

Exploring the Mechanism of Electroweak Symmetry Breaking at the LHC and the ILC

Alexei Raspereza - DESY

Physics Seminar

DESY Hamburg – 2012 July 10th

Standard Model

Building blocks of Standard Model

- Standard Model features
 - U(1)_γ×SU(2)_L×SU(3)_C symmetry → gauge interactions
- Lagrange formalism describes this very well but only for massless particles
- terms $m(\bar{f_R}f_L+\bar{f_L}f_R),~M^2V^\mu V_\mu$ break U(1) $_{
 m Y} imes {
 m SU(2)}_{
 m L}$ symmetry
- model is consistent with experimental data assuming massive fermions and weak bosons

Higgs Mechanism

- Need gauge invariant mechanism to generate particle masses
- Mechanism in the Standard Model :
 - one Higgs doublet with specific potential

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \qquad V(\Phi^{\dagger}\Phi) = \lambda \left(\Phi^{\dagger}\Phi - \frac{v^2}{2}\right)^2$$

- 4 degrees of freedom
- vacuum expectation value $(v/\sqrt{2}) \neq 0$
- radial excitation of the ground state
 → additional physical state (Higgs boson)
- motions along valley of minima → three longitudinal polarization states of W[±] and Z

Prominent consequence of Higgs mechanism:
 Higgs boson couples stronger to a more massive particles

SM Higgs Searches: Status before July 4th 2012

SM Higgs Boson at LEP

Production

SM Higgs Searches at LEP

• No evidence for Higgs $\rightarrow m_H > 114 \text{ GeV } @ 95\% \text{ C.L.}$

About 80% of the final states exploited

SM Higgs Searches at LEP

Updated Tevatron Results

- improved analysis techniques
- all statistics analyzed: 10 fb⁻¹ / experiment
- analyses show clear sensitivity to "standard candles",
 e.g. WZ, ZZ production followed by Z → bb
- excess $> 2\sigma$ in the mass range $m_H = 115 140$ GeV
- Very nice analyses and very nice results!

Your Word, LHC Community!

Machine Performance

Special task force to prepare for 2012 data taking and mitigate effect of PU on trigger, reconstruction of physics objects, CPU time, event size

 → physics performance unchanged, e.g. for most of triggers thresholds are kept the same as in 2011

Peak luminosity in 2012 $L \approx 7 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

steady performance of LHC enables experiments to produce significant physics results

Main challenge: Pile-up

Commissioning of Detector and Reconstruction Tools

Tracking & Vertexing

Muon System

PFlow, **E**_T , Jets

Calibration of Searches with Standard Candles

- Analyses searching for the Higgs Boson were commissioned with "Standard Candles"
- Example : the H \rightarrow $\tau\tau$ search is commissioned with the study of inclusive Z production followed by Z \rightarrow $\tau\tau$

Standard Model Higgs Boson at LHC

Main search channels (m_H ≤ 150 GeV)

qqH / gg→H	Η→γγ		
qqH / gg→H	H→WW→2ℓ2ν		
gg→H	H <i>→ZZ→4ℓ</i>		
qq→VH	Z→ℓℓ,νν / W→ℓν / H→bb		
ttH	H → bb		
qqH / VH / gg→H	Η→ττ		

$H \rightarrow \gamma \gamma$

H → γγ Search

- Multi-Variate Analysis
- Event categorization based on
 - → MVA output
 - → compatibility with Vector Boson Fusion signatures:
 - o 2 jets with large Δη(jj) & large m(jj)
- No prior background model
- background shape and normalization
 - → fits of mass distributions with smooth function

Lowest p-value at m_H ≈ 125 GeV

Local significance : 4.1 σ

Global significance in the mass

range 110 - 150 GeV : 3.2σ

S/B-weighted sum of m_{yy}

TeV Observed (Asymptotic)

$H \rightarrow ZZ \rightarrow 4\ell$

Results of H → ZZ → 4l Search

statistical inference performed with 2D distribution [MELA, m_{4l}]

Matrix Element Likelihood Analysis

Lowest p-value at m_H ≈ 125.5 GeV

local significance of excess : 3.2σ

Expected significance at

 $m_{H} = 125.5 \text{ GeV} : 3.8\sigma$

Combining H $\rightarrow \gamma \gamma$ and H \rightarrow ZZ $\rightarrow 4\ell$

High sensitivity, high mass resolution channels

: **4.1**σ

4 leptons : 3.2σ

near the same mass **m**_H ≈ 125 GeV

Combined significance 5.0σ

Observation of new state with m_x ≈ 125 GeV

Expected significance for SM Higgs boson : 4.7σ

H→WW→2ℓ2v

Signatures

- 2 hight p_T isolated leptons (μμ, ee, eμ)
- Large missing E_T
- small $\Delta \varphi(\ell \ell)$

Main backgrounds

WW, top, W+jets, WZ

Search strategy

cut based selection exploiting lepton kinematics;

event categorization based on jet multiplicity

- 0-jet
- 1-jet
- VBF (2-jets)

Combining H $\rightarrow \gamma\gamma$, ZZ and WW Channels

 Combining high sensitivity, high mass resolution channels

$$\gamma\gamma$$
 + ZZ \rightarrow 4 ℓ

and high sensitivity, but low mass resolution channel

$$WW \rightarrow 2\ell 2\nu$$

- Combined significance: 5.1σ
- Expected significance for SM Higgs boson: 5.2σ

Η → ττ Search: Introduction

- Large $\sigma \times Br$ at low mass
- The most sensitive among fermionic decay channels
- Sensitive to all production mechanisms
- Direct probe of Higgs boson couplings to leptons

H → ττ Search

full reconstruction of ditau mass from $\tau\tau$ decay kinematics, E_T , $\tau\tau$ decay matrix element

Evaluation of Z → ττ Background in H → ττ Search

 $Z \rightarrow \tau \tau$ main irreducible background for $H \rightarrow \tau \tau$ search Can be evaluated in a data-driven way

- 1) Select Z → µµ events
- 2) Replace muons by simulated tau decays
- 3) Overlay simulated tau decay products with the reminder of event

event environment taken from real event

- → proper modeling of PU, UE, jets, missing E_T
- → reduced systematic effects technique is know as tau embedding
- tools developed and maintained

Validation of VBF MVA performance with embedding

Mass Distributions in Event Categories

0-jet category

- Constraints energy, scales, efficiencies
- Large DY background
- Sensitivity boosted by low / high p_T split

1-jet category

- Enhanced sensitivity to gg → H
- Improved mass resolution
- Sensitivity boosted by low / high p_T split

VBF category

- · Clean mode
- Highest S/B
 - → highest sensitivity at $m_H \le 130 \text{ GeV}$

Search for H $\rightarrow \tau\tau \rightarrow 2\mu 4\nu$

precise information from fermionic channels is desperately needed to characterize new state

→ every single final state counts

huge Z →μμ **background**

Small Br($\tau\tau \rightarrow 2\mu 4\nu$) = 3%

cosΘ*(u[†])

dedicated MVA selection of ττ final states

Mass Distributions in H → ττ → 2μ4ν Channel

MVA(ττ) + **MVA**(**VBF**) discriminants → final selected samples

Statistical inference with 2D distributions [M($\mu\mu$), M($\tau\tau$)]

→ sensitivity boosted by factor 1.5 - 2.0

Shown are the M[$\tau\tau$] projections of 2D distributions

Η → ττ Search Results

sensitivity / channel

combined results

- analysis approached sensitivity to signal
- no significant departure from SM background expectation
 - → Observed exclusion : 1.06 × σ_{SM} for m_H = 125 GeV
 - ⇒ Expected exclusion at m_H = 125 GeV : 1.28 × σ_{SM}

Combining Bosonic and Fermionic Channels

Combining bosonic modes

$$\gamma\gamma + ZZ \rightarrow 4\ell + WW \rightarrow 2\ell 2\nu$$

with fermionic channels

$$\tau\tau + VH, H \rightarrow bb$$

Combined significance: 4.9σ

Expected significance for SM Higgs boson : 5.9σ

Characterization of a New State

fitted mass

$$M_x = 125.3 \pm 0.6 \text{ GeV}$$

Best fit of signal strength in combination $\sigma/\sigma_{SM}=0.80\pm0.22$

Path towards Establishment of Higgs Mechanism

 Complete establishment of Higgs mechanism implies:

- Investigation of coupling mass relations
- Measurements of Higgs quantum numbers
- Measurements of Higgs selfcoupling
 - → reconstruction of Higgs potential
- Investigation of the structure of the Higgs sector
 - → single doublet of "Minimal model" vs. extended Higgs sector of BSM theory

Is what we observe the Higgs Boson of the "minimal" SM or it is one of the states expected in theories extending SM?

Analyses are ongoing to address this question

Higgs Sector in MSSM

Higgs Sector in MSSM → Two Higgs Doublet Model

$$\Phi_{1} = \begin{pmatrix} \Phi_{1}^{+} \\ \Phi_{1}^{0} \end{pmatrix} \qquad \Phi_{2} = \begin{pmatrix} \Phi_{2}^{+} \\ \Phi_{2}^{0} \end{pmatrix}$$

$$\langle \Phi_{1} \rangle = \begin{pmatrix} 0 \\ \nu_{1} \end{pmatrix} \qquad \langle \Phi_{2} \rangle = \begin{pmatrix} 0 \\ \nu_{2} \end{pmatrix}$$

 $-\Phi_1$ couples to down-type quarks and charged leptons

- 5 physical states: h, H, A, H[±] $\tan \beta = \nu_1/\nu_2$
- $\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_1^0 \\ \phi_2^0 \end{pmatrix} \quad \begin{array}{c} \mathbf{Modified\ couplings\ to} \\ \mathbf{gauge\ and\ fermion\ field} \\ \end{array}$
- Φ₂ couples to up-type quarks
 - gauge and fermion fields

	h	Н	A
W+W-	$\sin(\beta - \alpha)$	$\cos(\beta - \alpha)$	0
ZZ	$\sin(\beta - \alpha)$	$\cos(\beta - \alpha)$	0
uū (up-type quarks)	$\cos \alpha / \sin \beta$	$\sin \alpha / \sin \beta$	$\cot \beta$
dd (down-type quarks)	$\sin \alpha / \cos \beta$	$\cos \alpha / \cos \beta$	$\tan \beta$
$\ell\bar{\ell}$ (charged leptons)	$\sin \alpha / \cos \beta$	$\cos \alpha / \cos \beta$	$\tan eta$

Search for MSSM Higgs Bosons in $\Phi \to \tau \tau$

- three channels initially studied : $e+\tau_h$, $\mu+\tau_h$, $e+\mu$
- search exploits two production mechanisms

→ events categories

Neutral MSSM Higgs Bosons in $\Phi \rightarrow \tau\tau \rightarrow 2\mu 4\nu$

Adding one more channel

$$-\Phi \rightarrow \tau\tau \rightarrow 2\mu 4\nu$$

Search strategy similar to the analyses in $e+\tau_h$, $\mu+\tau_h$, $e+\mu$

This channel alone supersedes sensitivity of recent combined Tevatron searches

Search for MSSM Higgs bosons in the process

- Dedicated fully hadronic trigger developed
 - 3 high p_T jets && 2 jets are b-tagged
- Largest background QCD multi-jets
 - cannot rely on MC simulation
- → Data-driven background model
 - double tag data sample used to construct background templates for various flavor compositions of three jets
 - b-tagging of third jet is modeled by event weighting accounting for tagging efficiency (mis-tag rate)
 - → data-driven background templates

Statistical inference with 2D distribution

[M(jj), Event BTag]

Event BTag: discrete variable based on secondary vertex mass information

Signal yields from fits of data with linear combination of background and signal templates

Signal yield + luminosity + signal acceptance (from MC) → access to signal cross section

signal templates

Fits with Background and Signal Templates

Representative example of signal+background fit for $m_{\phi} = 200 \text{ GeV}$

Results of b → 3b Search

No evidence of signal in the probed mass range 90 - 350 GeV → constraints on MSSM parameters

Measuring Higgs Properties with 30 fb⁻¹ at 8 TeV

<u>Mass</u>

 $\Delta m/m \approx 0.2\%$

Measuring $\mathbf{\Gamma}_{\mathbf{H}}$ impossible @ $m_{\mathrm{H}} < 140~\mathrm{GeV}$

Spin/Parity: 0+

observation $H\rightarrow \gamma\gamma$ rules out J=1

observation of $H \rightarrow WW$ and $WW \rightarrow 2\ell 2\nu$ with trend to small $\Delta \varphi(\ell,\ell)$ rules out J=2

angular and m_{Z^*} spectra in $H \rightarrow ZZ^*$ distinguish $0^+/0^-$ state \rightarrow separation at 3σ level expected before shutdown

Couplings

- fully model-independent measurements impossible
- minimal assumptions $\rightarrow \Delta g^2/g^2 = 20 30\%$
- dedicated machinery for grand fits needed

International Linear Collider

- LHC alone won't be able to provide a <u>complete</u> and <u>comprehensive</u> picture of Higgs mechanism
 - precision of measurements insufficient to discriminate between different models e.g. H_{SM} and h_{MSSM}
 - model independent coupling measurements not possible
 - Higgs-self coupling is hard to access at LHC
 - some corners of MSSM parameter space are difficult to access, e.g. moderate tanβ and high m_A
- A new high precision machine needed
- A (sub)TeV linear collider is an ideal candidate
 - more than 10 years of detector and machine R&D and physics studies demonstrated high potential of the machine and its complementarity to LHC

What can we do with Linear Collider

- International linear collider = Higgs factory
- Model independent measurements in Higgs sector with high precision
- Channels to explore in SM and MSSM

Access to heavy SUSY states

Higgs Couplings to SM Particles

Couplings to Z and W via production rates

$$\Gamma = \Gamma_{ww}/Br(H \rightarrow WW)$$
 + $Br(H \rightarrow X)$ \rightarrow Γ_X

```
* ILD Letter of Intent
\sqrt{s} = 250 \text{ GeV} ; L = 250 \text{ fb}^{-1} ; m_H = 120 \text{ GeV}
```

```
# TESLA TDR
\sqrt{s} = 350 \text{ GeV}; L = 500 fb<sup>-1</sup>; m_H = 120 \text{ GeV}
```

Higgs Quantum Numbers and Self-Coupling

SM Double Higgs-strahlung: e⁺ e⁻ → ZHH

√s = 800 GeV

160

 ${\rm M_H[GeV]}^{180}$

σ [fb]

140

0.1

100

120

Parity from σ(ZH/A) & angular spectra + transverse spin correlations in H→ττ

Self-coupling via

ZHH and vvHH production

Summary

- Despite its phenomenological success, the SM is incomplete
 - mechanism of symmetry breaking not established yet
 - most favored scenario Higgs mechanism
 - predicts one more physical state Higgs boson
- Searches for Higgs bosons at LEP and Tevatron found no compelling signal → constraints on model parameters
- LHC experiments observe a new state with m_x ≈ 125 GeV
 - consistent with expectations from SM Higgs boson
 - more data needed to reveal the nature of observed state
- Searches for BSM Higgs bosons are ongoing in parallel with SM Higgs searches, reinforcing constraints on new models
- Higgs hunters are impatiently waiting for new LHC data in order to answer the questions
 - Is what we see now really Higgs boson?
 - Is it THE Higgs or A Higgs?

Contributions of CMS Higgs group to ICHEP'12 Results

Document	Analysis	
PAS HIG-12-015	H → γγ Search	
PAS HIG-12-016	H → ZZ → 4ℓ Search	
PAS HIG-12-017	H → WW → 2ℓ2ν Search	
PAS HIG-12-018	H → ττ Search	DESY
PAS HIG-12-019	VH, H → bb Search	•
PAS HIG-12-020	CMS Combined Search for Higgs	DESY
PAS HIG-12-021	H → WW → ℓvjj	
PAS HIG-12-022	Search for Fermiophobic Higgs	
PAS HIG-12-023	$H \rightarrow ZZ \rightarrow 2\ell 2\nu$	
PAS HIG-12-025	ttH, H → bb Search	
PAS HIG-12-026	MSSM b $\Phi \rightarrow 3b$ (fully hadronic)	DESY
PAS HIG-12-027	MSSM b $\Phi \rightarrow 3b$ (semileptonic)	

Members of DESY CMS Higgs Group

Andreas Meyer

Rainer Mankel

Wolfgang Lohmann

Caroline Riedl

Roberval Walsh

Alexei Raspereza

Agni Bethani

Sasha Spiridonov

Igor Marfin

Luigi Calligaris

Armin Burgmeier

Jakob Salfeld-Nebgen

Backup

Di-jet Tag (VBF Event Category)

Exclusive di-jet category

Statistical Analysis in Z → ZZ* → 4 Channel

statistical inference performed with 2D distribution [MELA, $m_{4|}$]

for illustration: MELA projection in m_{41} 121–131 GeV

for illustration: m_{4l} distribution for MELA > 0.5

CMS Detector

Higgs Mass Measurement at ILC

Exploited channel

• Z → ee, μμ, qq Use of kinematic fits

→ 4C fit : 4P (Z → ee, μμ)

 \rightarrow 5C fit : 4P+m_z(Z \rightarrow qq)

• $\sqrt{s} = 350 \text{ GeV, L=0.5/fb}$ $m = 120 \text{ GeV, H} \rightarrow bb$

 $\rightarrow \Delta m = 40 \text{ MeV}$

Standard Model at 7 TeV

- remarkable agreement with SM
- lots of data
- → ready for Higgs hunt

$t\bar{t}$ cross section

CMS Preliminary,√s=7 TeV

Decay Independent Higgs Detection

At ILC Higgs boson can be detected independent of its decay mode

 $\mathbf{Z} \rightarrow \ell^+\ell^-, \ \ell = \mathbf{e}, \mu$

signal: peak in the recoil mass spectrum

 Model independent extraction of HZZ coupling

$$\sigma \sim \mathbf{g}_{\mathbf{HZZ}}^{\mathbf{2}}$$

 $\Delta \sigma / \sigma \approx 3\%$ for $\mathbf{m_H} = 120 \text{ GeV}, \sqrt{\mathbf{s}} = 350 \text{ GeV}, \mathbf{L} = 0.5 \text{ fb}^{-1}$

Diphoton MVA

- Diphoton MVA combines variables independent
 - photon kinematics
 - MVA based photon IDs
 - Per-event diphoton mass resolution and vertex probability
- 4 categories depending on MVA output

- Exclusive di-jet categories: events compatible with VBF signatures
 - two jets with large rapidity gap and invariant mass
 - → S/B enhancement (80% of events are pure VBF events)

SM Higgs Boson at Tevatron

Main production mechanisms:

$$m_H \leq 130 \text{ GeV}$$

Overview of H → γγ Search in CMS

- H $ightarrow \gamma\gamma$ signatures : two isolated photon, narrow mass peak
- Search exploits MVA approach
 - event categorization based on MVA output and information about accompanying jets (VBF tag)
- MC used only for the analysis optimization

No prior model for background : background determined

from fits of mass spectra in each event category separately assuming no-signal

2012 8 TeV

possible bias studied with various smooth functions, modeling background shape

bias due to presence of possible signal < 20% of stat. error of fit

Z → e⁺e⁻ sample is used to measure γ energy scale and resolution

Matrix Element Likelihood Analysis

dynamics of decay described fully by 2 masses and 5 angles

Matrix Element Likelihood Analysis

discriminates $J^P = 0^+$ state from background

MELA =
$$\left[1 + \frac{\mathcal{P}_{bkg}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}{\mathcal{P}_{sig}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}\right]^{-1}$$

H→ZZ*→4 Search Channel: Overview

- Golden channel
 - clean signature : 4 isolated leptons
 - excellent momentum resolution of leptons
 - Narrow mass peak m₄
- Backgrounds:
 - irreducible : ZZ*
 - reducible : Z+jets/ttbar/WZ

Channels studied : 4μ , 2μ 2e, 4e

Lepton selection

minimal lepton $p_{\tau} = 5 \text{ GeV } (\mu)$, 7 GeV (e)

at least one lepton with $p_T > 20 \text{ GeV}$

at least two leptons with $p_T > 10 \text{ GeV}$

Z1 candidate : pair with mass closest to m(**Z**)

Z2 candidate : built from remaining leptons with highest $p_{\scriptscriptstyle T}$

40 GeV < m(Z1) < 120 GeV

4 GeV < m(Z2) < 120 GeV

Tau Lepton Identification

Tau Identification

- Reconstruction of individual decay modes
- charged hadrons + EM objects
- EM strips to account for material effects

Tau isolation based on MVA approach

→ absolute energy sum in ∆R rings

Efficiency > 60% for a tau fake rate of 6%

Search for $Z(\ell\ell)H$, Z(vv)H, $W(\ell v)H$ with $H\rightarrow bb$

Br(H → bb) is largest at m_H ≤ 130 GeV

inclusive search impossible due to overwhelming QCD background

→ exploit VH production

MVA shape analysis MVA combines

- lepton kinematics
- b-tag information
- jet kinematics
- mass information
- $_{-}$ missing \mathbf{E}_{T}

results of analysis compatible with either background or signal from $m_H = 125 \text{ GeV}$

→ more data needed

Reconstruction of Ditau Mass in H → ττ Search

SVFit

- Event-by-event estimator of true m(ττ) likelihood
 - Matrix Element used for τ→lvv
 - Phase-Space is used for τ→π
 - Nuisance parameters are integrated out
- Mass peaks at true value
 - 20 % improved resolution
 - With respect to 2011
 - Better separation of H from Z