DESY Seminar

Hamburg & Zeuthen · 13 & 14 November 2012

Recent BABAR Results Semileptonic/Leptonic B Decays: Impact on New Physics

I.N.F.N. Padova

M.Rotondo

Outline

- BaBar dataset
- Quark Mixing Matrix and Unitarity Triangle
- Semileptonic Decays
 - Recent |V_{ub}| measurement
 - Results on $B \to D^{(\star)} \, \tau \, \nu_\tau$
- Results on leptonic $B \rightarrow \tau v_{\tau}$ decay
- Implications for the widely discussed 2HDM
- Summary

PEP-II storage rings and BaBar experiment

- Operation 1999-2008
- Linear accelerator injects in PEP-II
 - Asymmetric beams
 - 9.0 GeV electrons
 - 3.1 GeV positrons
 - CM energy of the Y(4S) = 10.58 GeV most of the time
 - Collected data at the Y(2S-3S) and above the Y(5S)

May 1999 · Apr 2008

- At Y(4S) center of mass energy, large production of B meson from Y decays
 - σ_{10.58GeV}(e⁺e⁻→bb) = 1.06nb
 - LHC: $\sigma_{7TeV}(pp \rightarrow bb) \sim 200 \cdot 10^{3} nb$

- PEPII/BaBar: Charm / Tau factory!
 - σ(cc)=1.30nb
 - σ(ττ)=0.91nb
- Study light quark and cc production using ISR and γγ events

Broad physics program

- BaBar still producing a lot of results
 - 500 published papers in total
 - 13 published + 14 submitted since Jan/2012
 - Diverse Physics
 - Strong competition with Belle

DESY

BELLE

CKM Matrix Introduction

• The Standard Model quark flavor sector requires the knowledge of the quark masses and of the strength of the charge-current gauge interactions (**C**abibbo **K**obayashi **M**askawa matrix)

- Experimental evidence of a strongly hierarchical structure
- V[†]_{CKM} V_{CKM} = 1 ⇒ 4 independent parameters
 - 3 real + 1 complex phase (CPV)
 - A, λ~0.22, |ρ+iη|=O(1)

The Wolfenstein parameterization

V_{km}

$$\mathcal{I}_{\mathsf{CKM}} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

M.Rotondo

CKM Matrix

- CKM cannot be predicted in the SM
- Most SM extensions contain new CP-violating phases and new quark-flavor changing interactions

 $\begin{array}{ccc} V_{ud} & V_{us} \\ \pi \rightarrow \ell \nu & {\mathsf{K}} \rightarrow \pi \ell \nu \\ \beta \text{-decay} & {\mathsf{K}} \rightarrow \ell \nu \end{array}$ $b \to u \ell \nu$ $B \rightarrow \pi \ell \nu$ β-decay $\begin{array}{ccc} V_{cd} & V_{cs} & V_{cb} \\ D \rightarrow \pi \ell \nu & D \rightarrow K \ell \nu & b \rightarrow c \ell \nu \\ \nu + d \rightarrow c + \ell & D_s \rightarrow \ell \nu & B \rightarrow D \ell \nu \end{array}$ \mathbf{V}_{tb} $t \rightarrow b\ell v$ $egin{array}{c} {\sf V}_{{
m ts}} \ \langle B_{
m s} | \overline{B}_{
m s}
angle \ {\sf b} o {\sf s} \gamma \end{array}$ v_{td}

∼ |V_{km}|² **q**_m

The CKM matrix extracted from tree-level processes

Unitarity Triangle

- V[†]_{CKM} V_{CKM} = 1 ⇒ 9 conditions on the CKM parameters (6 triangular relations):
 - 3rd x 1st is of great phenomenological interest
 - all sizes of the same order in λ : CP violation is "visible"

 $1 - \lambda^2 / 2$

-λ

 $A\lambda^3(1-\rho-i\eta)$

 $A\lambda^{3}(\rho-i\eta)$

 $A\lambda^2$

1

λ

 $1 - \lambda^2 / 2$

-Aλ²

UT Constraints

From loop mediated processes particularly sensitive to New Physics

• Redundant constraints on UT and test of CKM unitarity \rightarrow powerful test of the SM

DESY

UT Status (Summer 2012)

Redundant and consistent determinations of various CKM elements

UT Status (Summer 2012)

Redundant and consistent determinations of various CKM elements

IV_{ub}

Phys. Rev. D 86, 092004 (2012)

Phys.Rev.Lett. 109 101802 (2012)

Semileptonic Decays

- QCD corrections to parton level decay rate
- Operator Product Expansion predicts the total rate Γ_{u}

Semileptonic Decays

- QCD correction parameterized in the Form Factors
- Lattice-QCD, LCSR

$$\frac{d\Gamma(B^0 \to \pi^- \ell^+ \nu)}{dq^2} = \frac{G_F^2}{192\pi^3 m_B^3} \left[(m_B^2 + m_\pi^2 - q^2)^2 - 4m_B^2 m_\pi^2 \right]^{3/2} |\mathbf{V_{ub}}|^2 |\mathbf{f_+}(\mathbf{q^2})|^2$$

In the $m_{\ell} \sim 0$ only f+ contributes

V_{ub} from inclusive decays

 $\frac{\Gamma(b \to c\ell\nu)}{\Gamma(b \to u\ell\nu)} \approx 50$

Experimental resolution leads to irreducible $b \rightarrow c \ell v$ contamination

M.Rotondo

DESY

Kinematics to extract the signal: $m_{\mu} << m_{c}$

- Cut limited region of phase space (f_{μ})
- From partial BF $\rightarrow |V_{ub}|$

$$|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(\overline{B} \to X_u \ell \bar{\nu})}{\tau_B \, \Delta \Gamma_{\text{theory}}}}.$$

 m_{χ}

Not to scale!

Inclusive decays: Shape Function

- Cut in limited region of phase space is theoretically challenge:
 - OPE breaks down: $\Delta \Gamma_u$ depends on $O(1/m_b)$ non-perturbative effects!
 - Increase dependence on b-quark mass
 - Need the **shape function**:
 - In principle directly from experimental data with $B \rightarrow X_s \gamma$

In practice: the SF is determined indirectly from fitting many kinematical variables related to $B \rightarrow X_s \gamma$ and $B \rightarrow X_c \ell \nu$ or only to $B \rightarrow X_c \ell \nu$ with m_c constrained

DESY

Events Reconstruction

- Two B in the Y decay: $e^+e^- \rightarrow Y(4S) \rightarrow BB$
 - Fully reconstruct one B in hadronic decay modes (with a D or a D*)
 - The rest comes from the other B (B^{recoil})
- Tag efficiency ~ 0.2-0.4%
- Recoil momentum is know from P_{tag}

$$ec{p}_{B^{ ext{recoil}}} = -ec{p}_{B^{ ext{tag}}}$$

$$p_{\nu} = p_{B^{\text{recoil}}} - p_X - p_\ell$$
 (p_v²=m²_{mise}

DESY

$$p_X = \sum_i p_i^{\text{track}} + \sum_i p_i^{\text{clust.}}$$

$$q^2 = (p_{B^{\text{recoil}}} - p_X)^2$$

Recoil kinematics boosted in the B^{recoil}

 ΔB in the B rest frame

Fit results in limited regions of phase space

M.Rotondo

Best Measurements ($\sigma_{exp} \oplus \sigma_{theory}$)

• Fit the (M_x,q^2) distribution in the region defined by $p_{lepton} > 1$ GeV: 89% of Phase Space

Measurement	BLNP $ V_{ub} $ [10 ⁻³]	$GGOU V_{ub} [10^{-3}]$	DGE $ V_{ub} $ [10 ⁻³]
$(m_X, q^2); p_\ell^{B *} > 1.0 \text{ GeV}$	$4.28 \pm 0.23^{+0.18}_{-0.20}$	$4.35 \pm 0.24^{+0.09}_{-0.10}$	$4.40 \pm 0.24^{+0.12}_{-0.13}$
$ ho_\ell^B*>1.0~{ m GeV}$	$4.30 \pm 0.28 ^{+0.18}_{-0.20}$	$4.36 \pm 0.30^{+0.09}_{-0.10}$	$4.42 \pm 0.30^{+0.13}_{-0.13}$
Belle [Phys.Rev.Lett.104:021801]	$4.47 \pm 0.27 ^{+0.19}_{-0.21}$	$4.54 \pm 0.27 ^{+0.10}_{-0.11}$	$4.60 \pm 0.27^{+0.11}_{-0.13}$

Largest systematics: signal model

Comparison of the available calculations

Exclusive $B \rightarrow \pi/\rho \ell v$

(the ρ and other mesons are difficult on lattice because these are unstable and have a large $\Gamma/m)$

Exclusive $|V_{ub}|$ from $\mathbf{B} \rightarrow \pi \ell \mathbf{v}$ HPQCD 10 One FF (for massless leptons) FNAL/MILC 8 LCSR L-QCD (HPQCD, FNAL) Unquenched calculations 6 Light Cone Sum Rules 4 Reliable at low q² $f_{+.0}(0)=0.28\pm0.03$ (Khodjamirian et al (KMOW) 2011) 0 5 10 20 25 15 a² (GeV²) M.Rotondo

Techniques employed at the BFactories

DESY

Exclusive $B \rightarrow \pi \ell \nu$

- Identity only π+e/μ
- Neutrino from the rest of the event
 - (B momentum magnitude is know)

$$m_{ES} = \sqrt{E_{beam}^{*2} - \mathbf{p}_{\pi\ell\nu}^{*2}}$$
$$\Delta E = E_{\pi\ell\nu}^* - E_{beam}^*$$

- 12K signal $B \rightarrow (\pi^+ + \pi^0) \ell v$
 - S/N~0.1
- Same technique used also to extract the BF and the FF shape of other resonances
 - $B \rightarrow \eta \ell \nu$
 - B→η'ℓν
 - $B \rightarrow \omega \ell v$

|V_{ub}| from exclusive decays

Simultaneous fit to data and L-QCD calculations

M.Rotondo

- Use the hadronic B tag with 710 fb⁻¹
 - New algorithm: tag selection based on NeuroBayes NN (NIM A654 (2011))

 $B^+ \to \pi^0 \ell \nu$

World average

World average

Inclusive · Exclusive difference

- Long standing puzzle
 - Despite progresses from B-factories+Theory, the inclusive-exclusive discrepancy still present: Δ @ 2.5-3.0 σ

Inclusive · Exclusive difference

- Long standing puzzle
 - Despite progresses from B-factories+Theory, the inclusive-exclusive discrepancy still present: Δ @ 2.5-3.0 σ

... if New Physics, what kind?

Left Right model

F. Bernlochner @ ICHEP12

New physics observable via right-handed currents? $|V_{ub}| = |V_{ub}^L| f(\epsilon_R' = \epsilon_R \Re \frac{V_{ub}^R}{V_{ub}^L})$

$B \longrightarrow D^{(*)} \tau \nu_{\tau}$

Evidence for an excess over the SM prediction

Phys.Rev.Lett. 109 101802 (2012)

Heavy leptons: introduction

- Charged Higgs required in multiple New Physics scenarios
 - Coupling is proportional to the fermion mass: H⁻ ℓ coupling $\propto m_{\ell}$

Introduction to the event reconstruction

Weak signal signature

- Decay with missing momentum
 - Many neutrinos in the final state
- Lack of kinematics constraints in the final state

Use the hadronic B sample: reconstruct one B and look at the rest of the event

- Expected only tracks from signal
- No additional tracks
- Little activity in the Calorimeter

$B \rightarrow D^{(*)} \tau v_{\tau}$: measurement

• We measure directly the *R*(D) and *R*(D*) ratios

Several experimental and theoretical uncertainties cancel in ratio

- D reconstruction / Particle ID /tracking eff.
- |V_{cb}| & FFs (partially)

Very precise SM prediction

 $\begin{array}{l} \mathsf{R}(\mathsf{D}) = 0.297 \pm 0.017 \text{ and } \mathsf{R}(\mathsf{D}^*) = 0.252 \pm 0.003 \\ \sigma = 5.7\% \qquad \qquad \sigma = 1.2\% \end{array}$

Existing measurements

Previous measurements exceed SM by 1-2 σ

Update BaBar 2008 with 2x data and 2x efficiency - improved tag B and better muon ID

$B \rightarrow D^{(*)} \tau v_{\tau}$: Yields Extraction

- Simultaneous un-binned M.L. Fit
 - 4 signal samples $D^0\ell$, $D^{*0}\ell$, $D^+\ell$, $D^{*+}\ell$
 - 4 $D^{(*)}\pi^0 \ell \nu$ Control samples
 - 2 dimensional distributions:

$$m_{miss}^2 = (p_{e+e-} - p_{tag} - p_{D(*)} - p_{\ell})^2$$

 p_{ℓ}^* in the B_{sig} rest-frame

- PDFs from MC: approximated using KEYS function
- Fitted Yields
 - 4 $D^{(*)}\tau v$ + 4 $D^{(*)}\ell v$ + 4 $D^{**}\ell v$

Results of Fit $B \rightarrow D^* \tau v_{\tau}$

Isospin Constrained

M.Rotondo

DESY

D*0+D*+

1.5

 $p_1^{\overline{2}}$ (Gev)

Free

yields

Fixed

M.Rotondo

Results and Systematics Uncertainties

Decay	$N_{\rm sig}$	$N_{\rm norm}$	$R(D^{(*)})$	$\mathcal{B}(B \to D^{(*)} \tau \nu) (\%)$	$\Sigma_{\rm tot}(\sigma)$
$D\tau^-\overline{\nu}_{\tau}$	489 ± 63	2981 ± 65	$0.440 \pm 0.058 \pm 0.042$	$1.02 \pm 0.13 \pm 0.11$	6.8
$D^* \tau^- \overline{\nu}_{\tau}$	888 ± 63	11953 ± 122	$0.332 \pm 0.024 \pm 0.018$	$1.76 \pm 0.13 \pm 0.12$	13.2

	<i>R</i> (D)	<i>R</i> (D*)	ρ_{corr}
D** τ/l ν	5.8	3.7	0.62
MC statistics	5.0	2.5	-0.48
Continuum and BB bkg	4.9	2.7	-0.30
$\epsilon_{sig}^{\prime}/\epsilon_{norm}$	2.6	1.6	0.22
Syst. Uncertainty	9.5	5.3	0.05
Stat. Uncertainty	13.1	7.1	-0.45
Total Uncertainty	16.2	9.0	-0.27

Uncertainties due to FFs, PID, tracks, photons and soft pion reconstruction cancel in the ratio: contribution ~1%

SM Predictions of R(D) and R(D*)

• The new measurements are fully compatible with earlier results

Average does not include this measurement

[*] Kaminik Mescia 2008 SM Predictions of R(D) and $R(D^*)$

The new measurements are fully compatible with earlier results

Average does not include this measurement

Fajfer et al 2012

DESY

2HDM calculation

Differential decay rate in the SM

$$B \rightarrow D^{*} FFs$$

$$\frac{d\Gamma(\overline{B} \rightarrow D^{*}\ell^{-}\overline{\nu}_{\ell})}{dq^{2}} = \frac{G_{F}^{2}|V_{cb}|^{2}|p|q^{2}}{96\pi^{3}m_{B}^{2}} \left(1 - \frac{m_{\ell}^{2}}{q^{2}}\right)^{2} \left[\left(|H_{++}|^{2} + |H_{--}|^{2} + |H_{00}|^{2}\right) \left(1 + \frac{m_{\ell}^{2}}{2q^{2}}\right) + \frac{3m_{\ell}^{2}}{2q^{2}}|H_{0t}|^{2}\right]$$
A charged Higgs (**Type II 2HDM**) of
spin 0 coupling with the τ will affect H_{0t}

$$H_{0t}^{2HDM} \approx H_{0t}^{SM} \times \left(1 - \frac{\tan^{2}\beta}{m_{H^{+}}^{2}} \frac{q^{2}}{1 \mp m_{c}/m_{b}}\right)$$

$$- \text{ for } B \rightarrow D\tau \nu_{\tau}$$

$$+ \text{ for } B \rightarrow D^{\tau} \nu_{\tau}$$

$$+ \text{ for } B \rightarrow D^{\tau} \nu_{\tau}$$
Effects both the signal efficiency and the
signal yields (m^{2}_{miss} p^{*}_{t} \text{ shapes}): simulated
reweighting the MC signal events
M.Rotomode DESY

DESY

Can we explain the excess events?

- The combination of R(D) and R(D*) excludes the Type II
 2HDM in the full tanβ-m_H parameter space (with m_H>10 GeV) with a probability >99.8%
 - Low m_H range (m_H <~300 GeV) already excluded by $B \rightarrow X_s \gamma$ data!

Some interesting following papers

- SM prediction is sensitive to the f₀ FF
 - Becirevic, Kosnik, Tayduganov, (1206.4977) proposal, using lattice data
 - MILC collaboration: 1206.4992, first SM lattice calculation unquenched (difference with SM reduced to 3.2 σ)
- 2HDM type II (alone) cannot accommodate the results on $B\to\tau\,\nu_{\tau}$ and $B\to D^{(*)}\,\tau\,\nu_{\tau}$
- New models have been studied so far
 - Crivellin et al 1206.2634: possibile explanation with Type III 2HDM
 - Fajfer et al. 1206.1872: 2HDM with leptoquarks

Some interesting following papers

- SM prediction is sensitive to the f₀ FF
 - Becirevic, Kosnik, Tayduganov, (1206.4977) proposal, using lattice data
 - MILC collaboration: 1206.4992, first SM lattice calculation unquenched (difference with SM reduced to 3.2 σ)
- New Belle measurements with improved B_{tag} (NeuroBayes[®]) welcome!
- Confirmation? If yes, look for other observables:
 - q² distribution, τ polarization using $\tau \rightarrow \pi v_{\tau}$, D* polarization from D* decay angular analysis => Rich physics for future SuperB factories and... perhaps also for LHCb now!!!

$B \to \tau \, \nu_\tau$

arXiv:1207.0698

Analysis of B $\rightarrow \tau \, \nu_{\tau}$

Theoretically very clean

$$\mathcal{B}(B \to l\nu) = \frac{G_F^2 m_B}{8\pi} m_l^2 (1 - \frac{m_l^2}{m_B^2})^2 f_B^2 |V_{ub}|^2 \tau_B$$

 $B\{ \frac{b}{\overline{u}} \xrightarrow{\mathbf{W}^{-}} \underbrace{\tau^{-}}_{\overline{v}_{\tau}}$

Allow $|V_{ub}|$ extraction from $\rm f_B$ & BF

Experimentally difficult:

- helicity suppression
- BF(τ)~10⁻⁴ (and BF(μ)~10⁻⁷ out of reach of current Bfactories
- only the Branching Fraction is accessible)

Power probe of physics beyond the SM

$$\begin{split} \mathcal{B}_{2HDM}(B \to \tau \nu) = \\ \frac{G_F^2 m_B m_\tau^2}{8\pi} \left(1 - \frac{m_\tau^2}{m_B^2} \right)^2 f_B^2 |V_{ub}|^2 \tau_B & \text{B(τ\nu$)}\\ \times \left(1 - m_B^2 \frac{\tan^2 \beta}{m_H^2} \right)^2 & \text{In the SM} \\ \end{split}$$

Results: $B \rightarrow \tau v_{\tau}$

Fit to residual energy in the EMC simultaneously in 4 τ decay modes •

Comparison with 2HDM-II

Uncertainty in SM prediction is dominated by $|V_{ub}|$

$$\begin{pmatrix} \mathcal{B}_{2HDM}(B \to \tau\nu) = \\ \frac{G_F^2 m_B m_\tau^2}{8\pi} \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B \\ \times \left(1 - m_B^2 \frac{\tan^2 \beta}{m_H^2}\right)^2 \end{pmatrix}$$

M.Rotondo

Experimental Results on $B \rightarrow \tau v_{\tau}$

M.Rotondo

Exclusion region for 2HDM-II

Using both D · D* results: Type II 2HDM excluded at 99.8% (3.1s)

Exclusion region for 2HDM-II

Using both D · D* results: Type II 2HDM excluded at 99.8% (3.1s)

Summary

- New (legacy) BaBar results on $|V_{ub}|$
 - Puzzle about the Inclusive-Exclusive difference and bad compatibility with indirect extractions
 - Will stay with us for long
- $B \rightarrow D^{(*)} \tau \nu_{\tau}$: not in agreement with SM prediction
 - Wait for a confirmation from Belle (LHCb ?)
- $B \to \tau \, \nu_\tau$: reached the B-factory limits
 - Status is cloudy
 - But will be explored with high precision at SupeB-Factorys.

BACK UP

|V_{ub}| extraction at B-factories

Leptonic Decays

Semileptonic Decays e, μ , τ V_{ub} W⁻ ν_{e} , ν_{μ} , ν

Leptonic and hadronic currents factorize v_{e}, v_{μ}, v_{τ} $\mathcal{M}(B \to \pi \ell^{-} \overline{\nu}) = -i \frac{G_{F}}{\sqrt{2}} \cdot V_{ub} \cdot L^{\mu} H_{\mu}$

 $B \rightarrow \pi$ hadronic current

CKM Matrix measurements

- CKM cannot be predicted in the SM
- Most SM extensions contain new CP-violating phases and new quark-flavor changing interactions

$$\begin{array}{c|ccccc} V_{ud} & V_{us} & V_{ub} \\ \hline \pi \rightarrow \ell \nu & & \mathsf{K} \rightarrow \pi \ell \nu & \mathsf{b} \rightarrow u \ell \nu \\ \hline \beta \text{-decay} & & \mathsf{K} \rightarrow \ell \nu & & \mathsf{B} \rightarrow \pi \ell \nu \\ \hline \\ V_{cd} & V_{cs} & V_{cb} \\ \hline D \rightarrow \pi \ell \nu & D \rightarrow \mathsf{K} \ell \nu & & \mathsf{b} \rightarrow c \ell \nu \\ \nu \text{+} d \rightarrow c \text{+} \ell & \mathsf{D}_s \rightarrow \ell \nu & & \mathsf{B} \rightarrow D \ell \nu \\ \hline \\ V_{td} & V_{ts} & V_{tb} \\ \hline \\ \langle B_d | \overline{B}_d \rangle & \langle B_s | \overline{B}_s \rangle & t \rightarrow \mathsf{b} \ell \nu \\ \hline \\ \mathsf{b} \rightarrow \mathsf{d} \gamma & \mathsf{b} \rightarrow \mathsf{s} \gamma \end{array}$$

 $q_m \sim |V_{km}|^2$

The CKM matrix extracted from tree-level processes

CKM Matrix measurements

- CKM cannot be predicted in the SM
- Most SM extensions contain new CP-violating phases and new quark-flavor changing interactions

Only $V_{td},\,V_{ts}$ cannot be accessed by tree-level processes

(From G.Isidori)

M.Rotondo

Event Reconstruction: Details

- B_{tag} reconstructed in B→D^(*)X, B→D_s^(*)X, B→J/ψX (X=π,K modes with n_X<6) and selected using
 - beam energy substituted mass
 - the energy difference

$$m_{ES} = \sqrt{(E^*_{beam})^2 - (\mathbf{p}^*_{tag})^2}$$
$$\Delta E = E^*_{tag} - E^*_{beam}$$

- Signal side D^(*) in D⁰, D^{*0}, D⁺, D^{*+} and require an identified lepton
- No additional charged particles
- Kinematic selection: $q^2 = (p_B p_{D(*)})^2 = q^2 > 4 \text{ GeV}^2$
- Boosted Decision Tree (BDT)
 - Reduce combinatorial and D** backgrounds
- Because the $B \rightarrow D^{**}(\ell, \tau)v$ have large uncertainties
 - We fit simultaneously also a sample of 4 $D^{(*)}\pi^0 \ell v$
 - same selection as signal but added π^0 : captures $D^{**} \rightarrow D^{(*)} \pi^0$
- Three control samples to validate and correct the simulation:
 - E_{extra} >0.5 GeV, q²<4 GeV, m_{ES}<5.26 GeV
 - + off-peak data to correct lepton spectrum of simulated continuum events

Energy extra in the EMC

Background estimation

Two Higgs Doublet Model

- SM - $\tan\beta/m_{H^+} = 0.3 \text{ GeV}^{-1}$ - $\tan\beta/m_{H^+} = 0.5 \text{ GeV}^{-1}$ - $\tan\beta/m_{H^+} = 1.0 \text{ GeV}^{-1}$