

ETH Zürich | University of Leicester

With:

Silvia Garbari, Alex Hobbs, David Cole, Walter Dehnen, Mark Wilkinson, George Lake, Lucio Mayer, Fabio Governato, Alyson Brooks, Romain Teyssier, Prasenjit Saha, Jonathan Coles

Background | The standard cosmological model LCDM

WMAP team; e.g. Dunkley et al. 2009

Background | The standard cosmological model LCDM

I. Gravity as a dark matter probe

I. Gravity as a dark matter probe

I. Gravity as a dark matter probe

2. Dark matter as a particle

I. Gravity as a dark matter probe

2. Dark matter as a particle

I. Gravity as a dark matter probe

2. Dark matter as a particle

Create

Background | Talk outline

- I. Theory. How to calculate the DM distribution (for an assumed DM fluid)
- 2. Observations. What can we measure? What do we learn?
- 3. Direct/indirect probes of particle dark matter. Measuring the local dark matter distribution
- 4. Conclusions / Future prospects

Potter 2006; Springel 2008; Stadel 2009; Bode et al. 2001

Potter 2006; Springel 2008; Stadel 2009; Bode et al. 2001

Z=36.4

Doug Potter 2006

Potter 2006; Springel 2008; Stadel 2009; Bode et al. 2001

Potter 2006; Springel 2008; Stadel 2009; Bode et al. 2001

Z=0.18

Z=0.18

Potter 2006; Springel 2008; Stadel 2009; Bode et al. 2001

Tuesday, April 3, 2012

Doug Potter 2006

Potter 2006; Springel 2008; Stadel 2009; Bode et al. 2001

Z=0.18

Doug Potter 2006

Potter 2006; Springel 2008; Stadel 2009; Bode et al. 2001

Z=0.18

Z=0.18

Doug Potter 2006

Potter 2006; Springel 2008; Stadel 2009; Bode et al. 2001

Z=0.18

Z=0.18

Doug Potter 2006

Doug Potter 2006

Potter 2006; Springel 2008; Stadel 2009; Bode et al. 2001

Doug Potter 2006

Potter 2006; Springel 2008; Stadel 2009; Bode et al. 2001

I. Calculating the DM dist. | The importance of baryons

I. Calculating the DM dist. | The importance of baryons

I. Calculating the DM dist. | The importance of baryons

I. Calculating the DM dist. | The importance of baryons

I. Calculating the DM dist. | The importance of baryons

Read & Gilmore 2005; Navarro et al. 1996

I. Calculating the DM dist. | The importance of baryons

Read & Gilmore 2005; Navarro et al. 1996

I. Calculating the DM dist. | The importance of baryons

Read & Gilmore 2005; Navarro et al. 1996

Teyssier, Pontzen, Dubois & Read in prep. 2012

Teyssier, Pontzen, Dubois & Read in prep. 2012

Teyssier, Pontzen, Dubois & Read in prep. 2012

I. Calculating the DM dist. | The importance of baryons

Teyssier, Pontzen, Dubois & Read in prep. 2012

Teyssier, Pontzen, Dubois & Read in prep. 2012
Doug Potter 2006

Tuesday, April 3, 2012

Lake 1989; Read et al. 2008/9

Doug Potter 2006

Tuesday, April 3, 2012

Lake 1989; Read et al. 2008/9

Doug Potter 2006

Tuesday, April 3, 2012

Lake 1989; Read et al. 2008/9

iky Way mass gals. | Governato et al. 2007/2008 concordance LCDM 1.4x10⁶ dark matter; 3x10⁶ stars; 0.73x10⁶ gas force softening: 0.3 kpc DM particle mass: 7.6x10⁵ Msun star particle mass: 0.23x10⁵ Msun gas particles mass: 0.34x10⁵ Msun

Read et al., MNRAS 2009; arXiv:0902.0009

(ilky Way mass gals.) Governato et al. 2007/2008 concordance LCDM L4x10⁶ dark matter; 3x10⁶ stars; 0.73x10⁶ gas force softening: 0.3 kpc DM particle mass: 7.6x10⁵ Msun star particle mass: 0.23x10⁵ Msun gas particles mass: 0.34x10⁵ Msun

Read et al., MNRAS 2009; arXiv:0902.0009

3 Milky Way mass gals. | Governato et al. 2007/2008 concordance LCDM 1.4x10⁶ dark matter; 3x10⁶ stars; 0.73x10⁶ gas force softening: 0.3 kpc DM particle mass: 7.6x10⁵ Msun star particle mass: 0.23x10⁵ Msun gas particles mass: 0.34x10⁵ Msun

Read et al., MNRAS 2009; arXiv:0902.0009

3 Milky Way mass gals. | Governato et al. 2007/2008 concordance LCDM 1.4x10⁶ dark matter; 3x10⁶ stars; 0.73x10⁶ gas force softening: 0.3 kpc DM particle mass: 7.6x10⁵ Msun star particle mass: 0.23x10⁵ Msun gas particles mass: 0.34x10⁵ Msun

Read et al., MNRAS 2009; arXiv:0902.0009

Read et al., 2008/9; Bruch et al. 2009a/b.

Read et al., 2008/9; Bruch et al. 2009a/b.

Read et al., 2008/9; Bruch et al. 2009a/b.

 $\rho_{dd} = 0.25 - 1.5 \rho_{shm}; v_{lag} = 0 - 150 \text{km/s}; \sigma = 50 - 90 \text{km/s}$

Read et al., 2008/9; Bruch et al. 2009a/b.

 $\rho_{dd} = 0.25 - 1.5 \rho_{shm}; v_{lag} = 0 - 150 \text{km/s}; \sigma = 50 - 90 \text{km/s}$

- Boosts the direct detection signal at low recoil energy by a factor ~3 in the 5-20keV range.
- Shifts the phase of the annual modulation signal allowing the WIMP mass to be determined.
- Significantly boosts WIMP capture in the Sun and Earth by factors of ~10 and ~1000, respectively.

Read et al., 2008/9; Bruch et al. 2009a/b.

2. Gravity as a DM probe | The mass function

2. Gravity as a DM probe | The mass function

2. Gravity as a DM probe | The mass function

2. Gravity as a DM probe | The mass function

2. Gravity as a DM probe | Quasar absorption

Movie by Andrew Pontzen

2. Gravity as a DM probe | Quasar absorption

2. Gravity as a DM probe | Quasar absorption

Viel et al. 2008

2. Gravity as a DM probe | Quasar absorption

Viel et al. 2008

Fornax

Battaglia et al. 2008; Walker & Penarrubia 2012; Amorisco & Evans 2012

$$\frac{df}{dt} = 0 = \frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} - \nabla \Phi \cdot \frac{\partial f}{\partial \mathbf{v}}$$

Battaglia et al. 2008; Walker & Penarrubia 2012; Amorisco & Evans 2012

Battaglia et al. 2008; Walker & Penarrubia 2012; Amorisco & Evans 2012

$$\sigma_P^2(R) = \frac{2}{I(R)} \int_R^\infty dr \, \nu(r) f(r) \, \frac{GM(r)}{r}$$
$$\times \int_R^r dw \, \frac{w}{f(w)\sqrt{w^2 - R^2}} \left[1 - \beta(w) \, \frac{R^2}{w^2} \right]$$

Battaglia et al. 2008; Walker & Penarrubia 2012; Amorisco & Evans 2012

Battaglia et al. 2008; Walker & Penarrubia 2012; Amorisco & Evans 2012

Battaglia et al. 2008; Walker & Penarrubia 2012; Amorisco & Evans 2012

2. Gravity as a DM probe | Observations

70kpc

A1703

Saha, Read & Williams 2006; Saha & Read 2009; and see Limousin et al. 2008

Lensing degeneracies ...

70kpc

Lensing degeneracies ...

 $\theta_E^2 = \frac{D_{LS}}{D_S D_L} \frac{4GM}{c^2}$

A1703

70kpc

Lensing degeneracies ...

 $\theta_E^2 = \frac{D_{LS}}{D_S D_L} \frac{4GM}{c^2}$

Saha & Read 2009

Lensing degeneracies ...

AI703

Saha & Read 2009

70kpc

A1703

Saha, Read & Williams 2006; Saha & Read 2009; and see Limousin et al. 2008

Saha, Read & Williams 2006; Saha & Read 2009; and see Limousin et al. 2008

Quint at z=0.88; all others are at z=2.2-3 (the cluster is at z=0.28 ~IGpc away)

Saha & Read 2009

Saha & Read 2009

Read, Coles & Saha, 2007/09/ongoing

Read, Coles & Saha, 2007/09/ongoing

Read, Coles & Saha, 2007/09/ongoing

Read, Coles & Saha, 2007/09/ongoing

3. Detecting DM particles | 'Direct' detection

Detector

Garbari, Read & Lake 2011

3. Detecting DM particles | 'Direct' detection

Garbari, Read & Lake 2011

3. Detecting DM particles | 'Direct' detection

$$\frac{dR}{dE} = \frac{\rho \sigma_{wn} |F(E)|^2}{2m\mu^2} \int_{v>\sqrt{ME/2\mu^2}}^{v_{max}} \frac{f(\mathbf{v}, t)}{v} d^3 v$$
Particle | Astro

Garbari, Read & Lake 2011

I. Local measure:

I. Local measure:

2. Global measure:

 $ho_{\rm dm,ext}$

I. Local measure:

I. Local measure:

2. Global measure:

 $ho_{\rm dm,ext}$

2. Global measure:

Prolate

Oblate/dark disc

Our Minimal Assumption (MA) method:

$$\frac{\partial^2 \Phi}{\partial z^2} - 4\pi G \sum_i \nu_{0,i} \exp\left(-\frac{\Phi(z)}{\overline{v_{z,i}^2}}\right) - 4\pi G \rho_{\rm dm}^{\rm eff} = 0$$
$$\frac{\nu_i(z_*)}{\nu_i(0)} = \frac{\overline{v_{z,i}^2}(0)}{\overline{v_{z,i}^2}(z_*)} \exp\left(-\int_0^{z_*} \frac{1}{\overline{v_{z,i}^2}(z)} \frac{d\Phi}{dz} dz\right)$$

Assumes only:

- Equilibrium
- 'Tilt' term in Jeans equation small

All other uncertainties MCMC marginalised

Development of Bahcall (1989)
Garbari, Read & Lake 2011

Unevolved disc

Garbari, Read & Lake 2011

Garbari, Read & Lake 2011

3. Detecting DM particles | The local DM density \mathbf{O} 0 0 \mathbf{O} 0 0 \mathbf{O} \bigcirc

Garbari, Read & Lake 2011

3. Detecting DM particles | The local DM density \mathbf{O} 0 0 \mathbf{O} 0 0 \mathbf{O} \bigcirc

Garbari, Read & Lake 2011

Garbari, Read & Lake 2011

Garbari, Read & Lake 2011

Garbari, Read & Lake 2011

Garbari, Read & Lake 2011

3. Detecting DM particles | The local DM density Unevolved disc

Garbari, Read & Lake 2011

3. Detecting DM particles | The local DM density Unevolved disc

Garbari, Read & Lake 2011

3. Detecting DM particles | The local DM density Evolved disc; MA method

3. Detecting DM particles | The local DM density Evolved disc; MA method

Garbari, Liu, Read & Lake 2012, in prep.

I. Need a (good) mass model

Garbari, Liu, Read & Lake 2012, in prep.

I. Need a (good) mass model

Visible Mass Model by Flynn et al 2006

> density errors Stars: 10-20% Gas*: 50%

	Component	$ \nu_{i,0}(0) $	$\overline{v_{z,i}^2}(0)$
		$[{ m M}\odot/{ m pc}^3]$	$[\rm km/s]$
	H_2^*	0.021	4.0 ± 1.0
	$\mathrm{HI}(1)^*$	0.016	7.0 ± 1.0
	$\mathrm{HI}(2)^*$	0.012	9.0 ± 1.0
	Warm gas^*	0.0009	40.0 ± 1.0
	Giants	0.0006	20.0 ± 2.0
	$M_V < 2.5$	0.0031	7.5 ± 2.0
	$2.5 < M_V < 3.0$	0.0015	10.5 ± 2.0
	$3.0 < M_V < 4.0$	0.0020	14.0 ± 2.0
	$4.0 < M_V < 5.0$	0.0022	18.0 ± 2.0
	$5.0 < M_V < 8.0$	0.007	18.5 ± 2.0
	$M_V > 8.0$	0.0135	18.5 ± 2.0
	White dwarfs	0.006	20.0 ± 5.0
S:	Brown dwarfs	0.002	20.0 ± 5.0
ó;	Thick disc	0.0035	37.0 ± 5.0
%	Stellar halo	0.0001	100.0 ± 10.0

Garbari, Liu, Read & Lake 2012, in prep.

2. Need a good tracer

Garbari, Liu, Read & Lake 2012, in prep.

- 2. Need a good tracer
 - Well mixed => equilibrium
 - Well populated => good statistics (at high z!)
 - Volume complete
 - Velocity data (v_z)
 - Good distances

Garbari, Liu, Read & Lake 2012, in prep.

- 2. Need a good tracer
 - Well mixed => equilibrium
 - Well populated => good statistics (at high z!)
 - Volume complete
 - Velocity data (v_z)
 - Good distances
 - => K dwarfs (c.f. Kuijken & Gilmore 1989-91)
 - 2016 K dwarf stars; photometry in B and V bands
 - 580 K dwarfs with radial velocities

Garbari, Liu, Read & Lake 2012, in prep.

Garbari, Liu, Read & Lake 2012, in prep.

Garbari, Liu, Read & Lake 2012, in prep.

phot spec Recalibrated distances using Hipparcos and new survey data New MA modelling technique relies on fewer assumptions MCMC to marginalise over uncertainties star by star

x kpc

Garbari, Liu, Read & Lake 2012, in prep.

3. Detecting DM particles | The local DM density $[\text{GeV/cm}^3]$ Aiminary! 0.00 3.04 0.76 1.522.28 SHM MA 50 90%40 90% + RC $\gtrsim 30$ dark disc q = 0.720 q = 0.9q = 110 ()0.02 0.04 0.08 0.10 0.06 $ho_{\rm dm} [{ m M}_\odot/{ m pc}^3]$

Garbari, Liu, Read & Lake 2012, in prep.

3. Detecting DM particles | The local DM density $[\text{GeV/cm}^3]$ Aiminary! 0.00 3.04 0.76 1.522.28 SHM MA 50 90%40 90% + RC $\gtrsim 30$ dark disc q = 0.720 q = 0.9q = 110 ()0.02 0.04 0.08 0.10 0.06 $ho_{\rm dm} [{ m M}_\odot/{ m pc}^3]$

Garbari, Liu, Read & Lake 2012, in prep.

3. Detecting DM particles | The local DM density $[\text{GeV/cm}^3]$ Aliminary! 3.04 0.00 0.76 1.52 2.28 SHM MA 50 90%40 90% + RC $\gtrsim 30$ dark disc q = 0.720 q = 0.9q = 110 $\left(\right)$ 0.02 0.08 0.04 0.10 0.06 $ho_{\rm dm} [{ m M}_\odot/{ m pc}^3]$

Garbari, Liu, Read & Lake 2012, in prep.

3. Detecting DM particles | The local DM density $[\text{GeV/cm}^3]$ Aliminary! 3.04 0.00 0.76 1.52 2.28 SHM MA 50 90%40 90% + RC $\gtrsim 30$ dark disc q = 0.720 q = 0.9q = 110 $\left(\right)$ 0.02 0.04 0.08 0.10 0.06 $ho_{\rm dm} [{ m M}_\odot/{ m pc}^3]$

Garbari, Liu, Read & Lake 2012, in prep.

3. Detecting DM particles | The local DM density $[\text{GeV/cm}^3]$ Aliminary! 0.00 3.04 0.76 1.52 2.28 SHM MA 50 90%40 90% + RC $\gtrsim 30$ dark disc q = 0.720 q = 0.9q = 110 $\left(\right)$ 0.02 0.04 0.08 0.10 0.06 $ho_{\rm dm} [{ m M}_\odot/{ m pc}^3]$

Garbari, Liu, Read & Lake 2012, in prep.

3. Detecting DM particles | The local DM density $[\text{GeV/cm}^3]$ Aliminary! 0.00 3.04 0.76 1.52 2.28 SHM MA 50 90%40 90% + RC $\gtrsim 30$ dark disc q = 0.720 q = 0.9q = 110 $\left(\right)$ 0.02 0.04 0.08 0.10 0.06 $ho_{\rm dm} [{ m M}_\odot/{ m pc}^3]$

Garbari, Liu, Read & Lake 2012, in prep.

3. Detecting DM particles | The local DM density $[\text{GeV/cm}^3]$ Aliminary! 3.04 0.00 0.76 1.52 2.28 SHM MA 50 90%40 90% + RC $\gtrsim 30$ dark disc q = 0.720 q = 0.9q = 110 $\left(\right)$ 0.02 0.04 0.08 0.10 0.06 $ho_{\rm dm} [{ m M}_\odot/{ m pc}^3]$

Garbari, Liu, Read & Lake 2012, in prep.

$\rho_{\rm dm} = 0.022^{+0.015}_{-0.013} \,\rm M_\odot/pc^3$ $(\rho_{\rm dm} = 0.85^{+0.57}_{-0.50} \,\rm GeV/cm^3)$

Preliminary!

Sag Stream 0.85 < q < 1.05

Garbari, Liu, Read & Lake 2012, in prep.

Conclusions

- Down to galaxy cluster scales dark matter is cold and 'standard'.
- On dwarf galaxy scales there is mounting evidence for dark matter cores. However, these can arise naturally as a consequence of rapid, multiple, gas inflows and outflows driven by mergers and supernovae.
- Baryons also influence the local dark matter distribution. Including them leads to the expectation that our Galaxy has a dark matter disc.
- We have recently measured the local dark matter density, finding: $\rho_{DM} = 0.85 \pm 0.5 \text{ GeV/cm}^3$. This is at mild tension with simple spherical extrapolations from the Milky Way's rotation curve.
- Improved modelling of baryonic processes (galaxy formation) are vital for making concrete predictions for the dark matter distribution on small scales. We have a new tool that we are applying to this problem.