

Does the Boson Decay to Fermions?

Search for $H \rightarrow \tau \tau$, bb @ CMS*

Jim Olsen Princeton University

HEP Seminar, DESY – Hamburg November 20, 2012

*Including MSSM, but excluding ttH(bb) and VH($\tau\tau$)

AP photo

"As a layman, I think we have it. But as a scientist, I have to say, 'What do we have?'" – R. Heuer

Does it couple to fermions?

In the context of the SM Higgs boson phenomenology, we already have strong **indirect** evidence for a coupling to the top quark via the loop in the dominant production mechanism.

Does it decay to fermions?

 2.5σ (Global) 2.9σ (bb)

Is the Tevatron seeing $H \rightarrow bb$?

Brief intro and update of LHC status and non-fermion results from CMS

Higgs Production at the LHC

LHC in 2012, at record luminosity (7 x 10^{33} cm⁻²s⁻¹) and energy (8 TeV), is now producing SM Higgs bosons (M_H = 125 GeV) at a rate ~750/hr

What does a Higgs boson look like?

aLow mass

Narrow! $\Gamma_H / M_H \sim 10^{-5}$ Observed width dominated by *detector resolution*

@High mass

Higgs becomes a broad resonance dominated by *natural width*

Theory input is critical

Latest LHC + CMS Performance

Higher energy (4 TeV per beam) and higher luminosity (> 7e33)

CMS Integrated Luminosity, pp

- Phenomenal performance:
 - Record luminosity (> 5 e 33) obtained soon after startup in 2012
 - Sustained data collection rate of > 1.0 fb⁻¹ /wk
 - Total delivered/recorded @ $8 \text{ TeV} = 21.4 (20.7) \text{ fb}^{-1}$ [>93% CMS efficiency]

Latest results for the SM Higgs:

Channel	m _н range	data set	Data used	mн
	[GeV/c ²]	[fb ⁻¹]	CMS [fb-1]	resolution
1) H → γγ	110-150	5+5/fb	2011+12	1-2%
2) H \rightarrow tau tau	110-145	5+12/fb	2011+12	15%
3) $H \rightarrow bb$	110-135	5+12/fb	2011+12	10% 8-9%
4) $H \rightarrow WW \rightarrow IvIv$	110-600	5+12/fb	2011+12	20%
5) $H \rightarrow ZZ \rightarrow 4I$	110-1000	5+12/fb	2011+12	1-2%

Updates from ZZ, WW, $\tau\tau$, and bb presented at HCP last week

Parity of the new boson from ZZ*

From angular analysis (MELA) of the four-lepton final state, can separate scalar from pseudoscalar: $exp \sim 2\sigma$

Data consistency with $0^+ = 0.5\sigma$

Data consistency with $0^- = 2.4\sigma$

Current data favors SM hypothesis comparing against pseudoscalar alternative

Update on $H \rightarrow WW^* \rightarrow 2\ell 2v$

Adding 1.7x more data increases the observed significance (a) 125 GeV from $\sim 2\sigma$ to $> 3\sigma$

The boson decays are certainly looking more and more SM every day, what about the fermions?

Situation in July (ICHEP): slight deficit in $\tau\tau$, slight excess in bb

Search for $H\to\tau\tau$ @ CMS

Overview

- Importance of $H \rightarrow \tau \tau$:
 - Only currently active probe of lepton coupling
 - Complementarity with H → bb in down-type fermion couplings
 - Largest σ x Br for SM mH < 130 GeV
 - Sensitivity to BSM models
- Broad-based search
 - Currently use all production channels except ttH (only discussing GGF and VBF here)

Decay Channel	Luminosity
HIG-12-043	
$\mu au_{ m h}$	17 fb ⁻¹
$e \tau_h$	17 fb ⁻¹
eμ	17 fb ⁻¹
μμ	17 fb ⁻¹
$\mathbf{\tau}_{\mathbf{h}}\mathbf{\tau}_{\mathbf{h}}$	12 fb ⁻¹ (2012)

Search Strategy

- Dominant background: $Z \rightarrow \tau \tau$
- Analysis strategy depends on tau decays
 - Hadronic decays dominant, but reco/ID challenging
 - Search in e/μ , e/h, μ/h , μ/μ , [and h/h]
- Hadronic tau reconstruction
 - Identify 1-prong and 3-prong decays
- Mass reconstruction
 - Multiple neutrinos, dedicated MVA algorithm
 - Final signal estimate from $m_{\tau\tau}$ shape
- Event categorization
 - Inclusive, VBF, [and VH production]
 - Boosted categories to improve mass resolution and bkg rejection

Tau Reconstruction and ID

Mass Reconstruction(I)

- Attempt to separate $H \rightarrow \tau \tau$ from $Z \rightarrow \tau \tau$
 - Use kinematics of visible decay products (particle flow objects) and MET to build and event-by-event likelihood
- Inputs
 - 4-vectors of tau dtrs
 - MET
 - ME for $\tau \rightarrow \ell \nu \nu$
 - Phase space for $\tau \rightarrow \pi$
- $m_{\tau\tau}$ resolution ~15-20%

Backgrounds

Non-Z backgrounds: EWK (W+jet), obtained from data control regions, ttbar normalized to CMS measurement and checked in control regions

Event Categorization: GGF and VBF

Data/MC: Njet and BDT($\mu\mu$)

Expected Sensitivity (17/fb)

By category

By channel

Example Distributions: VBF

Example Distributions: 0-jet, 1-jet

Most Important Systematic Uncertainties

Experimental Uncertainties		Propagation into Limit Calculation			
Uncertainty	Uncert.	0-Jet	Boost	VBF	
Electron ID & Trigger (*)	±2%	±2%	±2%	$\pm 2\%$	
Muon ID & Trigger (*)	±2%	±2%	±2%	$\pm 2\%$	
Tau ID & Trigger (*)	±7%	±7%	±7%	±7%	
JES (Norm.) (*)	$\pm 2.5 - 5\%$	$\mp 1\%$	$\pm 5\%$	$\pm 10\%$	
b-Tag Efficiency (*)	$\pm 10\%$	$\mp 1\%$	∓2%	∓2%	
Mis-Tagging (*)	$\pm 30\%$	$\mp 1\%$	1 %	1%	
Norm. $Z \rightarrow \tau \tau$	$\pm 3\%$	$\pm 3\%$	$\pm 5\%$	$\pm 13\%$	
Norm. $t\overline{t}$ (*)	$\pm 10 - 30\%$	$\pm 10\%$	$\pm 12\%$	$\pm 30\%$	
Norm EWK	$\pm 30\%$	$\pm 30\%$	$\pm 15 - 30\%$	$\pm 30 - 100\%$	
Norm Fakes	$\pm 10 - 30\%$	$\pm 10\%$	$\pm 10\%$	$\pm 30\%$	
Lumi (Signal & EWK)	$\pm 2.2(5)\%$	$\pm 2.2(5)\%$	$\pm 2.2(5)\%$	$\pm 2.2(5)\%$	
Norm. $W + jets$	$\pm 10 - 30\%$	$\pm 10\%$	$\pm 10 - 30\%$	$\pm 30\%$	
Norm. <i>Z</i> : <i>l</i> fakes τ_h	$\pm 20-100\%$	$\pm 20 - 30\%$	$\pm 20 - 100\%$	$\pm 30\%$	
Norm. Z: jet fakes τ_h	$\pm 20\%$	$\pm 20\%$	$\pm 20\%$	$\pm 30\%$	

- + shape uncertainties on τ/e energy scale.
- + theory uncertainties (O(5-10%)).

R. Wolf (@HCP)

Signal Strength

Search for $H \rightarrow bb @ CMS$

Inclusive $H \rightarrow bb$?

Overwhelmed by QCD production of bottom-quark jets (B/S $\sim 10^9$)

Need to find another haystack! Boosted VH, H→bb

Analysis strategy

- Five separate channels: $Z(\ell \ell), Z(\nu \nu), W(\ell \nu); \ell = e, \mu$
- Triggers (8 TeV):
 - Incl μ (24-40 GeV), iso elec (27 GeV), double elec (17/8 GeV)
 - MET (80 GeV) + 2 jets (60/25 GeV) + ($\Delta \phi$ or MHT)
- Jet reco and b-tagging:
 - Two AK5 jets, b-tagged (discriminator input to BDT)
 - No need for substructure techniques (at least at 8 TeV)
 - Jet energy regression for improved M(jj) resolution
- Boost and topology discriminants
 - pT(V), pT(H) optimized separately for each channel
 - Topology: $\Delta \phi(V,H)$, $\Delta R(jj)$, $\Delta \eta(jj)$, N_{jet} , color flow
- Shape analysis on BDT output
 - Analysis performed in two bins of pT(V)

 $Z(\nu\bar{\nu})H(b\bar{b})$ candidate

PD: /MET/Run2011B Run: 177183 Lumi: 183 Event: 305295270

- M(jj) = 120.0 GeV
- p_T(jj) = 248.4 GeV
- Jets:
 - p_T = 209.5 GeV,
 CSV = 0.889
 - p_T = 46.2 GeV,
 CSV = 0.957
- MET:
 - 243.2 GeV

B-tagging: Performance and Validation

B-jet Energy Regression

Backgrounds and Control Regions

Dominant backgrounds

• V+bb, V+udscg, ttbar, single top, VV

Control regions

- Enhance particular backgrounds
- As close as possible to the signal region
- "V+heavy", "V+light", "Top"

• Extrapolation to signal region

- Scale factors obtained from control regions
- Shape analysis floats the scale factors

Dijet Invariant Mass: all channels

Already from non-optimized Mjj plot: a clear VV(+VH) peak above SM backgrounds

BDT discriminant

Combine kinematic, topoligical, b-tagging, and color flow variables into BDT, separately for high and low pT bins

Variable

 p_{Tj} : transverse momentum of each Higgs daughter

m(jj): dijet invariant mass

 $p_{\rm T}(jj)$: dijet transverse momentum

 $p_{\rm T}({\rm V})$: vector boson transverse momentum (or pfMET)

CSV_{max}: value of CSV for the b-tagged jet with largest CSV value

 CSV_{min} : value of CSV for the b-tagged jet with second largest CSV value

 $\Delta \phi(V, H)$: azimuthal angle between V (or E_T^{miss}) and dijet

 $|\Delta \eta(jj)|$; difference in η between Higgs daughters

 $\Delta R(j1, j2)$; distance in η - ϕ between Higgs daughters (not for $Z(\ell \ell)H$)

 $N_{\rm aj}$: number of additional jets ($p_{\rm T}$ > 30 GeV, $|\eta|$ < 4.5)

 $\Delta \phi(E_T^{\text{miss}}, \text{jet})$: azimuthal angle between E_T^{miss} and the closest jet (only for $Z(\nu\nu)H$) $\Delta \theta_{\text{null}}$: color pull angle [62] (not for $Z(\ell\ell)H$)

Shapes validated in background control regions, simulation (with shape uncertainties) used for final fit

Example BDT shapes in signal region

All shape comparisons look good, data consistent with background-only hypothesis

Systematic Uncertainties

Source	Range
Luminosity	2.2-4.4%
Lepton efficiency and trigger (per lepton)	3%
$Z(\nu\nu)H$ triggers	3%
Jet energy scale	2-3%
Jet energy resolution	3-6%
Missing transverse energy	3%
b-tagging	3-15%
Signal cross section (scale and PDF)	4%
Signal cross section (<i>p</i> _T boost, EWK/QCD)	5-10% / 10%
Signal Monte Carlo statistics	1-5%
Backgrounds (data estimate)	$\approx 10\%$
Single-top (simulation estimate)	15-30%
Dibosons (simulation estimate)	30%

Results: 7 + 8 TeV (17/fb)

Updated CMS Combination

Signal Strength and Couplings

One step beyond: Search for MSSM Higgs decaying to ττ and bb

MSSM Higgs

- Two Higgs doublets
 - Five Higgs particles
 - Three neutral (h, H, A)
 - Two charged (H[±])
 - Two free parameters
 - Mass
 - $tan\beta$ ratio of vevs for up and down
- Searches @ CMS
 - Neutral: $\tau\tau$ and bb
 - Charged: look in top decays

Search for MSSM $\phi(h, H, A) \rightarrow \tau \tau$

Even Categories:

Events are split into two categories based on the presence (or not) of b-tagged jets

Enhances associated prod.

00000

0000

b

h, H, A

 \overline{h}

Events in b-tag category

400

400

500

m_{TT} [GeV]

500

Results: MSSM $\phi(h, H, A) \rightarrow \tau \tau$

Search for MSSM $\phi(h, H, A) \rightarrow bb$ h \mathbf{g} Only b-jets (and radiation) in the final state, trigger is one of $\mathrm{h},\mathrm{H},\mathrm{A}$ the most challenging at LHC g 00000

Two complementary approaches:

- <u>All-hadronic</u> trigger requiring up to three jets and at least two b-tagged jets (three offline)
- <u>Semileptonic</u> trigger requiring up to three jets, two b-tagged jets (three offline), and one muon from b-hadron decay
- Essentially independent samples (2-3% overlap)

Results: All-hadronic analysis

Background shapes obtained from double-tag sample give excellent agreement when applied to triple-tag sample.

Signal fits scan in mass from 90 to 350 GeV, no significant signal is observed at any mass.

Results: Semileptonic analysis

Limits on MSSM $\phi(h, H, A) \rightarrow bb$

No evidence for CDF 2σ excess at low mass

Conclusions

- The new particle @ "125 GeV" is observed to decay to all gauge bosons, mostly in the right proportion ($\gamma\gamma$ a little hot)
- Angular distribution in ZZ disfavors pseudoscalar hypothesis
- New results from CMS not yet conclusive, but moving to SM
 - $H \rightarrow \tau \tau$ observed significance = 1.5 σ
 - H \rightarrow bb observed significance (VH) = 2.2 σ
- New CMS combination shows signal strength and couplings consistent with the SM expectation
- No sign of (any of) the MSSM Higgs bosons

If it is not "Weinberg's Higgs boson" it certainly is a good actor! Much more data is needed to be certain.