The SwissFEL Project and the SwissFEL Test Facility at PSI

Paul Scherrer Institut
Sven Reiche
SwissFEL
A Compact X-ray Facility
Optimizing the FEL (Namely Brilliance)

Photon Brilliance

Electron Brilliance

Quantum Limit

\[B = \frac{Q}{\Delta T \cdot \Delta E / E \cdot \varepsilon_x \cdot \varepsilon_y} \left(\frac{2Q}{e \hbar^3} \right) \]

Electron brightness can be much smaller but needs only to be smaller than photon brightness:

\[\frac{\Delta E}{E} < \rho \]

\[\frac{\varepsilon_N}{\gamma} < \frac{\lambda}{4\pi} \]

High Current Low Energy Spread Low Emittance
SwissFEL Design Strategy

1) Reaching 1 Ångstrom Wavelength for Atomic Resolution

2) Compact Undulator to lower Beam Energy

\[\lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2}\right) \]

\[\rightarrow \quad E \sim 6 \text{ GeV} \]

3) Low emittance electron beam source

\[\frac{\varepsilon_N}{\gamma} < \frac{\lambda}{4\pi} \quad \rightarrow \quad \varepsilon_n \sim 0.3 \text{ mm mrad} \]

4) Efficient beam generation, acceleration and compression
Technology choice:

- RF photo-electron gun (2.5 cell), S-band
- 2 Stage compression at highest energy possible to minimize RF tolerances
- C-band linac (less RF stations, real estate and mains power than S-band, chirp removal after BC 2)
- X-band for linearizing phase space before BC 1
- 2 bunch operation (28 ns) with distribution to Aramis and Athos at 100 Hz
- Laser Heater to mitigate microbunch instability
PSI-developed RF Gun

- 2.5 cell copper cavity
- 2998.8 MHz (S-band)
- 2 µs pulse length
- 100 MV/m gradient
- 100 Hz repetition rate
- 40°C operating temperature

Status:
- Design finished
- Production in 2011
- Integration into test facility in 2012

Thermal analysis of cavity.

On-axis E-field
Main Linac: C-band technology

- 2050 mm long structure
- 113 cells per structure
- 5712 MHz (C-band)
- 28.8 MV/m gradient

SwissFEL will contain 104 C-band structures organized in 24 linac modules (236 MeV energy gain per module). Test stand in preparation.

Pulse compressor (SLED):
- accumulates the energy of the incoming “long” pulse and releases a short pulse
- 40 MW, 2.5 µs → 120 MW, 0.5 µs
- Q = 220'000
Undulator development (hard X-ray)

- Hybrid in-vacuum undulator
- 266 periods, each 15 mm
- Magnetic length 3990 mm
- Magnetic material: $\text{Nd}_2\text{Fe}_{14}\text{B} +$ diffused Dy
- Gap varies between 3 and 20 mm
- At a gap of 4.2 mm, maximum B_z is 1 T

The SwissFEL ARAMIS beamline will comprise 12 undulators of this type. Test of prototype foreseen in injector test facility.
SwissFEL Timeline

- 2011: Parliament decision
- 2012: Start Civil Construction
- 2013: Building Ready
- 2014: Tunnel Closed
- 2015: Machine & Photon Beamlines Assembled
- 2016: First Photons (Spontaneous Radiation)
- 2017: Photon Beamlines (out of Tunnel) & Experimental Stations Ready
- 2017: First FEL Photons Pulses
- 2017: Start User Operation
Gun Optimization
(work done by Simona Bettoni)
Gun Optimization

Input Parameters

- Radius, Length, Charge
- Laser / Photo Electron Bunch
- RF Phase & Amplitude
- Solenoid Field & Position

Optimization

- Minimal Slice Emittance
- Minimal Projected Emittance
- Minimal Slice Mismatch Parameter
- Minimal Slice Energy Spread

Constraints

- Charge = 200 pC
- Peak Current > 20 A
- E > 120 MeV
- Gun gradient 100 MV/m
I try to re-optimize starting from Opt_8, but I fix \texttt{pulse_length = 10 \text{ ps}}.

\texttt{par_start = [phi_gun coef_sol_1_a coef_sol_2 sigma shift_cav1 maxB(1) coef_sol_1_b];}

\texttt{path: /gpfs/homefelsim/bettoni_s/Astra_sim/SwissFEL_gun/Opt_16}

Projected (mm.mrad)	**Slice (mm.mrad)**
0.23 | \(<~0.17 \text{ (average = 0.2)}\)

Final sigma = 0.134 mm
Reducing the Mismatch (2nd Optimization)

Start from Opt_16_bis, but with less parameters to vary and minimize the max mismatch calculated in range \(z = \pm 2 \) mm.

\[
\text{par_start} = [\text{sigma shift_cav1 maxB(1)}];
\]

path: /gpfs/homefelsim/bettoni_s/Astra_sim/SwissFEL_gun/Opt_23

\[
\text{Position SB01} = 3.5974 \text{ m}
\]
Considering new gun with door knob coupler:
- Solenoid is shifted closer to cathode
- Allows for higher charge density
- Reduced spot size and emittance

New optimization of shorter pulse + larger spot size

\[\begin{align*}
\varepsilon &= 0.10 \text{ mm (not nice shape)} \\
\sigma &= 0.1 \text{ mm} \\
\sigma &= 0.2 \text{ mm} \\
\sigma &= 0.3 \text{ mm} \\
\sigma &= 0.4 \text{ mm} \\
\sigma &= 0.5 \text{ mm}
\end{align*}\]
SwissFEL Injector Test Facility

"Remind me. How much did we spend on this machine?"
SwissFEL Injector Test Facility

- Electron gun and first accelerating section (first ~50 m of SwissFEL)
- Test of components and procedures needed for SwissFEL
- Will be moved to final SwissFEL location in 2015
Keep it simple for the Federal Councillor: one button, two signals

Beam on LuAG screen in front of beam dump.

Signal from Wall Current Monitor after the RF gun.

Visit to the injector tunnel.

The Burkhalter beam:
- ~35 pC charge
- ~160 MeV energy
- ~0.5 MeV energy spread
250 MeV Injector Time Schedule

<table>
<thead>
<tr>
<th>Year</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Key Events:

- **2011**
 - BC Installation
 - RF Problems
 - Priority to beam operation
 - Complete modulator repairs

- **2012**
 - Integration FINSB04 & THz diag.
 - Done
 - Re-com. RF and gun laser
 - Slice is Compression
 - FAT X-band modulator
 - Modulator assembly and diode tests
 - Assembly X-band cavity + load lock
 - Gun
 - RF commissioning
 - First potential window but schedule requires a deep verification

- **2013**
 - Integration U15 experiment
 - Production starting
 - Schedule being analyzed (critical)

- **2014**
 - Option integration alternative RF-gun
 - Possible collaboration with Diamond
 - Implementation critical
 - Priority to first SwissFEL gun
 - Concept: Three months before building ready dust free stop Facility and preparation hardware for move.
Milestones: Beam Energy

Preconditions

Gun + 4 S-Band Cavities in Operation

Beam energy ≥ 250 MeV
(first reached on April 11)

(for bunch compression studies energy limited to ~ 230 MeV)

Pulsar laser
(transverse profile)
Beam optics matched and understood (using OTR screens)

Milestones: Beam Optics (M. Aiba/N. Miles)
Projected emittance

Main method: “single-quad scan” (E. Prat)
- Phase-advance scan with single quad: use last matching quad upstream of FODO section to generate phase advance simultaneously in x and y. Possible if optics at quad fulfils some conditions (matching is crucial):
 - $\beta_x = \beta_y = \beta_0$, $\alpha_x = \alpha_y = \alpha_0$ (same optics x and y)
 - $\alpha_0 \times L = \beta_0$ (L is distance to observation screen)
- Beam size measurement with screen downstream of FODO section.

Alternative method: “multi-quad scan”
- Phase-advance scan with three quads: use three quads upstream of FODO section to generate phase advance, first in x then in y, while keeping the beam size under control.
- Beam size measurement with screen downstream of FODO section.

(No longer used: “FODO scan”)

Optimization (parameter study) ongoing...

$\varepsilon_{\text{proj}}(x) = 0.45 \text{ mm mrad}$
$\varepsilon_{\text{proj}}(y) = 0.44 \text{ mm mrad}$
Slice emittance

Method:

- **Transverse deflection ("streaking"):** the bunch is streaked in the transverse deflecting cavity, then recorded on a screen downstream of the FODO section.

- **Phase-advance scan:** change optics using five matching quads between transverse deflecting cavity and FODO section:
 - Generate regular phase advance in x
 - Keep beam size under control
 - Keep longitudinal resolution constant

- **Slice analysis:** split beam into slices (use centroid from Gauss fit as reference). Beam size from Gauss fit to slice profile.

- **Transverse deflector calibration:** change deflector phase at each optics setting to obtain individual mm ↔ ps calibration for each optics setting (add the data for increased statistics).

- **Mismatch parameter:** determined for each slice, checked against central slice and design optics.
Milestones: Compression (B. Beutner)

First demonstration of bunch compression (April 18, Jaguar laser)

Bunch length (rms from Gauss fit) reduced from 3.6 ps to 200 fs.

BC angle 4.07° ($R56 = -46.19$ mm rad2)

ϕ: phase in FINSB03/04
τ: bunch length

$3.6 \text{ ps} \rightarrow 200 \text{ fs (rms)}$
Fighting the Coupling (M. Aiba)

- **Motivation:**
 - Asymmetric emittance in hor. and ver. plane persists
 - Solved partially by FINSB01 BBA: typically 0.4/0.6 → 0.4/0.5 μm
 - The remaining asymmetry because of coupling? Let’s try to correct

- **Correction:**
 - General optics correction approach
 - \(\vec{P} = S \vec{C} \rightarrow \vec{C} = S^{-1} \vec{P} \)
 - \(\vec{P} \): Beamparameters to be corrected
 - \(\langle xy \rangle, \langle x' y \rangle, \langle x'' y \rangle \)
 - \(S \): Sensitivity matrix
 - \(\vec{C} \): Corrections
 - Sensitivity matrix taken from the machine

- **Knobs:** \(\vec{C} \)
 - Quad correctors of gun solenoid: FIND1-MCQR10 / FIND1-MCQS10
 - Solenoid pairs (increase one of them and decrease the other) of FINSB01 and FINSB02:
 - FINSB01-MSOL10 + FINSB01-MSOL20
 - FINSB02-MSOL10 + FINSB02-MSOL30
 - (Two skew quad correctors available in addition for SwissFEL)
Fighting the Coupling (M. Aiba)

- Beam results:
 - Coupling correction

Typical emittance measured with correction:

(Emittance underestimated due to screen saturation, but full symmetry is achieved)

- What we learned:
 - Coupling correction works
 - Suggests lower field in the first solenoid and higher in the second
 - 100 or 200 μm orbit displacement in S-band has some impact on the emittances (up to 0.1 μm increase)
Best Emittance Measurements (Logbook)

EMITTANCES / OPTICS
- ex = 354 ± 3 nm | ey = 430 ± 8 nm
- bx = 6.58 ± 0.08 m | by = 38.72 ± 0.71 m
- ax = -0.66 ± 0.01 | ay = -0.19 ± 0.01
- Mx = 1.07 | My = 1.02

COUPLING TERMS
- e1 = 343 nm | e2 = 439 nm
- coupling factor = 1.0105
- x-y = -1.309e-09 ± 3.169e-11 m^2
- x-yp = -3.607e-11 ± 2.114e-12 m
- xp-y = -2.21e-10 ± 4.496e-12 m
- xp-yp = -7.069e-12 ± 1.56e-13

Data saved at 2012-06-04/MKE20120604T175609.h5
Slice emittance better than prediction with Astra:
• Cut of halo particles?
• Lower thermal emittance (currently matched to LCLS results)

To be studied

consistency of emittance measurement
Summary

SwissFEL

• Final permission by Swiss government in fall 2012 (very likely)
• 5 years of construction and commissioning
• 1 hard X-ray line (1-7 Å) in 2017 / 1 soft X-ray line (0.7-7 nm) in 2019
• Option to add one more hard and soft X-ray beamline

Gun Optimization

• Improvement upon „Massimo“ working point
• Door know Coupler allows for better emittances: more current from cathods to reduce required compression in linac (stability and microbunch instability)

SwissFEL Test Injector

• Major milestones achieved in April this year
• X-band and „controlled“ compression end of this year
• Unknown coupling limits current emittance optimization.
Acknowledgement

SwissFEL Beam Dynamics

- Simona Bettoni (Injector/Gun Optimization, Microbunch Instability)
- Bolko Beutner (RF Tolerances, Bunch Compression)
- Masamitsu Aiba (Beam Based Alignment, Feedback)
- Natalia Miles (Linear & non-linear beam optics)
- Eduard Prat (Diagnostic Optics, FEL self-seeding)
- Frederic Le Pimpec (Dark current studies, collimator)
- Sven Reiche (FEL performance, SwissFEL lattice)
- Thomas Schietinger (Section head, Commissioning Leaders)

Thanks to BD Alumnis (Anne Oppelt, Yujong Kim), BD Students, SwissFEL Diagnostics and RF Group, STFC Beam Dynamics group and, in particular,

- Marco Pedrozzi (Head of SwissFEL Test Injector)
- Hans Braun (SwissFEL Project Leader)