%

Tuesday, April 3, 2012



Background | The standard cosmological model LCDM

WMAP team; e.g. Dunkley et al. 2009

Atoms
4%

Dark matter
22%

Dark energy
74%

Tuesday, April 3, 2012



Probing dark matter models | Two approaches

1. Gravity as a dark matter probe

Tuesday, April 3, 2012



Probing dark matter models | Two approaches

1. Gravity as a dark matter probe

Theory Observation

Compare

Tuesday, April 3, 2012



Probing dark matter models | Two approaches

1. Gravity as a dark matter probe

2. Dark matter as a particle

Theory Observation

Compare

Tuesday, April 3, 2012



Probing dark matter models | Two approaches

1. Gravity as a dark matter probe

2. Dark matter as a particle

Theory Observation

Compare

No. 2, 2006 DIRECT EMPIRICAL PROOF OF EXISTENCE OF DARK MATTER L111

Fig. 1.—Left panel: Color image from the Magellan images of the merging cluster 1E 0657!558, with the white bar indicating 200 kpc at the distance of the
cluster. Right panel: 500 ks Chandra image of the cluster. Shown in green contours in both panels are the weak-lensing k reconstructions, with the outer contour
levels at k p 0.16 and increasing in steps of 0.07. The white contours show the errors on the positions of the k peaks and correspond to 68.3%, 95.5%, and
99.7% confidence levels. The blue plus signs show the locations of the centers used to measure the masses of the plasma clouds in Table 2.

TABLE 2
Component Masses

Component
R.A.
(J2000)

Decl.
(J2000)

MX
(1012 M,)

M∗
(1012 M,) k̄

Main cluster BCG . . . . . . . . 06 58 35.3 !55 56 56.3 5.5 ! 0.6 0.54 ! 0.08 0.36 ! 0.06
Main cluster plasma . . . . . . 06 58 30.2 !55 56 35.9 6.6 ! 0.7 0.23 ! 0.02 0.05 ! 0.06
Subcluster BCG . . . . . . . . . . 06 58 16.0 !55 56 35.1 2.7 ! 0.3 0.58 ! 0.09 0.20 ! 0.05
Subcluster plasma . . . . . . . . 06 58 21.2 !55 56 30.0 5.8 ! 0.6 0.12 ! 0.01 0.02 ! 0.06

Notes.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees,
arcminutes, and arcseconds. All values are calculated by averaging over an aperture of 100 kpc radius
around the given position (marked with blue plus signs for the centers of the plasma clouds in Fig. 1);
measurements for the plasma clouds are the residuals left over after the subtraction of the circularlyk̄

symmetric profiles centered on the BCGs.

Both peaks are offset from their respective BCGs by ∼2 j but are
within 1 j of the luminosity centroid of the respective component’s
galaxies (both BCGs are slightly offset from the center of galaxy
concentrations). Both peaks are also offset at ∼8 j from the center
of mass of their respective plasma clouds. They are skewed toward
the plasma clouds, and this is expected because the plasma con-
tributes about one-tenth of the total cluster mass (Allen et al. 2002;
Vikhlinin et al. 2006) and a higher fraction in nonstandard gravity
models without dark matter. The skew in each k peak toward the
X-ray plasma is significant even after correcting for the overlap-
ping wings of the other peak, and the degree of skewness is
consistent with the X-ray plasma contributing of the ob-"9%14%!8%
served k in the main cluster and in the subcluster (see"12%10%!10%
Table 2). Because of the large size of the reconstruction (34! or
9Mpc on a side), the change in k due to themass-sheet degeneracy
should be less than 1%, and any systematic effects on the centroid
and skewness of the peaks are much smaller than the measured
error bars.
The projected cluster galaxy stellar mass and plasma mass

within 100 kpc apertures centered on the BCGs and X-ray
plasma peaks are shown in Table 2. This aperture size was
chosen because smaller apertures had significantly higher k
measurement errors and because larger apertures resulted in a
significant overlap of the apertures. Plasma masses were com-
puted from a multicomponent three-dimensional cluster model
fit to the Chandra X-ray image (details of this fit will be given
elsewhere). The emission in the Chandra energy band (mostly
optically thin thermal bremsstrahlung) is proportional to the
square of the plasma density, with a small correction for the

plasma temperature (also measured from the X-ray spectra),
which gives the plasma mass. Because of the simplicity of this
cluster’s geometry, especially at the location of the subcluster,
this mass estimate is quite robust (to a 10% accuracy).
Stellar masses are calculated from the I-band luminosity of

all galaxies equal in brightness or fainter than the component
BCG. The luminosities were converted into mass by assuming
(Kauffmann et al. 2003) . The assumed mass-to-lightM/L p 2I
ratio is highly uncertain (and can vary between 0.5 and 3) and
depends on the history of the recent star formation of the gal-
axies in the apertures; however, even in the case of an extreme
deviation, the X-ray plasma is still the dominant baryonic com-
ponent in all of the apertures. The quoted errors are only the
errors on measuring the luminosity and do not include the
uncertainty in the assumed mass-to-light ratio. Because we did
not apply a color selection to the galaxies, these measurements
are an upper limit on the stellar mass since they include con-
tributions from galaxies not affiliated with the cluster.
The mean k at each BCG was calculated by fitting a two-

peak model, each peak circularly symmetric, to the reconstruc-
tion and subtracting the contribution of the other peak at that
distance. The mean k for each plasma cloud is the excess k
after subtracting off the values for both peaks.
The total of the two visible mass components of the sub-

cluster is greater by a factor of 2 at the plasma peak than at
the BCG; however, the center of the lensing mass is located
near the BCG. The difference in the baryonic mass between
these two positions would be even greater if we excluded the
contribution of the nonpeaked plasma component between the

200kpc

Clowe et al. 2006
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(for an assumed DM fluid) 
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we learn? 
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Feedback

2 R. Teyssier et al.

Figure 5. Star formation history in the runs with (left plot) and without (right plot) feedback.

Figure 1. Evolution of the dark matter density profile over the
2 Gyr of evolution for the control run with dark matter only. We
see that the dark matter halo is perfectly stable over the whole
simulation.

Figure 2. Evolution of the dark matter density profile over the
2 Gyr of evolution for the control run with cooling, star forma-
tion but no feedback. The dark matter halo has been strongly
adiabatically contracted.

c© 0000 RAS, MNRAS 000, 000–000
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4 R. Teyssier et al.

Figure 3. Evolution of the dark matter density profile over the 2
Gyr of evolution for the control run with cooling, star formation
and stellar feedback. We see the formation of a large core. We
also show for comparison the analytical fit based on a pseudo-
isothermal profile (see text for details)

Figure 4. Time evolution of the slope of the dark matter density
profile measured between 200 and 800 pc.

Figure 6. Time evolution of the total enclosed gas mass within
spheres of radius 200 (blue), 400 (green), 800 (red) and 1600
(black) pc.

c© 0000 RAS, MNRAS 000, 000–000
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Stars
Gas

 3 Milky Way mass gals. | Governato et al. 2007/2008
concordance LCDM

1.4x106 dark matter; 3x106 stars; 0.73x106 gas
force softening: 0.3 kpc

DM particle mass: 7.6x105 Msun
star particle mass: 0.23x105 Msun
gas particles mass: 0.34x105 Msun Read et al., MNRAS 2009; arXiv:0902.0009
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• Boosts the direct detection signal at low recoil energy by a 
factor ~3 in the 5-20keV range.

• Shifts the phase of the annual modulation signal allowing the 
WIMP mass to be determined.

• Significantly boosts WIMP capture in the Sun and Earth by 
factors of ~10 and ~1000, respectively.

ρdd = 0.25-1.5ρshm; vlag = 0-150km/s; σ = 50-90km/s

Read et al., 2008/9; Bruch et al. 2009a/b.
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Viel et al. 2008

2. Gravity as a DM probe | Quasar absorption 

proaches [23]). We parametrize the effect of UV fluctua-
tions on the flux power with a multiplicative factor fUV
constrained to be in the range !0; 1". For the SDSS data we
have used a total of 28 parameters: 15 parameters used for
the HIRES spectra (without fUV and the 2 parameters
describing the effective optical depth evolution at z # 5)
plus 13 noise-related parameters: 1 parameter which ac-
counts for the contribution of DLAs and 12 parameters
modeling the resolution and the noise properties of the
SDSS data set (see [24]). We do not address the role of
different reionization scenarios on the flux power. To do
this self-consistently would require radiative transfer simu-
lations beyond present numerical capabilities, and the ef-
fect of the reionization history should be subdominant and
degenerate with the thermal state of the gas. In computing
the likelihood a crucial input is the covariance matrix of the
two data sets. The covariance matrix of the SDSS flux
power is provided by the authors of [14]. We found the
covariance matrix of our HIRES data set to be rather noisy
(especially at high redshift), preventing a reliable inver-
sion. To overcome this problem we use the suggestion of
[25]. We regularize the observed covariance matrix using
the correlation coefficients as estimated from the simu-
lated spectra, covd$i; j% # rs$i; j%

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
covd$i; i%covd$j; j%

p
with

rs$i; j% # covs$i; j%=
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
covs$i; i%covs$j; j%

p
, where covs and

covd are the covariance matrices of the observed and
simulated spectra, respectively. Note that this procedure
implicitly assumes that observed and simulated data have
similar covariance properties. We have applied moderate
priors to the thermal history to mimic the observed thermal
evolution as in [16] and a priori on the Hubble constant
(72& 8 km=s=Mpc), but note that the final results for the
mass constraint are not affected by these priors.

Results.—In Fig. 1 we show the best fit model for the
HIRES data set (continuous curve, mWDM # 8 keV) and a
model with a smaller mass for the thermal WDM particle
(dashed line, mWDM # 2:5 keV). The constraining power
of the small scales at high redshift is immediately evident.
The !2 value of the best fit model is '40 for 36 d.o.f., and
with a probability of 16% this is a reasonable fit. As noted
in Ref. [7] at high redshifts, the mean flux level is lower
and the flux power spectrum is closer to the linear predic-
tion making the flux power data points very sensitive to the
free-streaming effect of WDM. We confirm that there are
no strong degeneracies between mWDM and the other pa-
rameters, demonstrating that the effect of a WDM particle
on the Lyman-" flux power is unique, and that the other
cosmological and astrophysical parameters considered
here cannot mimic its effect.

The 2# lower limits for the mass of the warm dark
matter particle are 1.2 keV, 2.3 keV, and 4 keV, for the
HIRES, SDSS, and SDSS( HIRES data sets, respectively.
The corresponding limits for DW sterile neutrino are 5.6,
13, and 28 keV (see [6] for how the masses are related for
the two cases). The !2 of the best fit model of the joint

analysis '198 for 170 d.o.f. which should occur in 7% of
the cases. The sample of HIRES spectra improves our
previous constraint from high-resolution spectra obtained
from the LUQAS sample by a factor of 2. Dropping the
highest redshift bin (z # 5:5) weakens the limit to 0.8 keV
(3.3 keV) for the mass of a thermal (sterile) neutrino. The
SDSS data alone is still more constraining than the HIRES
data alone, due to the smaller statistical errors of the SDSS
flux power spectrum and the finer coverage of a large
redshift range which helps to break some of the degener-
acies between astrophysical and cosmological parameters.
Combining the SDSS data and the HIRES results in an
overall improvement of a factor of '2 and gives the
strongest limits on the mass of WDM particles from
Lyman-" forest data to date. In Table I we summarize
the constraints obtained for the most relevant astrophysical
and cosmological parameters (1#) for our analysis of the

0.01
 k(s/km)

0.1

1.0

 ∆
2 F

z=2.5

z=3.5

z=4.5

z=5.5

FIG. 1 (color online). Flux power spectrum of the HIRES data
set at different redshifts and best fit models (solid curve) with
mWDM # 8 keV and a model with mWDM # 2:5 keV (dashed
curve).

TABLE I. Marginalized estimates (1# errors).

Parameter HIRES( SDSS HIRES

n 0:97& 0:03 0:97& 0:05
#8 0:96& 0:07 1:0& 0:2
!m 0:25& 0:03 0:28& 0:09

$Aeff$z # 3% 0:35& 0:01 0:33& 0:03

$Seff$z # 3% 3:17& 0:07 3:02& 0:37

%A$z # 3% 1:44& 0:12 1:54& 0:33
$Aeff$z # 5% 1:53& 0:09 1:54& 0:19

$Seff$z # 5% 4:77& 0:44 4:92& 0:5

T0$z # 3%$104% K 2:23& 0:30 1:54& 0:34
fUV 0:65& 0:25 0:58& 0:28

1=mWDM $keV)1% 0:09& 0:07 0:44& 0:22

PRL 100, 041304 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
1 FEBRUARY 2008

041304-3

8keV

2.5keV
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constrained to be in the range !0; 1". For the SDSS data we
have used a total of 28 parameters: 15 parameters used for
the HIRES spectra (without fUV and the 2 parameters
describing the effective optical depth evolution at z # 5)
plus 13 noise-related parameters: 1 parameter which ac-
counts for the contribution of DLAs and 12 parameters
modeling the resolution and the noise properties of the
SDSS data set (see [24]). We do not address the role of
different reionization scenarios on the flux power. To do
this self-consistently would require radiative transfer simu-
lations beyond present numerical capabilities, and the ef-
fect of the reionization history should be subdominant and
degenerate with the thermal state of the gas. In computing
the likelihood a crucial input is the covariance matrix of the
two data sets. The covariance matrix of the SDSS flux
power is provided by the authors of [14]. We found the
covariance matrix of our HIRES data set to be rather noisy
(especially at high redshift), preventing a reliable inver-
sion. To overcome this problem we use the suggestion of
[25]. We regularize the observed covariance matrix using
the correlation coefficients as estimated from the simu-
lated spectra, covd$i; j% # rs$i; j%

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
covd$i; i%covd$j; j%

p
with

rs$i; j% # covs$i; j%=
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
covs$i; i%covs$j; j%

p
, where covs and

covd are the covariance matrices of the observed and
simulated spectra, respectively. Note that this procedure
implicitly assumes that observed and simulated data have
similar covariance properties. We have applied moderate
priors to the thermal history to mimic the observed thermal
evolution as in [16] and a priori on the Hubble constant
(72& 8 km=s=Mpc), but note that the final results for the
mass constraint are not affected by these priors.

Results.—In Fig. 1 we show the best fit model for the
HIRES data set (continuous curve, mWDM # 8 keV) and a
model with a smaller mass for the thermal WDM particle
(dashed line, mWDM # 2:5 keV). The constraining power
of the small scales at high redshift is immediately evident.
The !2 value of the best fit model is '40 for 36 d.o.f., and
with a probability of 16% this is a reasonable fit. As noted
in Ref. [7] at high redshifts, the mean flux level is lower
and the flux power spectrum is closer to the linear predic-
tion making the flux power data points very sensitive to the
free-streaming effect of WDM. We confirm that there are
no strong degeneracies between mWDM and the other pa-
rameters, demonstrating that the effect of a WDM particle
on the Lyman-" flux power is unique, and that the other
cosmological and astrophysical parameters considered
here cannot mimic its effect.

The 2# lower limits for the mass of the warm dark
matter particle are 1.2 keV, 2.3 keV, and 4 keV, for the
HIRES, SDSS, and SDSS( HIRES data sets, respectively.
The corresponding limits for DW sterile neutrino are 5.6,
13, and 28 keV (see [6] for how the masses are related for
the two cases). The !2 of the best fit model of the joint

analysis '198 for 170 d.o.f. which should occur in 7% of
the cases. The sample of HIRES spectra improves our
previous constraint from high-resolution spectra obtained
from the LUQAS sample by a factor of 2. Dropping the
highest redshift bin (z # 5:5) weakens the limit to 0.8 keV
(3.3 keV) for the mass of a thermal (sterile) neutrino. The
SDSS data alone is still more constraining than the HIRES
data alone, due to the smaller statistical errors of the SDSS
flux power spectrum and the finer coverage of a large
redshift range which helps to break some of the degener-
acies between astrophysical and cosmological parameters.
Combining the SDSS data and the HIRES results in an
overall improvement of a factor of '2 and gives the
strongest limits on the mass of WDM particles from
Lyman-" forest data to date. In Table I we summarize
the constraints obtained for the most relevant astrophysical
and cosmological parameters (1#) for our analysis of the
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FIG. 1 (color online). Flux power spectrum of the HIRES data
set at different redshifts and best fit models (solid curve) with
mWDM # 8 keV and a model with mWDM # 2:5 keV (dashed
curve).

TABLE I. Marginalized estimates (1# errors).

Parameter HIRES( SDSS HIRES

n 0:97& 0:03 0:97& 0:05
#8 0:96& 0:07 1:0& 0:2
!m 0:25& 0:03 0:28& 0:09

$Aeff$z # 3% 0:35& 0:01 0:33& 0:03

$Seff$z # 3% 3:17& 0:07 3:02& 0:37

%A$z # 3% 1:44& 0:12 1:54& 0:33
$Aeff$z # 5% 1:53& 0:09 1:54& 0:19

$Seff$z # 5% 4:77& 0:44 4:92& 0:5

T0$z # 3%$104% K 2:23& 0:30 1:54& 0:34
fUV 0:65& 0:25 0:58& 0:28

1=mWDM $keV)1% 0:09& 0:07 0:44& 0:22
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Fig. 1.—Line-of-sight velocity dispersion profiles (with 1 j error bars) for
Draco and UMi. See text for a detailed discussion.

Fig. 2.—Azimuthally averaged surface brightness profile of Draco. The solid
and dashed curves show, respectively, the best-fitting Plummer profile and a
King (1962) profile fit to the data within 25!.

for the effects of variable extinction using the reddening map
of Schlegel et al. (1998). The limiting magnitude of our ob-
servations is about 2 mag fainter than that of the Sloan Digital
Sky Survey data used by Odenkirchen et al. (2001) to determine
the light profile of Draco and permits more robust background
subtraction in the outer regions. In contrast to the Odenkirchen
et al. photometry, the profile in Figure 2 shows a clear break
at ∼25!. We note that a similar result has been recently claimed
by Kuhn et al. (2004). The light profile of UMi displays a
similar feature (e.g., Irwin & Hatzidimitriou 1995; Palma et
al. 2003; Martı́nez-Delgado et al. 2001) at about 34!. This
militates against the idea that the dSph’s currently possess ex-
tended halos (e.g. Stoehr et al. 2002).
Using simulations, Johnston et al. (1999, hereafter J99) sug-

gested that stellar systems in the Milky Way halo will show
breaks in their surface density profiles, beyond which unbound
or extratidal stars begin to predominate over bound stars. Their
results are superficially similar to our photometric data on Draco
and UMi, but there are some important differences. First, J99
found an enhanced velocity dispersion due to the extratidal stars,
and second, they argued for a slow falloff (proportional to R!1)
in surface brightness beyond the break. Johnston et al. (2002)
considered noncircular dSph orbits and found a wide variety of
profile shapes and outer falloff rates, with milder breaks and
steeper falloffs occurring around the apocenters ofmore eccentric
orbits. They also found that the ratio of the break radius to the
actual tidal radius varies with orbital phase and eccentricity and
is significantly below unity near apocenter.
Also shown in Figure 2 are the best-fitting King (1962) and

Plummer profiles for the surface brightness profile of Draco. The
former fits the inner parts well but requires an additional extra-
tidal population at to mimic the break. The latter provides′R 1 25
a reasonable description of the entire profile. In the rest of this

Letter, we use these models to try to understand the surprising
data on the velocity dispersions of Draco and UMi.

3. MODELING

3.1. Equilibrium Models

Using the simplifying assumptions of virial equilibrium and
spherical symmetry, the observable line-of-sight velocity dis-
persion jP as a function of projected radius R is

"
2 GM(r)

2j (R) p dr n(r)f (r)P !
I(R) rR

r
2w R

# dw 1! b(w) , (1)! [ ]22 2" wf (w) w ! RR

where is the surface brightness and is the stellarI(R) n(r)
luminosity density. This expression also involves the mass
profile of the dark matter halo and the stellar velocityM(r)
anisotropy parameter . The function

2 2b(r) p 1! Av S/Av Sv r

is the integrating factor for the spherical Jeans equation,f (r)
namely, .

r
exp [! dr 2b(r)/r]!0

Under the assumption of isotropy ( ), equation (1) be-b p 0
comes an Abel integral equation, which can be inverted to give
the mass profile of the dark matter halo (Binney & Tre-M(r)
maine 1987, § 4.2). Using an analytic fit to Draco’s projected
dispersion together with either a Plummer or a King profile in
the Abel inversion, we find that the cumulative mass M(r)
becomes unphysical ( ) beyond . An isotropic′dM/dr ! 0 r ∼ 30
model with a Plummer or King profile cannot reproduce the
observed sharp decline in jP for Draco. Analogous fits to the
dispersion profile and luminosity density of UMi lead to a
similar conclusion for its mass profile at the radius where its
velocity dispersion falls.

3.1.1. A Sharp Change in the Velocity Anisotropy?

One possibility is that the velocity anisotropy changes
abruptly from isotropy in the inner parts to strong(b p 0)
radial anisotropy ( ) in the outer parts. This could causeb r 1
a sharp drop in the projected dispersion, even if the stellar
density and dark matter profile vary slowly and smoothly. We
have investigated this option using equation (1) together with
an anisotropy parameter , which tends to an n nb(r) p r /(r # r )a
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Fig. 1.—Line-of-sight velocity dispersion profiles (with 1 j error bars) for
Draco and UMi. See text for a detailed discussion.

Fig. 2.—Azimuthally averaged surface brightness profile of Draco. The solid
and dashed curves show, respectively, the best-fitting Plummer profile and a
King (1962) profile fit to the data within 25!.

for the effects of variable extinction using the reddening map
of Schlegel et al. (1998). The limiting magnitude of our ob-
servations is about 2 mag fainter than that of the Sloan Digital
Sky Survey data used by Odenkirchen et al. (2001) to determine
the light profile of Draco and permits more robust background
subtraction in the outer regions. In contrast to the Odenkirchen
et al. photometry, the profile in Figure 2 shows a clear break
at ∼25!. We note that a similar result has been recently claimed
by Kuhn et al. (2004). The light profile of UMi displays a
similar feature (e.g., Irwin & Hatzidimitriou 1995; Palma et
al. 2003; Martı́nez-Delgado et al. 2001) at about 34!. This
militates against the idea that the dSph’s currently possess ex-
tended halos (e.g. Stoehr et al. 2002).
Using simulations, Johnston et al. (1999, hereafter J99) sug-

gested that stellar systems in the Milky Way halo will show
breaks in their surface density profiles, beyond which unbound
or extratidal stars begin to predominate over bound stars. Their
results are superficially similar to our photometric data on Draco
and UMi, but there are some important differences. First, J99
found an enhanced velocity dispersion due to the extratidal stars,
and second, they argued for a slow falloff (proportional to R!1)
in surface brightness beyond the break. Johnston et al. (2002)
considered noncircular dSph orbits and found a wide variety of
profile shapes and outer falloff rates, with milder breaks and
steeper falloffs occurring around the apocenters ofmore eccentric
orbits. They also found that the ratio of the break radius to the
actual tidal radius varies with orbital phase and eccentricity and
is significantly below unity near apocenter.
Also shown in Figure 2 are the best-fitting King (1962) and

Plummer profiles for the surface brightness profile of Draco. The
former fits the inner parts well but requires an additional extra-
tidal population at to mimic the break. The latter provides′R 1 25
a reasonable description of the entire profile. In the rest of this

Letter, we use these models to try to understand the surprising
data on the velocity dispersions of Draco and UMi.

3. MODELING

3.1. Equilibrium Models

Using the simplifying assumptions of virial equilibrium and
spherical symmetry, the observable line-of-sight velocity dis-
persion jP as a function of projected radius R is

"
2 GM(r)

2j (R) p dr n(r)f (r)P !
I(R) rR

r
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where is the surface brightness and is the stellarI(R) n(r)
luminosity density. This expression also involves the mass
profile of the dark matter halo and the stellar velocityM(r)
anisotropy parameter . The function

2 2b(r) p 1! Av S/Av Sv r

is the integrating factor for the spherical Jeans equation,f (r)
namely, .

r
exp [! dr 2b(r)/r]!0

Under the assumption of isotropy ( ), equation (1) be-b p 0
comes an Abel integral equation, which can be inverted to give
the mass profile of the dark matter halo (Binney & Tre-M(r)
maine 1987, § 4.2). Using an analytic fit to Draco’s projected
dispersion together with either a Plummer or a King profile in
the Abel inversion, we find that the cumulative mass M(r)
becomes unphysical ( ) beyond . An isotropic′dM/dr ! 0 r ∼ 30
model with a Plummer or King profile cannot reproduce the
observed sharp decline in jP for Draco. Analogous fits to the
dispersion profile and luminosity density of UMi lead to a
similar conclusion for its mass profile at the radius where its
velocity dispersion falls.

3.1.1. A Sharp Change in the Velocity Anisotropy?

One possibility is that the velocity anisotropy changes
abruptly from isotropy in the inner parts to strong(b p 0)
radial anisotropy ( ) in the outer parts. This could causeb r 1
a sharp drop in the projected dispersion, even if the stellar
density and dark matter profile vary slowly and smoothly. We
have investigated this option using equation (1) together with
an anisotropy parameter , which tends to an n nb(r) p r /(r # r )a
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Fig. 1.—Line-of-sight velocity dispersion profiles (with 1 j error bars) for
Draco and UMi. See text for a detailed discussion.

Fig. 2.—Azimuthally averaged surface brightness profile of Draco. The solid
and dashed curves show, respectively, the best-fitting Plummer profile and a
King (1962) profile fit to the data within 25!.

for the effects of variable extinction using the reddening map
of Schlegel et al. (1998). The limiting magnitude of our ob-
servations is about 2 mag fainter than that of the Sloan Digital
Sky Survey data used by Odenkirchen et al. (2001) to determine
the light profile of Draco and permits more robust background
subtraction in the outer regions. In contrast to the Odenkirchen
et al. photometry, the profile in Figure 2 shows a clear break
at ∼25!. We note that a similar result has been recently claimed
by Kuhn et al. (2004). The light profile of UMi displays a
similar feature (e.g., Irwin & Hatzidimitriou 1995; Palma et
al. 2003; Martı́nez-Delgado et al. 2001) at about 34!. This
militates against the idea that the dSph’s currently possess ex-
tended halos (e.g. Stoehr et al. 2002).
Using simulations, Johnston et al. (1999, hereafter J99) sug-

gested that stellar systems in the Milky Way halo will show
breaks in their surface density profiles, beyond which unbound
or extratidal stars begin to predominate over bound stars. Their
results are superficially similar to our photometric data on Draco
and UMi, but there are some important differences. First, J99
found an enhanced velocity dispersion due to the extratidal stars,
and second, they argued for a slow falloff (proportional to R!1)
in surface brightness beyond the break. Johnston et al. (2002)
considered noncircular dSph orbits and found a wide variety of
profile shapes and outer falloff rates, with milder breaks and
steeper falloffs occurring around the apocenters ofmore eccentric
orbits. They also found that the ratio of the break radius to the
actual tidal radius varies with orbital phase and eccentricity and
is significantly below unity near apocenter.
Also shown in Figure 2 are the best-fitting King (1962) and

Plummer profiles for the surface brightness profile of Draco. The
former fits the inner parts well but requires an additional extra-
tidal population at to mimic the break. The latter provides′R 1 25
a reasonable description of the entire profile. In the rest of this

Letter, we use these models to try to understand the surprising
data on the velocity dispersions of Draco and UMi.

3. MODELING

3.1. Equilibrium Models

Using the simplifying assumptions of virial equilibrium and
spherical symmetry, the observable line-of-sight velocity dis-
persion jP as a function of projected radius R is
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2 GM(r)

2j (R) p dr n(r)f (r)P !
I(R) rR
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where is the surface brightness and is the stellarI(R) n(r)
luminosity density. This expression also involves the mass
profile of the dark matter halo and the stellar velocityM(r)
anisotropy parameter . The function

2 2b(r) p 1! Av S/Av Sv r

is the integrating factor for the spherical Jeans equation,f (r)
namely, .

r
exp [! dr 2b(r)/r]!0

Under the assumption of isotropy ( ), equation (1) be-b p 0
comes an Abel integral equation, which can be inverted to give
the mass profile of the dark matter halo (Binney & Tre-M(r)
maine 1987, § 4.2). Using an analytic fit to Draco’s projected
dispersion together with either a Plummer or a King profile in
the Abel inversion, we find that the cumulative mass M(r)
becomes unphysical ( ) beyond . An isotropic′dM/dr ! 0 r ∼ 30
model with a Plummer or King profile cannot reproduce the
observed sharp decline in jP for Draco. Analogous fits to the
dispersion profile and luminosity density of UMi lead to a
similar conclusion for its mass profile at the radius where its
velocity dispersion falls.

3.1.1. A Sharp Change in the Velocity Anisotropy?

One possibility is that the velocity anisotropy changes
abruptly from isotropy in the inner parts to strong(b p 0)
radial anisotropy ( ) in the outer parts. This could causeb r 1
a sharp drop in the projected dispersion, even if the stellar
density and dark matter profile vary slowly and smoothly. We
have investigated this option using equation (1) together with
an anisotropy parameter , which tends to an n nb(r) p r /(r # r )a
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Fig. 1.—Line-of-sight velocity dispersion profiles (with 1 j error bars) for
Draco and UMi. See text for a detailed discussion.

Fig. 2.—Azimuthally averaged surface brightness profile of Draco. The solid
and dashed curves show, respectively, the best-fitting Plummer profile and a
King (1962) profile fit to the data within 25!.

for the effects of variable extinction using the reddening map
of Schlegel et al. (1998). The limiting magnitude of our ob-
servations is about 2 mag fainter than that of the Sloan Digital
Sky Survey data used by Odenkirchen et al. (2001) to determine
the light profile of Draco and permits more robust background
subtraction in the outer regions. In contrast to the Odenkirchen
et al. photometry, the profile in Figure 2 shows a clear break
at ∼25!. We note that a similar result has been recently claimed
by Kuhn et al. (2004). The light profile of UMi displays a
similar feature (e.g., Irwin & Hatzidimitriou 1995; Palma et
al. 2003; Martı́nez-Delgado et al. 2001) at about 34!. This
militates against the idea that the dSph’s currently possess ex-
tended halos (e.g. Stoehr et al. 2002).
Using simulations, Johnston et al. (1999, hereafter J99) sug-

gested that stellar systems in the Milky Way halo will show
breaks in their surface density profiles, beyond which unbound
or extratidal stars begin to predominate over bound stars. Their
results are superficially similar to our photometric data on Draco
and UMi, but there are some important differences. First, J99
found an enhanced velocity dispersion due to the extratidal stars,
and second, they argued for a slow falloff (proportional to R!1)
in surface brightness beyond the break. Johnston et al. (2002)
considered noncircular dSph orbits and found a wide variety of
profile shapes and outer falloff rates, with milder breaks and
steeper falloffs occurring around the apocenters ofmore eccentric
orbits. They also found that the ratio of the break radius to the
actual tidal radius varies with orbital phase and eccentricity and
is significantly below unity near apocenter.
Also shown in Figure 2 are the best-fitting King (1962) and

Plummer profiles for the surface brightness profile of Draco. The
former fits the inner parts well but requires an additional extra-
tidal population at to mimic the break. The latter provides′R 1 25
a reasonable description of the entire profile. In the rest of this

Letter, we use these models to try to understand the surprising
data on the velocity dispersions of Draco and UMi.

3. MODELING

3.1. Equilibrium Models

Using the simplifying assumptions of virial equilibrium and
spherical symmetry, the observable line-of-sight velocity dis-
persion jP as a function of projected radius R is

"
2 GM(r)

2j (R) p dr n(r)f (r)P !
I(R) rR

r
2w R

# dw 1! b(w) , (1)! [ ]22 2" wf (w) w ! RR

where is the surface brightness and is the stellarI(R) n(r)
luminosity density. This expression also involves the mass
profile of the dark matter halo and the stellar velocityM(r)
anisotropy parameter . The function

2 2b(r) p 1! Av S/Av Sv r

is the integrating factor for the spherical Jeans equation,f (r)
namely, .

r
exp [! dr 2b(r)/r]!0

Under the assumption of isotropy ( ), equation (1) be-b p 0
comes an Abel integral equation, which can be inverted to give
the mass profile of the dark matter halo (Binney & Tre-M(r)
maine 1987, § 4.2). Using an analytic fit to Draco’s projected
dispersion together with either a Plummer or a King profile in
the Abel inversion, we find that the cumulative mass M(r)
becomes unphysical ( ) beyond . An isotropic′dM/dr ! 0 r ∼ 30
model with a Plummer or King profile cannot reproduce the
observed sharp decline in jP for Draco. Analogous fits to the
dispersion profile and luminosity density of UMi lead to a
similar conclusion for its mass profile at the radius where its
velocity dispersion falls.

3.1.1. A Sharp Change in the Velocity Anisotropy?

One possibility is that the velocity anisotropy changes
abruptly from isotropy in the inner parts to strong(b p 0)
radial anisotropy ( ) in the outer parts. This could causeb r 1
a sharp drop in the projected dispersion, even if the stellar
density and dark matter profile vary slowly and smoothly. We
have investigated this option using equation (1) together with
an anisotropy parameter , which tends to an n nb(r) p r /(r # r )a
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lution of their simulated dSphs leave the cuspy central struc-
ture of dSph CDM halos intact. Taking these results at face
value, it seems then that the Local Group dSphs represent the
most pristine dark matter halos to which we have observa-
tional access. Measurements of the slopes (i.e. ‘cusp’ vs.
‘core’) of dSph mass profiles can therefore provide a uniquely
direct test of structure formation within the CDM paradigm.
Pressure-supported stellar components provide the only

available kinematic tracers in dSphs, but thus far stellar kine-
matic data have figured only indirectly in core/cusp investi-
gations. For example, Kleyna et al. (2003) detect kinemat-
ically cold stellar substructure in the Ursa Minor dSph and
argue that its survival against tidal disruption is more likely
in a cored as opposed to a cusped host potential. Sánchez-
Salcedo et al. (2006) and Goerdt et al. (2006) argue that the
wide spatial distribution of the five globular clusters in the
Fornax dSph again favors a cored host potential, as dynam-
ical friction within a centrally cusped potential would have
caused the clusters to sink to Fornax’s center in less than a
Hubble time (unless those clusters had much wider orbits ini-
tially). On the other hand, Peñarrubia et al. (2010) argue that
the mass-size relation traced by the Milky Way’s dSph popu-
lation favors evolutionary scenarios that invoke cusped as op-
posed to cored halos4.
In contrast to the studies mentioned above, here we devise

a method for measuring the slopes of dSph mass profiles di-
rectly from stellar spectroscopic data. We proceed by com-
bining two recent results. First, for a spherically symmet-
ric dSph in dynamic equilibrium, the product of halflight ra-
dius and (squared) velocity dispersion provides an estimate
of the mass enclosed within the halflight radius (Walker et al.
2009a;Wolf et al. 2010). Second, some dSphs contain at least
two chemo-dynamically distinct stellar populations (Tolstoy
et al. 2004; Battaglia et al. 2006; Battaglia et al. 2011), each
presumably tracing the same dark matter potential. Here we
formulate a mathematical model that uses measurements of
stellar positions, velocities and spectral indices to distinguish
two dSph stellar subcomponents and to estimate their individ-
ual halflight radii and velocity dispersions. For a dSph with
two detected stellar subcomponents, we obtain estimates of
masses enclosed at two discrete points in the same mass pro-
file. Two points define a slope.

1.1. Stellar Kinematics with Two Numbers
In principle the Collisionless Boltzmann Equation (CBE,

Equation 4.6 of Binney & Tremaine 2008) relates the 6-
dimensional phase-space distribution function, f (!r,!v), of a
tracer component to the underlying gravitational potential,
thereby governing the joint distribution of stellar positions and
velocities for a pressure-supported galaxy in dynamic equi-
librium. In practice the available dSph data provide infor-
mation in only three dimensions—two spatial dimensions or-
thogonal to the line of sight and one velocity dimension along
the line of sight. Implementation of the CBE with dSph data
then requires transformations between 6D and 3D (or 2D with
spherical symmetry) phase-space distributions (e.g., Wilkin-
4 This result is particularly sensitive to the masses inferred for the Milky

Way’s ‘ultrafaint’ satellites. McConnachie & Côté (2010) have recently
shown that the small velocity dispersions observed for many of these sys-
tems can receive significant contributions from binary orbital motions, a con-
clusion supported by the recent direct detection of resolved binary motions
in the Boötes I satellite (Koposov et al. 2011). Downward revision of the
intrinsic velocity dispersions (and hence masses) of several of the smallest
ultrafaint dSphs could lead to a size/mass relation for Milky Way satellites
that favors cored over cusped dark matter halos (see Figure 11 of Peñarrubia
et al. 2010).

FIG. 1.— Top: Projected stellar velocity dispersion profile for the Fornax dSph,
adopted from Walker et al. (2009a). Overlaid are spherical Jeans models that assume
either a cored dark matter halo (red), an NFW dark matter halo (blue), or if one lets
the shape of the dark matter halo vary freely, velocity distributions that are either
isotropic (black), radially anisotropic (cyan), or tangentially anisotropic (green). Bot-
tom: Enclosed-mass profiles corresponding to the same models. The vertical dotted
line indicates Fornax’s projected halflight radius (Irwin & Hatzidimitriou 1995), where
the simple estimator specified by Equation 2 gives M(rh) = [5.3± 0.9]× 107M!, in
agreement with the value common to the various successful Jeans models.
son et al. 2002), often at significant computational expense.
Many dSph kinematic studies (e.g., Wilkinson et al. 2004;

Strigari et al. 2006, 2008; Koch et al. 2007; !okas 2009;
Walker et al. 2009a; Battaglia et al. 2008a, 2011) rely in-
stead on the Jeans equations, obtained by integrating the CBE
over velocity space. The spherically symmetric Jeans equa-
tion specifies the mass profile M(r)—including the contribu-
tion from any dark matter component—in terms of the stellar
density profile, ν(r), and stellar velocity dispersion profile,
v̄2(r) (Binney & Tremaine 2008):
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where v̄2r and v̄2θ are components of the velocity dispersion in
radial and tangential directions, respectively. Confinement of
dSph stellar velocity data to the component along the line of
sight leaves the velocity anisotropy—usually quantified by the
ratio βani(r)≡ 1! v̄2θ(r)/v̄2r (r)—poorly constrained, ultimately
precluding model-independent constraints on the mass profile
in analyses based on Equation 1. For example, the top panel
of Figure 1 demonstrates that the projected velocity dispersion
profile observed for the Fornax dSph can be fit equally well by
Jeans models that assume either cored or NFW-cusped dark
matter halos, or if the shape of the dark matter halo is unspec-
ified, by models that assume the velocity distribution is either
isotropic, radially anisotropic or tangentially anisotropic.
The bottom panel of Figure 1 demonstrates that despite

this well-known degeneracy between mass and anisotropy,
the various successful Jeans models tend to have the same
mass enclosed within approximately the dSph halflight radius
(e.g., Strigari et al. 2007; Peñarrubia et al. 2008a;Walker et al.
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lution of their simulated dSphs leave the cuspy central struc-
ture of dSph CDM halos intact. Taking these results at face
value, it seems then that the Local Group dSphs represent the
most pristine dark matter halos to which we have observa-
tional access. Measurements of the slopes (i.e. ‘cusp’ vs.
‘core’) of dSph mass profiles can therefore provide a uniquely
direct test of structure formation within the CDM paradigm.
Pressure-supported stellar components provide the only

available kinematic tracers in dSphs, but thus far stellar kine-
matic data have figured only indirectly in core/cusp investi-
gations. For example, Kleyna et al. (2003) detect kinemat-
ically cold stellar substructure in the Ursa Minor dSph and
argue that its survival against tidal disruption is more likely
in a cored as opposed to a cusped host potential. Sánchez-
Salcedo et al. (2006) and Goerdt et al. (2006) argue that the
wide spatial distribution of the five globular clusters in the
Fornax dSph again favors a cored host potential, as dynam-
ical friction within a centrally cusped potential would have
caused the clusters to sink to Fornax’s center in less than a
Hubble time (unless those clusters had much wider orbits ini-
tially). On the other hand, Peñarrubia et al. (2010) argue that
the mass-size relation traced by the Milky Way’s dSph popu-
lation favors evolutionary scenarios that invoke cusped as op-
posed to cored halos4.
In contrast to the studies mentioned above, here we devise

a method for measuring the slopes of dSph mass profiles di-
rectly from stellar spectroscopic data. We proceed by com-
bining two recent results. First, for a spherically symmet-
ric dSph in dynamic equilibrium, the product of halflight ra-
dius and (squared) velocity dispersion provides an estimate
of the mass enclosed within the halflight radius (Walker et al.
2009a;Wolf et al. 2010). Second, some dSphs contain at least
two chemo-dynamically distinct stellar populations (Tolstoy
et al. 2004; Battaglia et al. 2006; Battaglia et al. 2011), each
presumably tracing the same dark matter potential. Here we
formulate a mathematical model that uses measurements of
stellar positions, velocities and spectral indices to distinguish
two dSph stellar subcomponents and to estimate their individ-
ual halflight radii and velocity dispersions. For a dSph with
two detected stellar subcomponents, we obtain estimates of
masses enclosed at two discrete points in the same mass pro-
file. Two points define a slope.

1.1. Stellar Kinematics with Two Numbers
In principle the Collisionless Boltzmann Equation (CBE,

Equation 4.6 of Binney & Tremaine 2008) relates the 6-
dimensional phase-space distribution function, f (!r,!v), of a
tracer component to the underlying gravitational potential,
thereby governing the joint distribution of stellar positions and
velocities for a pressure-supported galaxy in dynamic equi-
librium. In practice the available dSph data provide infor-
mation in only three dimensions—two spatial dimensions or-
thogonal to the line of sight and one velocity dimension along
the line of sight. Implementation of the CBE with dSph data
then requires transformations between 6D and 3D (or 2D with
spherical symmetry) phase-space distributions (e.g., Wilkin-
4 This result is particularly sensitive to the masses inferred for the Milky
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shown that the small velocity dispersions observed for many of these sys-
tems can receive significant contributions from binary orbital motions, a con-
clusion supported by the recent direct detection of resolved binary motions
in the Boötes I satellite (Koposov et al. 2011). Downward revision of the
intrinsic velocity dispersions (and hence masses) of several of the smallest
ultrafaint dSphs could lead to a size/mass relation for Milky Way satellites
that favors cored over cusped dark matter halos (see Figure 11 of Peñarrubia
et al. 2010).

FIG. 1.— Top: Projected stellar velocity dispersion profile for the Fornax dSph,
adopted from Walker et al. (2009a). Overlaid are spherical Jeans models that assume
either a cored dark matter halo (red), an NFW dark matter halo (blue), or if one lets
the shape of the dark matter halo vary freely, velocity distributions that are either
isotropic (black), radially anisotropic (cyan), or tangentially anisotropic (green). Bot-
tom: Enclosed-mass profiles corresponding to the same models. The vertical dotted
line indicates Fornax’s projected halflight radius (Irwin & Hatzidimitriou 1995), where
the simple estimator specified by Equation 2 gives M(rh) = [5.3± 0.9]× 107M!, in
agreement with the value common to the various successful Jeans models.
son et al. 2002), often at significant computational expense.
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Strigari et al. 2006, 2008; Koch et al. 2007; !okas 2009;
Walker et al. 2009a; Battaglia et al. 2008a, 2011) rely in-
stead on the Jeans equations, obtained by integrating the CBE
over velocity space. The spherically symmetric Jeans equa-
tion specifies the mass profile M(r)—including the contribu-
tion from any dark matter component—in terms of the stellar
density profile, ν(r), and stellar velocity dispersion profile,
v̄2(r) (Binney & Tremaine 2008):
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where v̄2r and v̄2θ are components of the velocity dispersion in
radial and tangential directions, respectively. Confinement of
dSph stellar velocity data to the component along the line of
sight leaves the velocity anisotropy—usually quantified by the
ratio βani(r)≡ 1! v̄2θ(r)/v̄2r (r)—poorly constrained, ultimately
precluding model-independent constraints on the mass profile
in analyses based on Equation 1. For example, the top panel
of Figure 1 demonstrates that the projected velocity dispersion
profile observed for the Fornax dSph can be fit equally well by
Jeans models that assume either cored or NFW-cusped dark
matter halos, or if the shape of the dark matter halo is unspec-
ified, by models that assume the velocity distribution is either
isotropic, radially anisotropic or tangentially anisotropic.
The bottom panel of Figure 1 demonstrates that despite

this well-known degeneracy between mass and anisotropy,
the various successful Jeans models tend to have the same
mass enclosed within approximately the dSph halflight radius
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FIG. 9.— Results for the Carina, Fornax and Sculptor dSphs. Panels display posterior PDFs for model parameters, obtained from applying the two stellar subcomponent models
introduced in Section 3. Table 2 lists median values and 68% (95%) confidence intervals derived from these PDFs.

FIG. 10.— Left, center: Constraints on halflight radii and masses enclosed therein, for two independent stellar subcomponents in the Fornax and Sculptor dSphs. Plotted points
come directly from our final MCMC chains, and color indicates relative likelihood (normalized by the maximum-likelihood value). Overplotted are straight lines indicating the central
(and therefore maximum) slopes of cored (limr→0 d logM/d log r] = 3) and cusped (limr→0 d logM/d log r] = 2) dark matter halos. Right: Posterior PDFs for the slope Γ obtained for
Fornax and Sculptor. The vertical dotted line marks the maximum (i.e., central) value of an NFW profile (i.e., cusp with γDM = 1, limr→0[d logM/d log r] = 2). These measurements
rule out NFW and/or steeper cusps (γDM ≥ 1) with significance s! 96% (Fornax) and s! 99% (Sculptor).

6.3. Rotation
Mass estimates for stellar subcomponents identified by our

method are directly proportional to the corresponding esti-
mates of stellar velocity dispersions. In principle, any con-
tribution to these velocity dispersions by ‘non-thermal’ mo-
tions such as rotational support or unresolved binary orbital
motions (next section) might introduce a bias in our mass esti-
mates beyond those that we have already identified in Section
4.4.1.
A stellar subcomponent that receives significant support

against gravity from rotation about an axis not aligned with
the line of sight will exhibit a smooth variation in mean ve-
locity as a function of position. For the simplest (solid body)
rotation models, rotation introduces a gradient in mean line-
of-sight velocity. All three of the dSphs studied here exhibit
statistically significant gradients in their velocities as mea-

sured in the heliocentric and Milky Way rest frames (Walker
et al. 2008; Battaglia et al. 2008a). However, our method at-
tributes any such gradient not to rotation (which we implicitly
assume is insignificant), but wholly to the perspective effect
induced by the dSph’s systemic motion transverse to the line
of sight (Section 3.3). Since we account for this effect in our
likelihood function, our method effectively removes the con-
tribution of any apparent velocity gradient from our estimates
of the subcomponent velocity dispersions.
Onemight object that such gradients can arise due to a com-

bination of perspective effects and rotation, and that by at-
tributing any detected gradients entirely to perspective effects,
we unduly ignore what might be real and dynamically signif-
icant rotation. This concern is particularly relevant for Sculp-
tor, where the proper motion that we estimate disagrees with
both published astrometric measurements (Schweitzer et al.
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4.3 The gravitational lens equation

Armed with the bending angle formula, we can now understand gravitational lensing, which is due
to light bending by massive objects. Figure 4.3 illustrates the idea. If a source is a long way (in
projection) from a massive object – from here on the ‘lens’ – then its light will be very slightly bent.
To us it then appears as if the light came from a slightly different location. Resolved sources like
galaxies will then appear distorted as the light coming from their centre will be bent differently from
the light originating from their edge. We call this weak lensing. Moving the source closer to the lens in
projection gives stronger distortions called flexion. In the limit where the source is aligned perfectly
behind a spherical Scchwarzschild lens, due to the symmetry of the problem, the source will be split
into a perfect ring of images. This is called strong lensing and is distinct from weak lensing and flexion
by the presence of multiple images for a single source. The beautiful lensing arcs in the galaxy cluster
Abel 1669, visible in the right panel of Figure 4.3, owe to strong lensing.

Let us now look at this is a little more detail. The geometry is given in Figure 4.4. The angles β
and θ are the angle on the sky to the source and image respectively, and δα is the bending angle as
previously (β is not the same as in Figure 4.2). Now, from Figure 4.4 it is clear that (assuming small
angles):
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Figure 4.4: A schematic diagram of the grav-
itational lens geometry. The observer O, lens
L, source S and image I are all marked. The
angles β and θ are the angle on the sky to the
source and image respectively, and δα is the
bending angle as previously (β is not the same
as in Figure 4.2).

θDS = βDS + δαDLS (4.22)

which is called the gravitational lens equation. Now,
Figure 4.4 makes the problem look planar, but in fact
lensing is two-dimensional on the sky. Thus, in gen-
eral, we should replace all of the scalar angles by vec-
tor angles. For a point mass lens, the lens equation
then becomes:

θ = β +
DLS

DSDL

4GM

c2

θ

|θ|2 (4.23)

where we have used the fact that the impact param-

eter b � θDL = θ
|θ|2

DL. We can then write:

β = θ − θ2E
|θ|2 θ (4.24)

which defines the Einstein radius:

θ2E =
DLS

DSDL

4GM

c2
(4.25)

The meaning of the Einstein radius is then clear: it
is the image position on the sky for an on-axis source
β = 0.

By symmetry, for a circularly symmetric lens, we
can write θ = (θ, 0), β = (β, 0) without loss of gen-
erality (not so for non-symmetric lenses, of course).
Thus in general for a point mass lens we must solve
the quadratic equation:

θ2 − βθ − θ2E = 0 (4.26)

and thus, for a point mass lens there will be at most two images at θ = θ±. In fact, this is true
for any circularly symmetric lens as can be understood by replacing M → M(θ) (true from Birkoff’s
theorem). When the source is perfectly on axis (β = 0), these two images join to form an Einstein
ring (as we already noted previously from intuition).
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eral, we should replace all of the scalar angles by vec-
tor angles. For a point mass lens, the lens equation
then becomes:

θ = β +
DLS

DSDL

4GM

c2

θ

|θ|2 (4.23)

where we have used the fact that the impact param-

eter b � θDL = θ
|θ|2

DL. We can then write:

β = θ − θ2E
|θ|2 θ (4.24)

which defines the Einstein radius:

θ2E =
DLS

DSDL

4GM

c2
(4.25)

The meaning of the Einstein radius is then clear: it
is the image position on the sky for an on-axis source
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for any circularly symmetric lens as can be understood by replacing M → M(θ) (true from Birkoff’s
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Quint at z=0.88; all others 
are at z=2.2-3 (the cluster 
is at z=0.28 ~1Gpc away)
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Garbari, Read & Lake 2011
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FIG. 1: Differential recoil rates for a Ge (red) and Xe (blue)
target, for dark matter particles with a mass of 100 GeV/c2

and a WIMP-nucleon cross section of 10−8.5 pb in the SHM
(solid line) and in the dark disk. Three different values of
ρd/ρh (0.5 dashed, 1 × and 2 !) are shown. Vertical lines
mark current experiment thresholds: XENON10 [21] (blue)
using a Xe and CDMS-II [22] (red) using a Ge target.

Given these uncertainties, we model the dark disk with
a simple 1D Maxwellian distribution, with a dispersion
and lag, σ = vlag = 50km/s to show its general effect
on direct detection. We assume a range of density ra-
tios ρd/ρh = 0.5− 2. The qualitative features are robust
through this range.

Direct detection experiments measure nuclear recoil
rates above the energy threshold in one of several detec-
tor media [25]; here we consider Ge and Xe. The energy
imparted in elastic WIMP-nucleon collisions ranges from
a few to tens of keV. The expected recoil rate per unit
mass, unit nuclear recoil energy and unit time is [26]:

dR

dE
=

ρσwn|F (E)|2

2mµ2

∫ vmax

v>
√

ME/2µ2

f(v, t)

v
d3v (1)

where ρ is the local dark matter density (ρh =
0.3GeV/cm3 in the SHM), σwn is the WIMP-nucleus
scattering cross section, F (E) is the nuclear form factor,
m and M are the masses of the dark matter particle and
of the target nucleus, respectively, µ is the reduced mass
of the WIMP-nucleus system, v = |v| and vmax is the
maximal velocity in the earth frame for particles moving
at the galactic escape velocity vesc = 544km/s [27]. We
consider only the spin-independent scalar WIMP-nucleus
coupling in this paper, since it dominates the interaction
(depending however on the dark matter particle) for tar-
get media with nucleon number A ! 30 [28]. We model
the velocity distributions of particles in the dark disk and
the SHM with a simple 1D Maxwellian:

f(v, t) ∝ exp

(

−(v + v⊕(t))2

2σ2

)

(2)

where v is the laboratory velocity of the dark mat-
ter particle and the instantaneous streaming velocity
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FIG. 2: The recoil energy below which the signal is domi-
nated by the dark disk (compared to the SHM) as a func-
tion of the WIMP’s mass for Ge (red) and Xe (blue) targets.
Three different values of ρd/ρh (0.5 dashed, 1 × and 2 !) are
shown. Horizontal lines mark current experiment thresholds:
XENON10 [21] (blue) using a Xe and CDMS-II [22] (red)
using a Ge target.

v⊕ = vcirc + v" + vorb(t). This streaming velocity is
the sum of local circular velocity vcirc = (0, 220, 0)km/s,
the peculiar motion of the sun v" = (10.0, 5.25, 7.17)
km/s [29] with respect to vcirc and the orbital velocity of
the earth around the sun vorb(t).
vorbR

(t) = 〈vorb〉 (1 − e sin(λ(t) − λ0)) cos βR sin(λ(t) − λR)
vorbφ

(t) = 〈vorb〉 (1 − e sin(λ(t) − λ0)) cos βφ sin(λ(t) − λφ)
vorbz

(t) = 〈vorb〉 (1 − e sin(λ(t) − λ0)) cos βz sin(λ(t) − λz)

where e is the ellipticity of the Earth’s orbit, λ0 is the lon-
gitude of the orbit’s minor axis, λi and βi are the ecliptic
longitudes and latitudes, respectively, of the R, φ, z axes
in galactic coordinates, λ(t) is the time dependend eclip-
tic longitude and 〈vorb〉 = 29.79km/s is the Earth’s mean
orbital velocity [26]. In the SHM, the halo has no rota-
tion and the dispersion σ = |vcirc|/

√
2. For the dark disk,

the velocity lag vlag = (0, 50, 0) km/s replaces vcirc and
a dispersion of 50 km/s is adopted.

The lower relative velocities of the dark disk signifi-
cantly increases the differential rate at low energies com-
pared to the SHM rate (Fig.1). Detection of the dark disk
depends crucially on the detector’s low energy threshold.
The differential rate for a specific WIMP target depends
on the WIMP mass. In Fig. 2, we show the energy be-
low which the dark disk dominates the rate as a function
of the WIMP mass, for three values of ρd/ρh. The to-
tal rate in a detector is the sum of the two contributions
from the SHM and the dark disk, which dominate at high
and low energies, respectively. The details of the differ-
ential rate with energy betrays both the contribution of
the dark disk relative to the SHM and the WIMP’s mass.
For WIMP masses ! 50GeV/c2, the dark disk contribu-
tion lies above current detector thresholds, giving a much
greater change in detection rate with recoil energy com-
pared to the SHM alone.

The motion of the Earth around the Sun gives rise to
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No. ] Unified Rotation Curve of the Milky Way Galaxy 3
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Fig. 1. Observed circular velocities representing the rotation curve of the Galaxy. Open triangles: HI tangent velocity method
(Burton and Gordon 1978); Rectangles: CO tangent (Clemens 1989); Reverse triangles: HI tangent (Fich et al. 1989); Diamonds:
CO and HII regions (Fich et al.1989, Blitz et al. 1982); filled triangles: Demers and Battinelli (2007); Circles: HI thickness (Honma
and Sofue 1997a,b); Big circle at 13.1 kpc: VERA-parallax, proper motion and velocity (Honma et al. 2007). All data have been
converted to (R0,V0) = (8.0, 200.0 km s−1). The plotted data are in table 1.

qualitatively reproduced, but we show that the amplitude
is not reproduced. This is because that the bar is a radial
perturbation of mode 2, whereas the ring is a local and
radial perturbation yielding a rapider change of density
and potential gradients.

4. Galactic Mass Components

For constructing the model rotation curves, we used
fundamental galactic mass components, which are the
bulge, disk, and halo. We also introduced some pertur-
bations representing the discrepancies between the obser-
vations and calculated fundamental curves. We describe
individual components below.

4.1. Bulge

The inner region of the galaxy is assumed to be com-
posed of two luminous components, which are a bulge
and disk (Wyse et al. 1997) . The mass-to-luminosity
ratio within each component is assumed to be constant,
so that the mass density distribution has the same pro-
file. The bulge is assumed to have a spherically symmetric
mass distribution, whose surface mass density obeys the
de Vaucouleurs law, as shown in figure 2.

The de Vaucouleurs (1958) law for the surface bright-
ness profile as a function of the projected radius r is ex-
pressed by

logβ = −γ(α1/4 − 1), (5)

with γ = 3.3308. Here, β = Bb(r)/Bbe, α = r/Rb, and

Bb(r) is the brightness distribution normalized by Bbe,
which is the brightness at radius Rb. We adopt the same
de Vaucouleurs profile for the surface mass density:

Σb(r) = λbBb(r) = Σbeexp

[

−κ

(

(

r

Rb

)1/4

− 1

)]

(6)

with Σbc = 2142.0Σbe for κ = γln10 = 7.6695. Here, λb

is the mass-to-luminosity ratio, which is assumed to be
constant within a bulge. The total mass is calculated by

Mbt = 2π

∫ ∞

0

rΣb(r)dr = ηR2
bΣbe, (7)

where η = 22.665 is a dimensionless constant. By defi-
nition a half of the total projected mass (luminosity) is
equal to that inside a cylinder of radius Rb.

We here adopt a spherical bulge. In fact the differences
among circular velocities are not so significant for minor-
to-major axis ratios greater than ∼ 0.5 (Noordermeer
2008). The volume mass density ρ(r) at radius r for a
spherical bulge is calculated by using the surface density
distribution as (Binney and Tremaine 1987; Noordermeer
2008),

ρ(r) =
1

π

∫ ∞

r

dΣb(x)

dx

1√
x2 − r2

dx. (8)

Since the mass distribution is assumed to be spherical,
the total mass enclosed within a sphere of radius R is
calculated by using rho(r) and the circular velocity as
Vb(R)=

√

GMb(R)/R. Obviously, the velocity approaches

Sofue et al. 2009 v2 ∼ GM(r)/r
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ρdm < ρdm,ext ρdm > ρdm,ext
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Our Minimal Assumption (MA) method:

Development of Bahcall (1989)

νi(z∗)
νi(0)

=
v2

z,i(0)

v2
z,i(z∗)

exp

�
−

� z∗

0

1
v2

z,i(z)
dΦ
dz

dz

�

Assumes only: 

• Equilibrium 

• ‘Tilt’ term in Jeans equation small

All other uncertainties MCMC marginalised
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Oort limit calculation for Silvia
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We start from the Jeans equations in cylindrical coor-

dinates (equation 4.222b B&T08):

1

R
∂

∂R
(RνivRvz) +

∂
∂z

�
νiv2

z

�
+ νi

∂Φ
∂z

= 0 (1)

where νi is the density of a tracer population moving in

potential Φ.

Neglecting the first term and assuming this tracer pop-

ulation is isothermal (v2
z = const. = v2

z,i) gives:

v2
z,i

∂νi

∂z
+ νi

∂Φ
∂z

= 0 (2)

This can then be trivially solved to give:

νi = ν0,i exp

�
−Φ(z)

v2
z,i

�
(3)

where ν0,i = νi(0).

We can test the validity of these two approximations

by:

(i) Explictly comparing the magnitude of the first and

second terms in equation 1. This must be performed at the

relevant disc radius (i.e. R = R⊙) and must be valid over

the full range of z covered by the data.

(ii) Plotting v2
z,i(z) for a given tracer population and veri-

fying that it is flat to a good approximation over the relevant

range in z.

We can then use Poisson’s equation to relate the po-

tential to the density. In cylindrial polar coordinates this is

(B&T08):

4πGρ =
∂2Φ
∂z2

+
1

R
∂

∂R

�
R

∂Φ
∂R

�

=
∂2Φ
∂z2

+
1

R

∂V 2
c (R)

∂R
(4)

where ρ is now the total mass density and Vc(R) is the rota-

tion curve at radius R. Notice that for a flat rotation curve

(Vc(R) = const.), this ‘rotation curve’ term vanishes.

� E-mail: justin.inglis.read@gmail.com

Splitting the matter density into disc contributions that

vary with z (ρdisc(z)) and a dark matter contribution that

is constant (ρdm) gives:

∂2Φ
∂z2

= 4πG
�
ρdisc(z) + ρeff

dm

�
(5)

Where ρeff
dm � ρdm subsumes the (negligible) rotation curve

term.

Now, assuming that we are aware of all significant bary-

onic contributions to the disc, we can write:

ρdisc(z) =

N�

i

νi,0 exp

�
−Φ(z)

v2
z,i

�
(6)

If only one of these components makes up all of the mass

of the disc, then N = 1 and we need solve for (or measure)

only ν0,0. This is the case for our simulated data. In the real

world, however, we must model each of the disc components

that have a different v2
z,i separately. This point is important

and I will return to it shortly.

Now, substituting equation 6 into 5, we obtain:

∂2Φ
∂z2

− 4πG
�

i

ν0,i exp

�
−Φ(z)

v2
z,i

�
− 4πGρeff

dm = 0 (7)

Our strategy is then:

(i) Guess or measure† v2
z,i for each disc component.

(ii) Guess or measure ν0,i for each disc component.

(iii) Guess ρeff
dm.

(iv) Solve equation 7 for Φ(z).

Now we must evaluate how well we did with all these

guesses/measurements. Even if we know perfetly v2
z,i and

ν0,i for every disc component, we do not know ρeff
dm – indeed,

this is exactly what we would like to measure.

We can proceed by considering the vertical velocity dis-

tribution function of stars. The density of a given tracer pop-

ulation is given by the integral over its distribution function.

† A measurement really means assigning a prior to our guess. A
particularly good measurement means we assign a particularly
narrow prior.
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Evolved disc; MA method

∆ρs = ±0.014M⊙/pc3Garbari, Read & Lake 2011
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∆ρs = ±0.007M⊙/pc3

Evolved disc; MA method

Garbari, Read & Lake 2011
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1. Need a (good) mass model

Visible Mass 
Model by 
Flynn et al 

2006

density errors: 
Stars: 10-20%;

Gas*: 50%

Component νi,0(0) v2
z,i(0)

[M⊙/pc
3
] [km/s]

H
∗
2 0.021 4.0± 1.0

HI(1)
∗

0.016 7.0± 1.0
HI(2)

∗
0.012 9.0± 1.0

Warm gas
∗

0.0009 40.0± 1.0
Giants 0.0006 20.0± 2.0

MV < 2.5 0.0031 7.5± 2.0
2.5 < MV < 3.0 0.0015 10.5± 2.0
3.0 < MV < 4.0 0.0020 14.0± 2.0
4.0 < MV < 5.0 0.0022 18.0± 2.0
5.0 < MV < 8.0 0.007 18.5± 2.0

MV > 8.0 0.0135 18.5± 2.0
White dwarfs 0.006 20.0± 5.0
Brown dwarfs 0.002 20.0± 5.0

Thick disc 0.0035 37.0± 5.0
Stellar halo 0.0001 100.0± 10.0

Garbari, Liu, Read & Lake 2012, in prep. 
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• Well mixed => equilibrium 

• Well populated => good statistics (at high z!) 

• Volume complete

• Velocity data (vz)

• Good distances
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• Well mixed => equilibrium 

• Well populated => good statistics (at high z!) 

• Volume complete

• Velocity data (vz)

• Good distances

2. Need a good tracer

=> K dwarfs (c.f. Kuijken & Gilmore 1989-91)

 - 2016 K dwarf stars; photometry in B and V bands

 - 580 K dwarfs with radial velocities 

Garbari, Liu, Read & Lake 2012, in prep. 
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target z

Garbari, Liu, Read & Lake 2012, in prep. 
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target z
Volume 
complete

photometric 
sample

Garbari, Liu, Read & Lake 2012, in prep. 

3. Detecting DM particles | The local DM density

Tuesday, April 3, 2012



Hipparcos

target z
Volume 
complete

photometric 
sample

Garbari, Liu, Read & Lake 2012, in prep. 

• Recalibrated distances using Hipparcos and new 
survey data

• New MA modelling technique relies on fewer 
assumptions 

• MCMC to marginalise over uncertainties star by 
star
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Figure 9. Upper panel: A histogram of the recovered ρdm from

our MCMC chains for the MA method applied to the real K dwarf

data. The striped grey area represents the 90% confidence inter-

val. The orange dashed line represents the SHM value of ρdm; the

blue, cyan and purple error bars correspond to the value of ρdm

obtained by Iocco et al. (2011) from a combination of microlens-

ing and rotation curve data, with a spherical halo (potential flat-

tening q = 1) and two oblate halos, with q = 0.9 and q = 0.7,
respectively. The magenta error bar is the value of ρdm expected

if the Milky Way has a dark disc contributing 0.25 − 1.5 times

the density of the (spherical) halo. The red error bar corresponds

to our result after adding the rotation curve correction. Lower
panel: The effect of assuming a separable distribution function.

Each dot shows the likelihood of a given MCMC model calcu-

lated assuming a separable distribution function (using equation

17; the plot shows − log(Ln), so more likely models have a lower
y−axis value). Notice that the assumption of separability biases

the result towards low ρdm. The orange and the red dashed lines

have the same meaning as in figure 8.

the shape of the tracers’ velocity distribution function; and
(ii) we use a MCMC to marginalise over uncertainties in
the distances and velocities of the tracer stars, and our un-
derlying baryonic mass model for the visible disc. We used
a dynamically evolved high resolution N-body simulation
of a Milky Way-like galaxy as a fake data set to test our
MA method, finding that we could correctly recover ρdm

and ρs within our 90% confidence interval even in the face
of disc inhomogeneities, non-isothermal tracers, asymmetric
distance errors and a non-separable tracer distribution func-
tion. Furthermore, we confirmed the result from our Paper
1 that assuming a separable distribution function (as has
been typically done in the modern literature) leads to a bi-
ased determination of ρdm.

Applying our MA method to the K dwarf data, we ob-
tain a new measurement of the local dark matter density:
ρdm = 0.025+0.014

−0.013 M⊙ pc−3 (0.95+0.53
−0.49 GeVcm−3); which,

adding a correction for the local non-flatness of the ro-
tation curve correction term (� −0.0033 ± 0.0050, see
Sections 3.1 and 4), gives: ρdm = 0.022+0.015

−0.013 M⊙pc−3

(0.85+0.57
−0.50 GeVcm−3). Our new value is systematically

larger than the results from KG89II and KG91 derived from
the same data. We show that this is primarily due to our
new MA modelling method (and the fact that it does not as-
sume a separable distribution function for the tracers); our
new distance determination for the K dwarfs plays a more
minor role.

Despite our large error bars, our new value for ρdm

has some interesting implications. Firstly, it is larger at
90% confidence than the Standard Halo Model value of
ρSHM

dm = 0.008 M⊙ pc−3 (0.30GeV cm−3), usually adopted
in the literature. This is particularly important for direct de-
tection experiments because it implies a larger flux of dark
matter particles and therefore a greater chance of detection.
Secondly, our result is in mild tension with the value of ρext

dm

extrapolated from the rotation curve measurements, assum-
ing a spherical dark matter halo. This could imply that the
halo of our Galaxy is oblate and/or that we have a disc of
dark matter in the Galaxy, as predicted by recent cosmo-
logical simulations (Read et al. 2008; Read et al. 2009, see
upper panel of figure 9).
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Figure 9. Upper panel: A histogram of the recovered ρdm from

our MCMC chains for the MA method applied to the real K dwarf

data. The striped grey area represents the 90% confidence inter-

val. The orange dashed line represents the SHM value of ρdm; the

blue, cyan and purple error bars correspond to the value of ρdm

obtained by Iocco et al. (2011) from a combination of microlens-

ing and rotation curve data, with a spherical halo (potential flat-

tening q = 1) and two oblate halos, with q = 0.9 and q = 0.7,
respectively. The magenta error bar is the value of ρdm expected

if the Milky Way has a dark disc contributing 0.25 − 1.5 times

the density of the (spherical) halo. The red error bar corresponds

to our result after adding the rotation curve correction. Lower
panel: The effect of assuming a separable distribution function.

Each dot shows the likelihood of a given MCMC model calcu-

lated assuming a separable distribution function (using equation

17; the plot shows − log(Ln), so more likely models have a lower
y−axis value). Notice that the assumption of separability biases

the result towards low ρdm. The orange and the red dashed lines

have the same meaning as in figure 8.

the shape of the tracers’ velocity distribution function; and
(ii) we use a MCMC to marginalise over uncertainties in
the distances and velocities of the tracer stars, and our un-
derlying baryonic mass model for the visible disc. We used
a dynamically evolved high resolution N-body simulation
of a Milky Way-like galaxy as a fake data set to test our
MA method, finding that we could correctly recover ρdm

and ρs within our 90% confidence interval even in the face
of disc inhomogeneities, non-isothermal tracers, asymmetric
distance errors and a non-separable tracer distribution func-
tion. Furthermore, we confirmed the result from our Paper
1 that assuming a separable distribution function (as has
been typically done in the modern literature) leads to a bi-
ased determination of ρdm.

Applying our MA method to the K dwarf data, we ob-
tain a new measurement of the local dark matter density:
ρdm = 0.025+0.014

−0.013 M⊙ pc−3 (0.95+0.53
−0.49 GeVcm−3); which,

adding a correction for the local non-flatness of the ro-
tation curve correction term (� −0.0033 ± 0.0050, see
Sections 3.1 and 4), gives: ρdm = 0.022+0.015

−0.013 M⊙pc−3

(0.85+0.57
−0.50 GeVcm−3). Our new value is systematically

larger than the results from KG89II and KG91 derived from
the same data. We show that this is primarily due to our
new MA modelling method (and the fact that it does not as-
sume a separable distribution function for the tracers); our
new distance determination for the K dwarfs plays a more
minor role.

Despite our large error bars, our new value for ρdm

has some interesting implications. Firstly, it is larger at
90% confidence than the Standard Halo Model value of
ρSHM

dm = 0.008 M⊙ pc−3 (0.30GeV cm−3), usually adopted
in the literature. This is particularly important for direct de-
tection experiments because it implies a larger flux of dark
matter particles and therefore a greater chance of detection.
Secondly, our result is in mild tension with the value of ρext

dm

extrapolated from the rotation curve measurements, assum-
ing a spherical dark matter halo. This could imply that the
halo of our Galaxy is oblate and/or that we have a disc of
dark matter in the Galaxy, as predicted by recent cosmo-
logical simulations (Read et al. 2008; Read et al. 2009, see
upper panel of figure 9).
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obtained by Iocco et al. (2011) from a combination of microlens-

ing and rotation curve data, with a spherical halo (potential flat-

tening q = 1) and two oblate halos, with q = 0.9 and q = 0.7,
respectively. The magenta error bar is the value of ρdm expected

if the Milky Way has a dark disc contributing 0.25 − 1.5 times

the density of the (spherical) halo. The red error bar corresponds

to our result after adding the rotation curve correction. Lower
panel: The effect of assuming a separable distribution function.

Each dot shows the likelihood of a given MCMC model calcu-

lated assuming a separable distribution function (using equation

17; the plot shows − log(Ln), so more likely models have a lower
y−axis value). Notice that the assumption of separability biases

the result towards low ρdm. The orange and the red dashed lines

have the same meaning as in figure 8.

the shape of the tracers’ velocity distribution function; and
(ii) we use a MCMC to marginalise over uncertainties in
the distances and velocities of the tracer stars, and our un-
derlying baryonic mass model for the visible disc. We used
a dynamically evolved high resolution N-body simulation
of a Milky Way-like galaxy as a fake data set to test our
MA method, finding that we could correctly recover ρdm

and ρs within our 90% confidence interval even in the face
of disc inhomogeneities, non-isothermal tracers, asymmetric
distance errors and a non-separable tracer distribution func-
tion. Furthermore, we confirmed the result from our Paper
1 that assuming a separable distribution function (as has
been typically done in the modern literature) leads to a bi-
ased determination of ρdm.

Applying our MA method to the K dwarf data, we ob-
tain a new measurement of the local dark matter density:
ρdm = 0.025+0.014

−0.013 M⊙ pc−3 (0.95+0.53
−0.49 GeVcm−3); which,

adding a correction for the local non-flatness of the ro-
tation curve correction term (� −0.0033 ± 0.0050, see
Sections 3.1 and 4), gives: ρdm = 0.022+0.015

−0.013 M⊙pc−3

(0.85+0.57
−0.50 GeVcm−3). Our new value is systematically

larger than the results from KG89II and KG91 derived from
the same data. We show that this is primarily due to our
new MA modelling method (and the fact that it does not as-
sume a separable distribution function for the tracers); our
new distance determination for the K dwarfs plays a more
minor role.

Despite our large error bars, our new value for ρdm

has some interesting implications. Firstly, it is larger at
90% confidence than the Standard Halo Model value of
ρSHM

dm = 0.008 M⊙ pc−3 (0.30GeV cm−3), usually adopted
in the literature. This is particularly important for direct de-
tection experiments because it implies a larger flux of dark
matter particles and therefore a greater chance of detection.
Secondly, our result is in mild tension with the value of ρext

dm

extrapolated from the rotation curve measurements, assum-
ing a spherical dark matter halo. This could imply that the
halo of our Galaxy is oblate and/or that we have a disc of
dark matter in the Galaxy, as predicted by recent cosmo-
logical simulations (Read et al. 2008; Read et al. 2009, see
upper panel of figure 9).
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ing and rotation curve data, with a spherical halo (potential flat-

tening q = 1) and two oblate halos, with q = 0.9 and q = 0.7,
respectively. The magenta error bar is the value of ρdm expected

if the Milky Way has a dark disc contributing 0.25 − 1.5 times

the density of the (spherical) halo. The red error bar corresponds

to our result after adding the rotation curve correction. Lower
panel: The effect of assuming a separable distribution function.

Each dot shows the likelihood of a given MCMC model calcu-

lated assuming a separable distribution function (using equation

17; the plot shows − log(Ln), so more likely models have a lower
y−axis value). Notice that the assumption of separability biases

the result towards low ρdm. The orange and the red dashed lines

have the same meaning as in figure 8.

the shape of the tracers’ velocity distribution function; and
(ii) we use a MCMC to marginalise over uncertainties in
the distances and velocities of the tracer stars, and our un-
derlying baryonic mass model for the visible disc. We used
a dynamically evolved high resolution N-body simulation
of a Milky Way-like galaxy as a fake data set to test our
MA method, finding that we could correctly recover ρdm

and ρs within our 90% confidence interval even in the face
of disc inhomogeneities, non-isothermal tracers, asymmetric
distance errors and a non-separable tracer distribution func-
tion. Furthermore, we confirmed the result from our Paper
1 that assuming a separable distribution function (as has
been typically done in the modern literature) leads to a bi-
ased determination of ρdm.

Applying our MA method to the K dwarf data, we ob-
tain a new measurement of the local dark matter density:
ρdm = 0.025+0.014

−0.013 M⊙ pc−3 (0.95+0.53
−0.49 GeVcm−3); which,

adding a correction for the local non-flatness of the ro-
tation curve correction term (� −0.0033 ± 0.0050, see
Sections 3.1 and 4), gives: ρdm = 0.022+0.015

−0.013 M⊙pc−3

(0.85+0.57
−0.50 GeVcm−3). Our new value is systematically

larger than the results from KG89II and KG91 derived from
the same data. We show that this is primarily due to our
new MA modelling method (and the fact that it does not as-
sume a separable distribution function for the tracers); our
new distance determination for the K dwarfs plays a more
minor role.

Despite our large error bars, our new value for ρdm

has some interesting implications. Firstly, it is larger at
90% confidence than the Standard Halo Model value of
ρSHM

dm = 0.008 M⊙ pc−3 (0.30GeV cm−3), usually adopted
in the literature. This is particularly important for direct de-
tection experiments because it implies a larger flux of dark
matter particles and therefore a greater chance of detection.
Secondly, our result is in mild tension with the value of ρext

dm

extrapolated from the rotation curve measurements, assum-
ing a spherical dark matter halo. This could imply that the
halo of our Galaxy is oblate and/or that we have a disc of
dark matter in the Galaxy, as predicted by recent cosmo-
logical simulations (Read et al. 2008; Read et al. 2009, see
upper panel of figure 9).
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respectively. The magenta error bar is the value of ρdm expected

if the Milky Way has a dark disc contributing 0.25 − 1.5 times

the density of the (spherical) halo. The red error bar corresponds

to our result after adding the rotation curve correction. Lower
panel: The effect of assuming a separable distribution function.

Each dot shows the likelihood of a given MCMC model calcu-

lated assuming a separable distribution function (using equation

17; the plot shows − log(Ln), so more likely models have a lower
y−axis value). Notice that the assumption of separability biases

the result towards low ρdm. The orange and the red dashed lines

have the same meaning as in figure 8.

the shape of the tracers’ velocity distribution function; and
(ii) we use a MCMC to marginalise over uncertainties in
the distances and velocities of the tracer stars, and our un-
derlying baryonic mass model for the visible disc. We used
a dynamically evolved high resolution N-body simulation
of a Milky Way-like galaxy as a fake data set to test our
MA method, finding that we could correctly recover ρdm

and ρs within our 90% confidence interval even in the face
of disc inhomogeneities, non-isothermal tracers, asymmetric
distance errors and a non-separable tracer distribution func-
tion. Furthermore, we confirmed the result from our Paper
1 that assuming a separable distribution function (as has
been typically done in the modern literature) leads to a bi-
ased determination of ρdm.

Applying our MA method to the K dwarf data, we ob-
tain a new measurement of the local dark matter density:
ρdm = 0.025+0.014

−0.013 M⊙ pc−3 (0.95+0.53
−0.49 GeVcm−3); which,

adding a correction for the local non-flatness of the ro-
tation curve correction term (� −0.0033 ± 0.0050, see
Sections 3.1 and 4), gives: ρdm = 0.022+0.015

−0.013 M⊙pc−3

(0.85+0.57
−0.50 GeVcm−3). Our new value is systematically

larger than the results from KG89II and KG91 derived from
the same data. We show that this is primarily due to our
new MA modelling method (and the fact that it does not as-
sume a separable distribution function for the tracers); our
new distance determination for the K dwarfs plays a more
minor role.

Despite our large error bars, our new value for ρdm

has some interesting implications. Firstly, it is larger at
90% confidence than the Standard Halo Model value of
ρSHM

dm = 0.008 M⊙ pc−3 (0.30GeV cm−3), usually adopted
in the literature. This is particularly important for direct de-
tection experiments because it implies a larger flux of dark
matter particles and therefore a greater chance of detection.
Secondly, our result is in mild tension with the value of ρext

dm

extrapolated from the rotation curve measurements, assum-
ing a spherical dark matter halo. This could imply that the
halo of our Galaxy is oblate and/or that we have a disc of
dark matter in the Galaxy, as predicted by recent cosmo-
logical simulations (Read et al. 2008; Read et al. 2009, see
upper panel of figure 9).
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y−axis value). Notice that the assumption of separability biases
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the shape of the tracers’ velocity distribution function; and
(ii) we use a MCMC to marginalise over uncertainties in
the distances and velocities of the tracer stars, and our un-
derlying baryonic mass model for the visible disc. We used
a dynamically evolved high resolution N-body simulation
of a Milky Way-like galaxy as a fake data set to test our
MA method, finding that we could correctly recover ρdm

and ρs within our 90% confidence interval even in the face
of disc inhomogeneities, non-isothermal tracers, asymmetric
distance errors and a non-separable tracer distribution func-
tion. Furthermore, we confirmed the result from our Paper
1 that assuming a separable distribution function (as has
been typically done in the modern literature) leads to a bi-
ased determination of ρdm.

Applying our MA method to the K dwarf data, we ob-
tain a new measurement of the local dark matter density:
ρdm = 0.025+0.014

−0.013 M⊙ pc−3 (0.95+0.53
−0.49 GeVcm−3); which,

adding a correction for the local non-flatness of the ro-
tation curve correction term (� −0.0033 ± 0.0050, see
Sections 3.1 and 4), gives: ρdm = 0.022+0.015

−0.013 M⊙pc−3

(0.85+0.57
−0.50 GeVcm−3). Our new value is systematically

larger than the results from KG89II and KG91 derived from
the same data. We show that this is primarily due to our
new MA modelling method (and the fact that it does not as-
sume a separable distribution function for the tracers); our
new distance determination for the K dwarfs plays a more
minor role.

Despite our large error bars, our new value for ρdm

has some interesting implications. Firstly, it is larger at
90% confidence than the Standard Halo Model value of
ρSHM

dm = 0.008 M⊙ pc−3 (0.30GeV cm−3), usually adopted
in the literature. This is particularly important for direct de-
tection experiments because it implies a larger flux of dark
matter particles and therefore a greater chance of detection.
Secondly, our result is in mild tension with the value of ρext

dm

extrapolated from the rotation curve measurements, assum-
ing a spherical dark matter halo. This could imply that the
halo of our Galaxy is oblate and/or that we have a disc of
dark matter in the Galaxy, as predicted by recent cosmo-
logical simulations (Read et al. 2008; Read et al. 2009, see
upper panel of figure 9).
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the shape of the tracers’ velocity distribution function; and
(ii) we use a MCMC to marginalise over uncertainties in
the distances and velocities of the tracer stars, and our un-
derlying baryonic mass model for the visible disc. We used
a dynamically evolved high resolution N-body simulation
of a Milky Way-like galaxy as a fake data set to test our
MA method, finding that we could correctly recover ρdm

and ρs within our 90% confidence interval even in the face
of disc inhomogeneities, non-isothermal tracers, asymmetric
distance errors and a non-separable tracer distribution func-
tion. Furthermore, we confirmed the result from our Paper
1 that assuming a separable distribution function (as has
been typically done in the modern literature) leads to a bi-
ased determination of ρdm.

Applying our MA method to the K dwarf data, we ob-
tain a new measurement of the local dark matter density:
ρdm = 0.025+0.014

−0.013 M⊙ pc−3 (0.95+0.53
−0.49 GeVcm−3); which,

adding a correction for the local non-flatness of the ro-
tation curve correction term (� −0.0033 ± 0.0050, see
Sections 3.1 and 4), gives: ρdm = 0.022+0.015

−0.013 M⊙pc−3

(0.85+0.57
−0.50 GeVcm−3). Our new value is systematically

larger than the results from KG89II and KG91 derived from
the same data. We show that this is primarily due to our
new MA modelling method (and the fact that it does not as-
sume a separable distribution function for the tracers); our
new distance determination for the K dwarfs plays a more
minor role.

Despite our large error bars, our new value for ρdm

has some interesting implications. Firstly, it is larger at
90% confidence than the Standard Halo Model value of
ρSHM

dm = 0.008 M⊙ pc−3 (0.30GeV cm−3), usually adopted
in the literature. This is particularly important for direct de-
tection experiments because it implies a larger flux of dark
matter particles and therefore a greater chance of detection.
Secondly, our result is in mild tension with the value of ρext

dm

extrapolated from the rotation curve measurements, assum-
ing a spherical dark matter halo. This could imply that the
halo of our Galaxy is oblate and/or that we have a disc of
dark matter in the Galaxy, as predicted by recent cosmo-
logical simulations (Read et al. 2008; Read et al. 2009, see
upper panel of figure 9).

ACKNOWLEDGMENTS

We acknowledge Lan Zhang for kindly supplying the SDSS
data we used to calculate the K dwarfs’ metallicity dis-
tribution function. We would like to thank Chris Flynn,
Fabio Iocco and Miguel Pato for useful discussions. Justin
I. Read would like to acknowledge support from SNF grant
PP00P2 128540/1.

REFERENCES

Bahcall J. N., 1984a, ApJ, 287, 926
Bahcall J. N., 1984b, ApJ, 276, 169
Bahcall J. N., Flynn C., Gould A., 1992, ApJ, 389, 234
Beers T. C., Flynn K., Gebhardt K., 1990, AJ, 100, 32
Binney J., Merrifield M., 1998, Galactic Astronomy
Branham Jr. R. L., 2010, MNRAS, 409, 1269

c� 2012 RAS, MNRAS 000, 1–13

Preliminary!

Garbari, Liu, Read & Lake 2012, in prep. 

3. Detecting DM particles | The local DM density

Tuesday, April 3, 2012



Sag Stream
0.85 < q < 1.05

 q=0.7
 q=1 (spherical) SHM
 q=1.4

Preliminary!

Garbari, Liu, Read & Lake 2012, in prep. 

3. Detecting DM particles | The local DM density

ρdm = 0.022+0.015
−0.013 M⊙/pc

3

(ρdm = 0.85+0.57
−0.50 GeV/cm3)

Tuesday, April 3, 2012



• Down to galaxy cluster scales dark matter is cold and ‘standard’.

• On dwarf galaxy scales there is mounting evidence for dark matter 
cores. However, these can arise naturally as a consequence of rapid, 
multiple, gas inflows and outflows driven by mergers and supernovae.

• Baryons also influence the local dark matter distribution. Including 
them leads to the expectation that our Galaxy has a dark matter 
disc.

• We have recently measured the local dark matter density, finding: 
ρDM = 0.85 ± 0.5 GeV/cm3. This is at mild tension with simple 
spherical extrapolations from the Milky Way’s rotation curve.

• Improved modelling of baryonic processes (galaxy formation) are vital 
for making concrete predictions for the dark matter distribution on 
small scales. We have a new tool that we are applying to this problem. 

Conclusions
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