The OLYMPUS Experiment at DORIS Two Photon Exchange

Jürgen Diefenbach

Hampton University

17. April 2012 - DESY-Dienstagsseminar

Motivation

OLYMPUS – Setup and First Data Taking

Summary

The proton...

- carries electric charge
- 2 has a sub-structure (resonances, μ_p , ...)

The proton...

- carries electric charge
- \bigcirc has a sub-structure (resonances, μ_p , ...)

How is charge (and magnetization) distributed inside the proton?

Use elastic electron proton scattering

Elastic electron proton scattering:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\mathsf{Mott}} \frac{1}{1+\tau} \left(G_{\mathsf{M}}^2 + \frac{\epsilon}{\tau} G_{\mathsf{E}}^2\right)$$

$$au = Q^2/(4M_p^2) \;,\;\; \epsilon = \left(1 + 2(1+ au) an^2(heta/2)
ight)^{-1}$$

with $G_E(Q^2)$ the electric and $G_M(Q^2)$ the magnetic form factor (FF) of the proton.

First measurements: in 1950s (Hofstadter, SLAC)

Separation of electric and magnetic FF:

- ullet measurements at same Q^2 , different ϵ , au
- different linear combinations of G_E^2 , G_M^2
- separation of G_E^2 , G_M^2 for one value of Q^2

Rosenbluth separation: >50 years of form factor measurements

Form Factor Ratio

Electric and magnetic FF seem to have same shape: (normalized) ratio consistent with 1

Form Factor Ratio

Cross section is dominated by G_M^2 for high Q^2

Large uncertainty of ratio for high Q^2

$$\frac{1}{1+\tau}\left(G_M^2 + \frac{\epsilon}{\tau}G_E^2\right)$$

 G_F^2 supressed by $1/ au \sim 1/Q^2$

Polarization Transfer I

New technique used at Jefferson Lab in the 1990s:

- scattering of polarized electrons off unpolarized protons
- measure polarization of recoil protons
- ullet transverse vs. longitudinal component \sim FF ratio:

$$rac{P_{
m trans}}{P_{
m long}} \sim rac{G_E}{G_M}$$

 $ightharpoonup G_E$ no longer discriminated against G_M at higher Q^2

Polarization Transfer II

Polarization Transfer II

Discrepancy between Rosenbluth and Polarization Transfer!

Polarization Transfer II

Discrepancy between Rosenbluth and Polarization Transfer!

Possible explanation: Two Photon Exchange

Two Photon Exchange

Rosenbluth method takes into account only single photon exchange...

... but two (multiple) photon exchange can contribute!

Two Photon Exchange

Rosenbluth method takes into account only single photon exchange...

... but two (multiple) photon exchange can contribute!

Direct access to two photon exchange amplitude?

Accessing the Two Photon Exchange Amplitude

Interference between single and two photon exchange

Sign depends on sign of lepton charge!

$$\sigma(e^-p) = |M_{1\gamma}|^2 \alpha^2 - 2 |M_{1\gamma}| |M_{2\gamma}| \alpha^3 + \dots$$

$$\sigma(e^+p) = |M_{1\gamma}|^2 \alpha^2 + 2 |M_{1\gamma}| |M_{2\gamma}| \alpha^3 + \dots$$

Cross section ratio for elastic e^+ and e^- proton scattering:

$$R = \frac{\sigma(e^+p)}{\sigma(e^-p)} = 1 + \frac{4 \Re(M_{1\gamma}^{\dagger} M_{2\gamma})}{|M_{1\gamma}|^2}$$

Ingredients to determine two photon contribution:

- proton target
- electron / positron beam (switchable)
- detector to identify and count elastic events

Ingredients to determine two photon contribution:

- proton target
- electron / positron beam (switchable)
- detector to identify and count elastic events

BLAST detector available since MIT Bates shutdown **DORIS** storage ring for e^+ , could store e^- as well

Other Experiments (projected accuracies)

Novosibirsk experiment, VEPP-3

CLAS at Jefferson Lab

Timeline

Proposal	09/2008
 DOE funding 	01/2010
 BLAST shipped to DESY 	spring 2010
 Modification of Interaction Region and Test experiment @DORIS 	02/2010
 Detector assembly 	until 07/2011
Roll-in into DORIS	16.07.2011
 OLYMPUS test beamtime in DORIS 	08/2011
• First data taking	01-02/2012
Detector upgrades	summer 2012
Second data taking	10-12/2012

DORIS

Large acceptance detector:

$$20^\circ < \theta < 80^\circ$$
 and $-15^\circ < \phi < 15^\circ$ 0.37 $< \epsilon < 0.9$ and 0.6 $< Q^2 < 2.2$ (GeV²/c²)

- Toroidal magnetic field
- Left/right symmetric (two sectors)
- Time of flight scintillator walls
- Drift chambers for lepton and proton tracking
- Luminosity monitoring: two independent systems:
 - 12° forward tracking telescopes (ep) internally redundant (GEMs + MWPCs)
 - 1.2° very forward calorimeters (ee)

based on a figure by R. Russell

Jürgen Diefenbach

The OLYMPUS Experiment

Roll-in I

Jürgen Diefenbach

The OLYMPUS Experiment

Roll-in II

Jürgen Diefenbach

The OLYMPUS Experiment

Roll-in III

Jürgen Diefenbach

The OLYMPUS Experiment

Target

- internal, windowless target
- 60 cm long storage cell
- elliptical cross section 27mm×9mm
- $100 \mu m$ aluminum
- flows up to 1.0 sccm H₂
- \bullet 3 · 10¹⁵ atoms/cm²
- cryo-cooled to 40K
- MIT, INFN Ferrara
- hydrogen generator (electrolysis)

Target

Drift Chambers

- jet style drift cells3 chambers per sector
- ~ 10000 wires in total
- 954 sense wires
- work well with ArCO₂ 90:10

Time of Flight Counters and Trigger

- 18 TOF bars per sector
- complete coverage of drift chamber acceptance
- ep elastic events: left & right coincidences
- top/bottom PMT readout for vertical impact position

So far kinematic trigger: coincidence matrix for elastic ep kinematics

ightarrow second level trigger to be implemented, open up first level trigger

Time of Flight Counters and Trigger

Example events with "lumi trigger" events (forward leptons):

Separation of fast (e⁺,e⁻) and slow (**protons**) particles by

- time of flight
- energy deposition

in a rear TOF bar (L15)

Luminosity Monitoring

Cross section ratio
e⁺/e⁻ switch once per day
Importance of (relative!) Luminosity Monitoring

Two independent systems:

- 12 degree tracking telescopes
- 1.2° symmetric Møller/Bhabha calorimeters

12 degree Tracking Telescopes

Detect leptons from elastic ep at 12° for luminosity monitoring:

- ullet 12° corresponds to high ϵ
 - → two photon contribution small
- proton in opposite sector drift chamber
- trigger: plastic scintillators on 12° arm (PNPI, DESY) efficiency monitoring by downstream lead glass detectors (alternative 12° trigger)
- tracking elements: 3 GEMs + 3 MWPCs per arm redundancy + efficiency monitoring

12 degree Tracking Telescopes

12 degree Tracking Telescopes

- GEM data first data taking period
- straight line tracks (ignoring magnetic field) preliminary!
- MWPC data first data taking period
- Reconstructed vertex distribution
- Monte Carlo lookup table
- red: empty target run preliminary!

Symmetric Møller/Bhabha Monitor

Symmetric Møller and Bhabha scattering (and annihilation)

- \bullet pure QED \rightarrow calculable
- completely independent from 12 degree monitors
- fast Cherenkov calorimeters with custom readout
 20 ns dead time vs. 96 ns bunch spacing
 - \rightarrow quasi dead-time free
- left/right coincidence, 1 GeV each
- elasic ep, 2 GeV single arm for cross checks

Symmetric Møller/Bhabha Monitor

Jürgen Diefenbach

The OLYMPUS Experiment

First Data Taking January, Februrary 2012

- Routine switching between e⁺ and e⁻
- Routine switching of toroid polarity
- DORIS availability \sim 90%

average data taking efficiency 50 % (as anticipated)

J. Bernauer

Summary

Unique combination of OLYMPUS and DORIS:

► OLYMPUS aims to determine the contribution of two photon exchange to elastic ep scattering on the percent level

First data taking period in February successful:

- All detectors operational
- Routine switching of magnet and beam species established
- Anticipated data taking efficiency reached (although some commissioning was still done)

Data analysis ongoing

Detector upgrades for second production run (end of 2012)

Outlook

Planned upgrade and improvements:

- GEM tracker (+redundancy, +momentum resolution for tracking)
- Second level trigger (+livetime, +statistics, +kinematic range)
- Lumi trigger upgrade (+efficiency monitoring, +stability, +redundancy)

Looking forward to second data taking period

Two months: November + December 2012 will give more than $2 \times$ statistics of 1st run

OLYMPUS Collaboration

- Arizone State University, USA
- DESY, Deutschland
- Hampton University, USA
- INFN Bari, Ferrara, Rome, Italy
- MIT, USA
- Petersburg Nuclear Physics Institute, Russia
- Universität Bonn, Germany
- Universität Mainz, Germany
- University of Glasgow, UK
- University of New Hampshire, USA
- Yerevan Physics Institute, Armenia