Measuring Dark Matter and Dark Energy with Gravitational Lensing

Hendrik Hildebrandt, UBC Vancouver

June 5/6, 2012

Dark Matter Dark Energy Gravitational Lensing SL WL Summary

H. Hildebrandt, UBC

Outline

- 2 Dark Energy
- 3 Gravitational Lensing
- 4 Strong Lensing
- 5 Weak Lensing

Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA), D. Carter and the Coma HST ACS Treasury Team

Galaxy rotation curves

DMR's Two Year CMB Anisotropy Result

Credit: NASA and the COBE team

Credit: NASA / WMAP Science Team

CMB Power Spectrum

Dark Matter

Properties

- Collisionless
- Dissipationless
- Cold (i.e. non-relativistic at matter-radiation equality)
 ⇒ No standard-model neutrinos!
- Most probably WIMPs (Weakly Interacting Massive Particles)

Predictions (relevant for lensing)

- Hierarchical structure formation
- Universal dark matter halo profile
- Triaxial dark matter halos
- Stripping of sub-halos

High-redshift supernovae of type la are fainter than expected in a decelerating universe.

We want to precisely measure the dark energy equation of state and its time evolution (w & w').

Baryon Acoustic Oscillations

from Hinshaw et al. (2003) and Eisenstein et al. (2005)

Effects

- Distance-redshift relation (DR)
- Growth of cosmic structures (GS)

Probes

- Type la Supernovae (DR)
- Baryon Acoustic Oscillations (DR)
- Galaxy Cluster Mass Function (DR+GS)
- Weak Gravitational Lensing (DR+GS)

Note: CMB alone does **not** constrain dark energy.

COMPOSITION OF THE COSMOS

Dark Matter Dark Energy Gravitational Lensing SL WL Summary

H. Hildebrandt, UBC

Paradigm

- This all assumes that General Relativity (GR) is the correct theory of gravity.
- But GR has not been tested in the low acceleration regime.
- It was proposed (Milgrom 1983) that the gravitational acceleration, *a*, could drop below the Newtonian prediction for values of $a < a_0 \approx 10^{-10} m/s^2$.
- This would explain the flat galaxy rotation curves without the need for dark matter.
- More complicated theories of modified gravity try to explain dark energy as well.
- Measuring DR and GS simultaneously one can distinguish between different gravity models.

Gravitational Lensing

Lensing effect depends on:

- Mass (-distribution) of the lens (GS)
- Impact parameter ξ
- Lens-source geometry (DR),
 - i.e. the distances D_d , D_s , D_{ds}

figure created by Michael Sachs

Gravitational Lensing

Characteristics

- Weak gravitational fields ($\Phi/c^2 \ll 1$)
- Purely geometric effect
- Achromatic
- Conserves surface brightness
- Independent of dynamical state (as long as non-relativistic)
- Theoretically well-understood
- Sensitive to any kind of matter
 ⇒ Unique tool to measure the
 growth of DM structures
- Two regimes:
 - Strong lensing (SL)
 - Weak lensing (WL)

Credit: NASA, ESA, A. Bolton (Harvard-Smithsonian CfA) and the SLACS Team

Weak Gravitational Lensing

from Mellier (1999)

In WL we measure weak, coherent distortions/magnifications of huge numbers of background galaxies in a statistical way.

Combined with distances this yields the statistical properties of the DM field over cosmic time (sensitive to DE and GR).

Can be used to study...

- Stars and substellar objects (SL also called micro-lensing)
- Galaxies (SL & WL)
- Galaxy clusters (SL & WL)
- Large-scale structure (WL)

Einstein Ring Gravitational Lenses Hubble Space Telescope • Advanced Camera for Surveys

NASA, ESA, A. Bolton (Harvard-Smithsonian CfA), and the SLACS Team

Time delays

from Suyu et al. (2010)

Credit: NASA, ESA, and A. Fruchter

Weak lensing of a circular source

from P. Schneider, Saas Fee lecture on "Weak Gravitational Lensing"

O Change in shape ⇒ shear, the traditional WL observable.
 O Change in size ⇒ magnification, largely neglected in the past.

MEGACAM@CFHT(4m)

 $\sim 50\,000$ objects in one shot, $t_{exp}\approx 5 h$ for $\textit{I}_{AB} < 24$ in ugriz

Dark Matter Dark Energy Gravitational Lensing SL WL Summary

Galaxy-galaxy lensing

Lensing signal for bright LRG lenses 100 ΔΣ [hM_o/pc²] r<21 sources 10 LRG sources r>21 sources 500 1000 R [h⁻¹kpc]

from Mandelbaum et al. (2006) using 15 635 lenses

Credit: NASA, ESA, and the STAGES team, and C. Heymans

Dark matter in the bullet cluster separated from the hot X-ray gas

Credit: NASA, ESA, and D. Clowe

Credit: NASA, ESA, and M. Bradac

Ray-tracing simulations

from Jain et al. (2000)

Dark Matter Dark Energy Gravitational Lensing SL WL Summary

H. Hildebrandt, UBC

Cosmic shear correlation function

Cosmological constraints

Cosmic shear tomography

Weak lensing magnification

from SDSS press release, April 26, 2005

Magnification (lensing galaxy not to scale)

- Magnifies flux from background sources
- Angular magnification reduces angular source density
- Sensitive to dust

Dark Matter Dark Energy Gravitational Lensing SL WL Summary

Data sets

Existing:

- CFHT Legacy Survey (170 sq. deg., deep)
- RCS2 (800 sq. deg., medium)
- SDSS Stripe 82 (200 sq. deg., deep)

Runnig/Near future:

- KiDS (ESO; 1 500 sq. deg., medium + IR)
- PanSTARRS (3π , shallow)
- DES (5000 sq. deg., medium)
- Hyper Suprime Cam

Long term:

- Euclid (ESA; ~700M€; launch 2019)
- LSST, WFIRST, ...

H. Hildebrandt, UBC

Summary

- Gravitational lensing is a unique tool to study the dark sector of the Universe.
- Evidence for dark matter through lensing in:
 - MACHOS in our galaxy (only small fraction of total DM)
 - Other galaxies (seen through SL and WL)
 - Galaxy clusters
 - Bullet cluster where it's separate from the hot gas
 - Large-scale structure
- Cosmic shear (weak lensing effect of the large-scale structure) is the most promising probe of dark energy.
- Cosmic shear can constrain modified gravity models by itself.
- WL Magnification has the potential to add more statistical power, check for systematics, and go to higher redshifts.