PAUL SCHERRER INSTITU

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut Sven Reiche

The SwissFEL Project and the SwissFEL Test Facility at PSI

SwissFEL A Compact X-ray Facility

Photon Brilliance

FEL Process converts electron brightness into photon brightness

Electron brightness can be much smaller but needs only to be smaller than photon brightness:

$$N_{ph}E_{ph}/\Delta T \approx \rho N_e E_e/\Delta T \qquad \frac{\Delta E}{E} < \rho \qquad \qquad \frac{\mathcal{E}_N}{\gamma} < \frac{\lambda}{4\pi}$$
High Current Low Energy Spread Low Emittance

SwissFEL Design Strategy

1) Reaching 1 Ångstrom Wavelength for Atomic Resolution

2) Compact Undulator to lower Beam Energy

$$\lambda = \frac{\lambda_u}{2\gamma^2} \left(+ \frac{K^2}{2} \right)$$

3) Low emittance electron beam source

$$\frac{\varepsilon_N}{\gamma} < \frac{\lambda}{4\pi} \quad \Longrightarrow \quad \varepsilon_n \sim 0.3 \text{ mm mrad}$$

4) Efficient beam generation, acceleration and compression

Layout SwissFEL

600 m

Technology choice:

- RF photo-electron gun (2.5 cell), S-band
- 2 Stage compression at highest energy possible to minimize RF tolerances
- C-band linac (less RF stations, real estate and mains power than S-band, chirp removal after BC 2)
- X-band for linearizing phase space before BC 1
- 2 bunch operation (28 ns) with distribution to Aramis and Athos at 100 Hz
- Laser Heater to mitigate microbunch instability

Main Linac: C-band technology

- 2050 mm long structure
- 113 cells per structure
- 5712 MHz (C-band)
- 28.8 MV/m gradient

SwissFEL will contain 104 C-band structures organized in 24 linac modules (236 MeV energy gain per module). Test stand in preparation.

Pulse compressor (SLED):

 accumulates the energy of the incoming "long" pulse and releases a short pulse

 40 MW, 2.5 μs → 120 MW, 0.5 μs
 Q = 220'000

Undulator development (hard X-ray)

- Hybrid in-vacuum undulator
- 266 periods, each 15 mm
- Magnetic length 3990 mm
- Magnetic material: Nd₂Fe₁₄B + diffused Dy
- Gap varies between 3 and 20 mm
- At a gap of 4.2 mm, maximum *B_z* is 1 T

The SwissFEL ARAMIS beamline will comprise 12 undulators of this type. Test of prototype foreseen in injector test facility.

Athos Undulator Line 7 – 70 Å

Athos Experimental Area

Aramis Undulator Line 1 - 7 Å

Aramis Experimental Area

Road to acce

Gun Optimization (work done by Simona Bettoni)

Gun Optimization

RF Phase & Amplitude, Solenoid Field & Position

RF Phase & Amplitude, Solenoid Field

Optimization

Constraints

- •Minimal Slice Emittance
- •Minimal Projected Emittance
- •Minimal Slice Mismatch Parameter
- Minimal Slice Energy Spread

Charge = 200 pC
Peak Current > 20 A
E > 120 MeV
Gun gradient 100 MV/m

SwissFEL Optimization Result (Courtesy of S. Bettoni)

Reducing the Mismatch (2nd Optimization)

Start from Opt_16_bis, but with less parameters to vary and minimize the max mismatch calculated in range_z = +2 mm.

par_start = [sigma shift_cav1 maxB(1)];

path: /gpfs/homefelsim/bettoni_s/Astra_sim/SwissFEL_gun/Opt_23

Current Design Case with SwissFEL Gun

Mismatch parameter

__Seite 17

Considering new gun with door knob coupler: •Solenoid is shifted closer to cathode

- Allows for higher charge density
- •Allows for higher charge density
- •Reduced spot size and emittance

New optimization of shorter pulse + larger spotsize

SwissFEL Injector Test Facility

PSI, 18. Juli 201 "Remind me. How much did we spend on this machine?"

SwissFEL Injector Test Facility

- Electron gun and first accelerating section (first ~50 m of SwissFEL)
- Test of components and procedures needed for SwissFEL
- Will be moved to final SwissFEL location in 2015

🛛 dipole

quadrupole

Official inauguration (24 August 2010)

Keep it simple for the Federal Councillor: one button, two signals

Button connected to laser shutter.

The Burkhalter beam:

- ~35 pC charge
- ~160 MeV energy
- ~0.5 MeV energy spread

Beam on LuAG screen in front of beam dump.

Signal from Wall Current Monitor after the RF gun.

Visit to the injector tunnel.

250 MeV Injector Time Schedule

Preconditions

Gun + 4 S-Band Cavities in Operation

Beam energy ≥ 250 MeV (first reached on April 11) ♦

(for bunch compression studies energy limited to ~230 MeV)

Milestones: Beam Optics (M. Aiba/N. Miles)

Beam optics matched and understood (using OTR screens)

Milestones: Emittance (B. Beutner)

Projected emittance

Main method: "single-quad scan" (E. Prat)

• *Phase-advance scan with single quad:* use last matching quad upstream of FODO section to generate phase advance simultaneously in x and y. Possible if optics at quad fulfils some conditions (matching is crucial):

$$-\beta_{x} = \beta_{y} = \beta_{0}, \alpha_{x} = \alpha_{y} = \alpha_{0} \text{ (same optics x and y)}$$

- $\alpha_0 \times L = \beta_0$ (L is distance to observation screen)
- Beam size measurement with screen downstream of FODO section.

Alternative method: "multi-quad scan"

- *Phase-advance scan with three quads:* use three quads upstream of FODO section to generate phase advance, first in x then in y, while keeping the beam size under control.
- Beam size measurement with screen downstream of FODO section.

(No longer used: "FODO scan")

Optimization (parameter study) ongoing...

Milestones: Slice Emittance (E. Prat)

Slice emittance

Method:

- *Transverse deflection ("streaking"):* the bunch is streaked in the transverse deflecting cavity, then recorded on a screen downstream of the FODO section.
- *Phase-advance scan:* change optics using five matching quads between transverse deflecting cavity and FODO section:
 - Generate regular phase advance in x
 - Keep beam size under control
 - Keep longitudinal resolution constant
- *Slice analysis:* split beam into slices (use centroid from Gauss fit as reference). Beam size from Gauss fit to slice profile.
- *Transverse deflector calibration:* change deflector phase at each optics setting to obtain individual mm ↔ ps calibration for each optics setting (add the data for increased statistics).
- *Mismatch parameter:* determined for each slice, checked against central slice and design optics.

slice

streak

Milestones: Compression (B. Beutner)

Missing X-band structure

First demonstration of bunch compression (April 18, Jaguar laser) Bunch length (rms from Gauss fit) reduced from 3.6 ps to 200 fs. BC angle 4.07° (R56 = -46.19 mm rad2)

Bunch image and profile at zero-crossing

3.6 ps \rightarrow 200 fs (rms)

Fighting the Coupling (M. Aiba)

- Motivation:
 - Asymmetric emittance in hor. and ver. plane persists
 - Solved partially by FINSB01 BBA: typically $0.4/0.6 \rightarrow 0.4/0.5 \ \mu m$
 - The remaining asymmetry because of coupling? Let's try to correct
- Correction:
 - General optics correction approach

$$\vec{P} = S\vec{C} \rightarrow \vec{C} = S^{-1}\vec{P}$$

- \vec{P} : Beamparameters to be corrected $\langle xy \rangle, \langle x y \rangle, \langle x y \rangle, \langle x y \rangle$
- \vec{S} : Sensitivity matrix
- \vec{C} : Corrections
- Sensitivity matrix taken from the machine
- Knobs: \vec{C}
 - Quad correctors of gun solenoid: FIND1-MCQR10 / FIND1-MCQS10
 - Solenoid pairs (increase one of them and decrease the other) of FINSB01 and FINSB02: FINSB01-MSOL10 + FINSB01-MSOL20 FINSB02-MSOL10 + FINSB02-MSOL30
 - (Two skew quad correctors available in addition for SwissFEL)

Fighting the Coupling (M. Aiba)

- Beam results:
 - Coupling correction

- What we learned:
 - Coupling correction works
 - Suggests lower field in the first solenoid and higher in the second
 - 100 or 200 μm orbit displacement in S-band has some impact on the emittances (up to 0.1 μm increase)

Best Emittance Measurements (Logbook)

CORE SLICE EMITTANCES / OPTICS ex = 246 ± 6 nm bx = 6.33 ± 0.21 m ax = -0.65 ± 0.04 Mx = 1.08 PROJECTED EMITTANCES / OPTICS

PROJECTED EMITTANCES / OPTICS ex = 288 ± 8 nm bx = 7.41 ± 0.27 m ax = -0.67 ± 0.05 Mx = 1.04 Slice emittance better than prediction with Astra:

- Cut of halo particles ?
- Lower thermal emittance (currently matched to LCLS results) *To be studied*

consistency of emittance measurement

SwissFEL

•Final permission by Swiss government in fall 2012 (very likely)

- •5 years of construction and commissioning
- •1 hard X-ray line (1-7 Å) in 2017/ 1 soft X-ray line (0.7-7 nm) in 2019
- •Option to add one more hard and soft X-ray beamline

Gun Optimization

Improvement upon "Massimo" working point

•Door know Coupler allows for better emittances: more current from cathods to reduce required compression in linac (stability and microbunch instability)

SwissFEL Test Injector

- •Major milestones achieved in April this year
- •X-band and "controlled" compression end of this year
- •Unknow coupling limits current emittance optimization.

SwissFEL Beam Dynamics

- •Simona Bettoni (Injector/Gun Optimization, Microbunch Instability)
- •Bolko Beutner (RF Tolerances, Bunch Compression)
- •Masamitsu Aiba (Beam Based Alignment, Feedback)
- •Natalia Miles (Linear & non-linear beam optics)
- •Eduard Prat (Diagnostic Optics, FEL self-seeding)
- •Frederic Le Pimpec (Dark current studies, collimator)
- •Sven Reiche (FEL performance, SwisSFEL lattice)
- •Thomas Schietinger (Section head, Commissioning Leaders)

Thanks to BD Alumnis (Anne Oppelt, Yujong Kim), BD Students, SwissFEL Diagnostics and RF Group, STFC Beam Dynamics group and, in particular,

- •Marco Pedrozzi (Head of SwissFEL Test Injector)
- •Hans Braun (SwissFEL Project Leader)